-
随着点源污染问题的逐步解决和海绵城市建设的兴起,工业园区面源污染治理日益成为维持天津滨海新区水域生态安全和保障周边海域生态健康的重要举措[1-5]。“高消耗、密集型、集约化”的工业园区往往由于生态结构简单、产业链短缺导致物质循环和能量流动受阻。工业粉尘弥散、车辆尾气排放、化工生产原料运输或储存不当及建筑材料有毒物质的析出均会导致污染物的产生和累积。据报道[6],工业园区径流污染中TP、COD和重金属的负荷量约是混合住宅区和商业区的3~6倍。
目前,沿天津滨海新区的渤海湾区域分布着以石油化工、煤化工、海洋化工为主的10大化工产业群,工业园区内污染物的广泛分布和持续性累积,可通过降雨溶淋及径流冲刷使之汇入周边水域,这种集中式暴发及漫流污染扩散的生态风险,严重阻碍了工业园区的可持续发展和渤海水域的生态安全。随着天津市“工业东移和企业进入园区”战略的实施及近年来工业产业的迅猛发展,经济增长与环境恶化的矛盾日益凸显[7],工业园区面源污染的危害日趋严重,缓解区域生态环境恶化,维持周边海域生态安全,已成为当前滨海新区生态环境修复的首要任务。
为此,本研究以天津滨海新区临港工业园区1期建设产业园区为研究对象,通过覆盖该区域丰水期典型的5场降雨,解析其典型工业园区的水质污染特征,掌握工业园区径流污染状况;通过降雨径流污染源解析,探索径流污染源头控制的切入点;通过分析典型暴雨径流事件中污染物质量负荷与径流流量在不同下垫面中出现的初始冲刷现象,探究其工业园区径流污染输移规律,以期为当前工业园区面源污染控制和水环境质量提升,建设绿色生态工业园区提供参考。
天津滨海临港工业园区径流污染特征及其控制策略
Pollution characteristics and control strategies of runoff in Tianjin Binhai Lingang industrial park
-
摘要: 控制工业园区面源污染是解决天津滨海新区日益突出的水环境问题和维持周边海域水生态安全的关键。为缓解该区域日益突出的生态环境恶化与经济可持续发展的矛盾,以天津滨海新区临港工业园区1期建设产业园区丰水期的5场典型降雨径流为研究对象,通过多次降雨事件的平均浓度(EMCs)分析了工业园区不同下垫面的径流污染中氨氮(NH3-N)、总氮(TN)、活性磷(SRP)、总磷(TP)、化学需氧量(COD)、总悬浮物(TSS)及6种溶解性重金属铜(Cu)、铅(Pb)、锌(Zn)、铬(Cr)、镉(Cd)、镍(Ni)污染程度。结果表明,天津临港工业园区径流污染中COD、NH3-N、TN在屋面径流雨水中较为突出,COD(EMCs=170.68 mg·L−1)、氨氮(EMCs=14.49 mg·L−1)和TN(EMCs=29.66 mg·L−1)含量分别是地面径流雨水中EMCs含量的1.4、3.33和1.64倍;地面径流雨水中SRP(EMCs=1.87 mg·L−1)和TSS(EMCs=163.18 mg·L−1)含量分别为屋面径流雨水的2.26倍和2.87倍,TP含量(EMCs=1.43 mg·L−1)在屋面径流雨水和地面径流雨水中含量相当;6种毒性重金属污染程度相对较轻,与天津主城区相当,比较突出的Cr、Zn、Cu 3种元素含量在临港工业园区径流污染中依然具有潜在的生态环境风险。以径流污染输出负荷同径流量关系的M(V)曲线为基础,通过污染物初始冲刷比率(MFFRn)及冲刷强度系数b对不同下垫面径流污染物输移过程进行量化分析。结果表明,总体上,累积径流量的前20%能发生较为显著的初始冲刷效应(MFFR20比MFFR30高出10%),且出现初始冲刷现象(b<1.025)的概率约为75%,降雨强度及下垫面累积污染负荷会对次降雨径流污染输移曲线产生较大影响。结合污染物来源解析可知,源头控制、过程清洁及初期雨水截流是缓解当前工业园区径流污染的有效策略。Abstract: Controlling non-point source pollution in industrial parks is the key to solve the increasingly prominent water environment problems in Tianjin Binhai New Area and to maintain the water ecological security in the surrounding sea areas. In order to alleviate the increasingly prominent contradiction between the deterioration of ecological environment and sustainable economic development in the region, five typical rainfall runoffs during the flood season of Lingang Industrial Park Phase 1 construction in Tianjin Binhai New Area were taken as the research object in this study. The average concentrations of multiple rainfall events (EMCs) were used to analyze the pollution levels of Ammonia Nitrogen (NH3-N), Total Nitrogen (TN), Soluble Reactive Phosphorus (SRP), Total Phosphorus (TP), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and six soluble heavy metals Cu, Pb, Zn, Cr, Cd, Ni in the runoff pollution of different underlying surfaces in the industrial park. The results showed that COD, NH3-N and TN in runoff pollution in Tianjin Lingang Industrial Park were more prominent in roof runoff rainwater, and the contents of COD (EMCs=170.68 mg·L−1), ammonia nitrogen (EMCs=14.49 mg·L−1) and TN (EMCs=29.66 mg·L−1) were 1.4, 3.33 and 1.64 times of those in surface runoff rainwater, respectively. The contents of SRP (EMCs=1.87 mg·L−1) and TSS (EMCs=163.18 mg·L−1) in surface runoff rainwater were 2.26 and 2.87 times of those in roof runoff rainwater, respectively, and the TP content (EMCs=1.43 mg·L−1) was equivalent between roof runoff rainwater and surface runoff rainwater. The pollution degree of six toxic heavy metals was relatively light, which was equivalent to the main urban area of Tianjin. The prominent contents of Cr, Zn and Cu still had potential ecological and environmental risks in runoff pollution in Lingang Industrial Park. Based on the M(V) curve of the relationship between runoff pollution output load and runoff, the pollutant transport process of runoff on different underlying surfaces was quantitatively analyzed through the pollutant first scour ratio (MFFRn) and scour intensity coefficient b. The results showed that, in general, the first 20% of accumulated runoff was more prone to the first scouring effect (MFFR20 is 10% higher than MFFR30) than the first 30% of accumulated runoff, and the probability of the first scouring phenomenon (b<1.025) was about 75%. Rainfall intensity and the accumulated pollution load on the underlying surface had a great impact on the pollution transport curve of the secondary rainfall runoff. Combined with the analysis of pollutant sources, source control, process cleaning and initial rainwater interception will be effective strategies to alleviate runoff pollution in the current industrial park.
-
Key words:
- stormwater runoff /
- industrial parks /
- first flush /
- source apportionment
-
表 1 典型降雨事件基本降雨特征
Table 1. Basic rainfall characteristics of typical rainfall events
降雨
日期降雨
量/mm降雨
历时/h平均降
雨强度/
(mm·h−1)最大降
雨强度/
(mm·h−1)2次降雨
间隔时
间/d2019-06-06 3.6 3 0.9 1.2 1 2019-06-19 4.6 2.5 1.84 2.0 3 2019-07-06 27.2 8 3.4 4.4 1 2019-07-20 3.8 4 0.95 2.8 6 2019-07-23 43.2 4.5 9.6 13.2 2 表 2 水样各指标监测分析方法
Table 2. Analytical methods for water quality parameters
监测指标 分析/测定方法 标准 氨氮 水杨酸分光光度法 HJ 536-2009 TN 碱性过硫酸钾消解紫外分光
光度法HJ 636-2012 TP/SRP 钼酸铵分光光度法 GB 11893-1989 COD 哈希试剂快速消解分光光度法 HJ/T 399-2007 TSS 重量法 GB 11901-1989 溶解性
重金属水质65种元素的测定电感耦
合等离子体质谱仪HJ 700-2014 表 3 降雨径流中监测污染物指标相关性分析
Table 3. Correlation analysis of monitoring pollutant indices in rainfall runoff
项目 COD 氨氮 TN TP SRP DCr DNi DCu DZn DCd DPb COD 1 氨氮 0.211* 1 TN 0.272** 0.11 1 TP 0.345** 0.023 0.234* 1 SRP 0.260** 0.114 −0.012 0.063 1 DCr −0.103 −0.271** −0.220* 0.1 0.019 1 DNi 0.457** 0.685** 0.029 0.104 0.094 −0.187* 1 DCu 0.433** 0.569** 0.075 0.204* 0.134 −0.182 0.831** 1 DZn 0.398** 0.603** 0.06 0.299** 0.194* −0.105 0.755** 0.924** 1 DCd 0.374** 0.815** 0.013 0.103 0.109 −0.091 0.888** 0.770** 0.773** 1 DPb 0.408** 0.683** 0.009 0.194* 0.186* −0.048 0.836** 0.908** 0.929** 0.902** 1 注:**为P<0.01,相关性显著;*为P<0.05,相关性显著。 -
[1] 张志彬, 孟庆宇, 马征. 城市面源污染的污染特征研究[J]. 给水排水, 2016, 42(1): 163-167. [2] 赵琰鑫, 彭虹, 王双玲, 等. 分布式工业区面源污染模型研究[J]. 武汉大学学报(工学版), 2012, 45(5): 594-597. [3] 吴丹洁, 詹圣泽, 李友华, 等. 中国特色海绵城市的新兴趋势与实践研究[J]. 中国软科学, 2016(1): 79-97. doi: 10.3969/j.issn.1002-9753.2016.01.008 [4] 姜德娟. 关于加强面源污染治理的建议[J]. 中国发展, 2016, 16(1): 88-89. doi: 10.3969/j.issn.1671-2404.2016.01.017 [5] 刘娟. 渤海化学污染物入海通量研究[D]. 青岛: 中国海洋大学, 2006. [6] BOARD T. Urban stormwater management in the United States[R]. Washington D C: The National Academies Press, 2008. [7] 王松, 唐运平, 余海晨, 等. 天津滨海新区工业园区水环境问题概述[J]. 广东化工, 2011(12): 97-98. [8] 熊明明, 徐姝, 李明财, 等. 天津地区小时降水特征分析[J]. 暴雨灾害, 2016, 35(1): 84-90. doi: 10.3969/j.issn.1004-9045.2016.01.012 [9] 陈莹, 王昭, 赵剑强, 等. 样品数量对径流事件平均浓度估算结果的影响: 以时间间隔采样法为例[J]. 中国环境科学, 2017, 37(2): 620-627. [10] 郑丙辉, 秦延文, 孟伟, 等. 1985~2003年渤海湾水质氮磷生源要素的历史演变趋势分析[J]. 环境科学, 2007, 28(3): 48-53. [11] 陈秀, 李爽兆, 袁德奎, 等. 渤海湾沉积物重金属的分布特征及影响因素[J]. 海洋科学进展, 2017, 35(3): 382-391. doi: 10.3969/j.issn.1671-6647.2017.03.008 [12] 车伍, 张炜, 李俊奇, 等. 城市雨水径流污染的初期弃流控制[J]. 中国给水排水, 2007, 23(6): 1-5. [13] GUPTA K, SAUI A J. Specific relationships for the first flush load in combined sewer flows[J]. Water Research, 1996, 30(5): 1244-1252. doi: 10.1016/0043-1354(95)00282-0 [14] MA Z B, NI H G, ZENG H, et al. Function formula for first flush analysis in mixed watersheds: A comparison of power and polynomial methods[J]. Journal of Hydrology (Amsterdam), 2011, 402(3/4): 333-339. [15] BERTRAND-KRAJEWSKI J L, CHEBBO G, SAGET A. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon[J]. Water Research, 1998, 32(8): 2341-2356. doi: 10.1016/S0043-1354(97)00420-X [16] CHANG M, CROWLEY C M. Preliminary observations on water quality of storm runoff from four selected residential roofs[J]. Jawra Journal of the American Water Resources Association, 2010, 29(5): 777-783. [17] CHANG M, MCBROOM M W, BEASLEY R S. Roofing as a source of nonpoint water pollution[J]. Journal of Environmental Management, 2004, 73(4): 307-315. doi: 10.1016/j.jenvman.2004.06.014 [18] 李倩倩, 李铁龙, 赵倩倩, 等. 天津市路面径流雨水径流重金属污染特征[J]. 生态环境学报, 2011, 20(1): 143-148. doi: 10.3969/j.issn.1674-5906.2011.01.025 [19] LEGRET M, PAGOTTO C. Evaluation of pollutant loadings in the runoff waters from a major rural highway[J]. Science of the Total Environment, 1999, 235: 143-150. doi: 10.1016/S0048-9697(99)00207-7 [20] 孙思杨. 铜、锌的水质标准及水质对水生物的生态安全影响[D]. 南昌: 南昌大学, 2016. [21] JIRIES A. Chemical composition of dew in Amman, Jordan[J]. Atmospheric Research, 2001, 57: 261-268. doi: 10.1016/S0169-8095(01)00079-5 [22] Al-KHASHMAN O A. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan[J]. Environmental Geochemistry and Health, 2007, 29(3): 197-207. doi: 10.1007/s10653-006-9065-x [23] 葛顺, 汤莉莉, 秦玮, 等. 南京地区秋季灰霾天气特征及其水溶性离子分析[J]. 环境科学与技术, 2015, 38(2): 99-104. [24] 杨凌霄, 侯鲁健, 吕波, 等. 济南市大气细颗粒物水溶性组分及大气传输的研究[J]. 山东大学学报(工学版), 2007, 34(4): 98-103. doi: 10.3969/j.issn.1672-3961.2007.04.021 [25] 张静, 周玉文, 王中正, 等. 北方城市天然降雨中氨氮污染特征研究[J]. 环境科学与技术, 2016, 39(6): 129-134. [26] 刘大喜, 李倩倩, 李铁龙, 等. 北方沿海城市屋面雨水径流水质及影响因素[J]. 环境科学与技术, 2016, 39(12): 100-105. [27] KIM G, YUR J, KIM J. Diffuse pollution loading from urban stormwater runoff in Daejeon city, Korea[J]. Journal of Environmental Management, 2007, 85(1): 9-16. doi: 10.1016/j.jenvman.2006.07.009 [28] LEE J H, BANG K W, KETCHUM L H, et al. First flush analysis of urban storm runoff[J]. Science of the Total Environment, 2002, 293(1/2/3): 163-175. [29] 张香丽, 赵志杰, 秦华鹏, 等. 常州市不同下垫面污染物冲刷特征[J]. 北京大学学报(自然科学版), 2018, 54(3): 645-654. [30] 任玉芬, 王效科, 欧阳志云, 等. 北京城市典型下垫面降雨径流污染初始冲刷效应分析[J]. 环境科学, 2013, 34(1): 373-378. [31] 李立青, 尹澄清, 孔玲莉, 等. 2次降雨间隔时间对城市地表径流污染负荷的影响[J]. 环境科学, 2007, 28(10): 137-143.