-
湖泊是一种生物与环境、生物与生物之间相互依存与制约的复杂系统。一般情况下,这个系统是处于相对平衡的状态,过于频繁的人类活动会打破原本的平衡状态。2018年中华人民共和国生态环境部发布的关于湖库富营养化现状调查结果[1]显示,在所有被调查的湖库中,中营养占比为61.7%,中营养以上占比为29%,仅有9.3%营养化程度为贫营养。底泥是湖泊水体重要的营养源,在湖泊自净能力范围内,沉积物表现为营养物的“源”,超过其承载力时则表现为“汇”。由于浅水湖泊具有环境比较封闭、流动性差、水深较浅、易污染等特点,所以外界环境极易对湖泊水环境造成干扰,使得沉积物中的污染物释放到水体中形成二次污染。
氮磷过量输入是导致湖泊富营养化的直接原因,进入湖泊水体的氮磷来源于2个方面:一是外源的直接输入;另一重要来源则是底泥向上覆水的内源释放。近年来,国内外学者在对非洲的东非湖[2]、美国的太浩湖[3]、中国的乌梁素海[4]和太湖梅梁湾[5]等研究中,也证实了底泥污染物质对水质有较大的影响,因此,对因底泥营养盐释放引起水体二次污染的问题进行了极大的关注,并展开了一系列的相关研究。这些研究主要包括沉积物中污染物含量及分布[6]、污染程度评价[7]、底泥的释放机理[8]等。掌握污染物在沉积物-上覆水间的迁移对内源污染防治至关重要,迁移作用主要包括扩散、吸附-解吸、矿化、溶解和分解等。在这些过程中,pH[9]、溶解氧[10]、温度[11]、盐度[12]、微生物或藻类[13]、扰动(包括物理和生物扰动)[14]等因素会影响沉积物-上覆水间物质的交换。目前,关于此方面的研究多是从单因素角度定性地对环境因子和污染物释放间的关系进行分析[15-16]。张强等[17]在研究中发现,高扰动强度增加了TN和COD的释放通量,缩短了TP的吸附-解吸平衡时间,而对氨氮的影响较小。实际上各因子是协同作用的,也有部分学者通过设计正交实验,揭示了多因子共同作用下底泥的释放规律。张茜[18]通过正交实验得出温度、pH、溶解氧对总氮和总磷释放速率有着显著的差异,沉积物中总氮和总磷的释放与环境因子间的显著性排序为pH>温度>溶解氧。张硕等[19]研究发现,温度和溶解氧交互作用对正磷酸盐交换通量影响显著,对氨氮和硝氮交换通量无显著影响。但正交实验也存在一定的局限性,其分析的是离散型数据,所求得的因素最佳组合只能局限在所设计的工况中,但在现实情况中,各因子的变化是连续的,离散型数据会降低所得结果的精度。
雁鸣湖2#湖(图1)位于西安市,属于浅水人工湖,从浐河引水,属于河道外湖泊。湖西面为黄土源,雨季时雨水夹带着塬上的污染物会流入2#湖,加上受污染的浐河水体会直接进入2#湖,这些因素都会导致湖泊水环境受到污染。在进行本研究前,监测发现,2#湖底泥和水体已经受到一定程度的污染,底泥颜色呈现深褐色至黑色,并散发有难闻气味,水体中TN、TP已经远超过国际上规定的富营养化发生的阈值[20](TN为0.2 mg·L−1,TP为0.025 mg·L−1)。针对雁鸣湖内源污染的研究很少,然而污染现状已不容忽视。本研究以雁鸣湖为研究对象,在单因子实验的基础上,结合响应面法,分别考察了温度、溶解氧、pH对沉积物-上覆水界面氮磷释放规律的影响,此实验方法规避了正交实验工况离散、回归精度较低等不足,分析了单因子作用及交互作用对界面氮磷释放的影响,并通过建立回归模型量化反映环境因子与释放量间的对应关系,研究结果对雁鸣湖富营养化防治具有一定的参考价值。
环境因子对雁鸣湖沉积物氮磷释放的影响
Effects of environmental factors on the release of nitrogen and phosphorus from the sediment of the Yanming Lake, China
-
摘要: 为探明环境因子对雁鸣湖沉积物-上覆水界面间氮磷释放的影响,通过单因子实验和响应面实验分析探究了温度、溶解氧及pH对氮磷释放通量的影响。单因子实验结果表明:雁鸣湖沉积物-上覆水界面间氮磷通量随着温度的升高而增加;随溶解氧浓度的升高而减小;当pH为中性时,氮磷通量最小,氮通量在pH=5时达到最大值,磷通量在pH=9时达到最大值。BBD模型拟合结果显示,各环境因子与氮磷通量间拟合关系均为二次多项式。响应面实验结果表明:温度和pH交互作用对TN通量影响显著;温度和溶解氧交互作用对TP通量影响显著;温度和溶解氧交互作用、温度和pH交互作用对
${{\rm{NH}}_4^{+}}$ -N通量影响均为显著;温度和溶解氧交互作用对${{\rm{PO}}_4^{3 - }}$ -P通量影响极显著;雁鸣湖底泥释放的最不利条件为T=10 ℃、DO=7.87 mg·L−1、pH=7.13,此时的TN交换通量为3.956 mg·(m2·h)−1,TP交换通量为0.471 mg·(m2·h)−1,${{\rm{NH}}_4^{+}}$ -N交换通量为1.469 mg·(m2·h)−1,${{\rm{PO}}_4^{3 - }}$ -P交换通量为0.146 mg·(m2·h)−1。以上研究结果可为雁鸣湖富营养化防治提供参考。Abstract: To investigate the effect of environmental factors on the release of nitrogen and phosphorus between the sediment-overlying water interface of the Yanming Lake, the effects of temperature, dissolved oxygen and pH on the release flux of nitrogen and phosphorus were investigated by single factor test and response surface analysis. The results of single factor experiment showed that the nitrogen and phosphorus fluxes between the sediment-overlying water interface of the Yanming Lake increased with the increase of temperature, and decreased with the increase of dissolved oxygen concentration. At neutral pHs, the lowest nitrogen and phosphorus fluxes occurred. The nitrogen flux reached its maximum value at pH=5 and the phosphorus flux reached its maximum value at pH=9. The fitting results of the BBD model showed that the fitting relationships between environmental factors and the fluxes of nitrogen and phosphorus were quadratic polynomial equations. The results of response surface test showed that the interaction between temperature and pH had a significant effect on TN flux. The interaction between temperature and dissolved oxygen had a significant effect on TP flux. The interactions between temperature and dissolved oxygen, temperature and pH had a significant effect on${\rm{NH}}_4^{+}$ -N flux. The interaction between temperature and dissolved oxygen had a very significant effect on the flux of${\rm{PO}}_4^{3 - }$ -P; the most unfavorable conditions for the release from the Yanming Lake sediment were temperature of 10 ℃, dissolved oxygen of 7.87 mg·L−1, pH 7.13, at which the exchange flux of TN was 3.956 mg·(m2·h)−1, the exchange flux of TP was 0.471 mg·(m2·h)−1, and the exchange flux of${\rm{NH}}_4^{+}$ -N was 1.469 mg·(m2·h)−1, the exchange flux of${\rm{PO}}_4^{3 - }$ -P was 0.146 mg·(m2·h)−1. The research results can provide a reference for the eutrophication prevention of the Yanming Lake. -
表 1 响应面实验的因子与水平编码
Table 1. Factors and level codes for response surface tests
编码 环境因子 水平 −1 0 1 X1 温度/℃ 5 17.5 30 X2 溶解氧/(mg·L−1) 3 6 9 X3 pH 5 7 9 表 2 BBD实验实测值
Table 2. Experimental results of BBD
实验组号 TN通量/(mg·(m2·h)−1) TP通量/(mg·(m2·h)−1) ${\rm{NH}}_4^{+}$ -N通量/(mg·(m2·h)−1)${\rm{PO}}_4^{3-}$ -P通量/(mg·(m2·h)−1)平行样1 平行样2 平行样3 平行样1 平行样2 平行样3 平行样1 平行样2 平行样3 平行样1 平行样2 平行样3 1 8.445 7.754 8.559 0.756 0.764 0.673 3.375 3.115 2.974 0.236 0.234 0.217 2 5.012 5.689 5.541 0.623 0.645 0.651 2.045 1.997 2.289 0.186 0.215 0.195 3 7.415 7.525 7.894 0.574 0.701 0.681 2.852 2.682 2.962 0.203 0.211 0.225 4 7.551 7.045 7.541 0.676 0.678 0.636 2.942 2.964 2.675 0.195 0.221 0.215 5 4.604 5.197 4.141 0.468 0.451 0.431 1.589 1.576 1.786 0.137 0.151 0.139 6 5.212 4.634 4.791 0.473 0.475 0.504 1.841 1.846 1.619 0.149 0.142 0.155 7 8.111 8.697 8.119 0.664 0.727 0.671 3.047 3.202 3.105 0.229 0.221 0.197 8 5.789 5.865 6.436 0.612 0.627 0.589 2.412 2.276 2.248 0.197 0.189 0.190 9 4.789 5.327 5.214 0.523 0.554 0.475 1.825 2.241 1.965 0.161 0.169 0.151 10 5.589 6.549 6.989 0.678 0.697 0.679 2.758 2.388 2.587 0.216 0.197 0.214 11 4.707 4.784 4.314 0.467 0.504 0.441 1.772 1.590 1.810 0.142 0.145 0.162 12 6.417 6.124 5.585 0.650 0.617 0.563 2.357 2.412 2.057 0.178 0.192 0.196 13 4.321 4.012 4.338 0.463 0.525 0.518 1.669 1.559 1.496 0.166 0.145 0.154 14 8.807 7.981 8.913 0.711 0.789 0.765 3.321 3.197 3.124 0.224 0.245 0.232 15 3.974 3.954 3.515 0.524 0.503 0.531 1.416 1.482 1.329 0.171 0.160 0.146 16 7.258 7.569 7.841 0.607 0.547 0.643 2.791 2.760 3.060 0.196 0.174 0.200 17 7.305 7.394 7.211 0.678 0.697 0.611 2.804 2.649 2.717 0.196 0.221 0.213 表 3 BBD实验设计及通量平均值
Table 3. BBD experiment design and average flux
实验组号 环境因子 TN通量/
(mg·(m2·h)−1)TP通量/
(mg·(m2·h)−1)${\rm{NH}}_4^{+}$ -N通量/
(mg·(m2·h)−1)${\rm{PO}}_4^{3-}$ -P通量/
(mg·(m2·h)−1)温度/℃ 溶解氧/(mg·L−1) pH 1 17.5 3 5 8.253 0.731 3.155 0.229 2 17.5 9 5 5.414 0.640 2.110 0.199 3 30 3 7 7.611 0.691 2.832 0.213 4 30 6 5 7.379 0.663 2.860 0.210 5 17.5 6 7 4.373 0.450 1.650 0.142 6 17.5 6 7 4.879 0.484 1.769 0.149 7 30 6 9 8.309 0.687 3.118 0.216 8 17.5 9 9 6.030 0.609 2.312 0.192 9 17.5 6 7 5.110 0.517 1.895 0.160 10 30 9 7 6.769 0.685 2.578 0.209 11 17.5 6 7 4.602 0.471 1.724 0.150 12 5 6 9 6.042 0.610 2.275 0.189 13 5 9 7 4.224 0.502 1.575 0.155 14 17.5 3 9 8.567 0.755 3.214 0.234 15 17.5 6 7 3.814 0.519 1.409 0.159 16 5 6 5 7.556 0.599 2.870 0.190 17 5 3 7 7.303 0.662 2.723 0.210 表 4 底泥释放通量回归方程方差分析
Table 4. Analysis of variance for regression equation of the release flux from sediment
方差来源 TN通量回归分析 TP通量回归分析 ${\rm{NH}}_4^{+}$ -N通量回归分析${\rm{PO}}_4^{3-}$ -P通量回归分析df F P>F 显著性 df F P>F 显著性 df F P>F 显著性 df F P>F 显著性 模型 9 18.45 0.000 4 ** 9 22.26 0.000 2 ** 9 20.02 0.000 3 ** 9 41.79 < 0.000 1 ** X1 1 13.19 0.008 4 ** 1 21.68 0.002 3 ** 1 14.95 0.006 2 ** 1 35.61 0.000 6 ** X2 1 46.65 0.000 2 ** 1 28.42 0.001 1 ** 1 44.41 0.000 3 ** 1 56.5 0.000 1 ** X3 1 0.065 0.806 7 1 0.14 0.717 1 1 0.022 0.885 2 1 0.03 0.868 2 X1X2 1 5.4 0.053 1 1 8.33 0.023 4 * 1 6.32 0.040 2 * 1 17.13 0.004 4 ** X1X3 1 6.45 0.038 7 * 1 0.054 0.822 5 1 5.76 0.047 5 * 1 0.32 0.587 8 X2X3 1 0.098 0.762 9 1 1.02 0.345 7 1 0.16 0.699 8 1 0.95 0.362 6 ${X}_1^{2}$ 1 21.53 0.002 4 ** 1 15.41 0.005 7 ** 1 22.46 0.002 1 ** 1 29.29 0.001 ** ${X}_2^{2}$ 1 12.61 0.009 3 ** 1 53.2 0.000 2 ** 1 14.26 0.006 9 ** 1 90.08 < 0.000 1 ** ${X}_3^{2}$ 1 51.16 0.000 2 ** 1 58.57 0.000 1 ** 1 61.8 0.000 1 ** 1 120.78 < 0.000 1 ** 残差 7 7 7 7 失拟项 3 0.83 0.541 3 0.55 0.672 9 3 0.94 0.500 1 3 0.23 0.868 4 纯误差 4 4 4 4 总值 16 16 16 16 变异系数 0.077 0.044 4 0.075 4 0.032 7 R2 0.959 5 0.966 2 0.962 6 0.981 7 $R_{{\rm{Adj}}}^2$ 0.907 5 0.922 8 0.914 5 0.958 2 注:**表示P <0.01下差异显著;*表示P<0.05下差异显著;df表示自由度。 -
[1] 中华人民共和国生态环境部. 2018中国生态环境状况公报[EB/OL]. [2019-12-01]. http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb. [2] RUSSEL J M, HOPMANS E C, LOOMIS S E, et al. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations[J]. Organic Geochemistry, 2018, 117: 56-69. doi: 10.1016/j.orggeochem.2017.12.003 [3] BEUTEL M W, HORNE A J. Nutrient fluxes from profundal sediment of ultra-oligotrophic lake tahoe, california/nevada: Implications for water quality and management in a changing climate[J]. Water Resources Research, 2018, 54(3): 1549-1559. doi: 10.1002/2017WR020907 [4] 韩宝红, 宋蕾, 李浩, 等. 不同温度条件下稳定剂对沉积物中镉稳定化的影响[J]. 环境科学学报, 2019, 39(8): 2610-2616. [5] 李鑫, 耿雪, 王洪伟, 等. 外源输入对底泥疏浚新生表层磷恢复及迁移的影响[J]. 环境科学, 2019, 40(8): 3539-3579. [6] OKOGBUE C O, OYESANYA O U, ANYIAM O A, et al. Evaluation of the extent of pollution of discharged oil field brine in the Bonny estuary, Niger Delta, Nigeria[J]. Environmental Earth Sciences, 2018, 77(10): 382-396. doi: 10.1007/s12665-018-7542-z [7] MAIERYEMU Y, MAMAT S, NIGELA T, et al. Distribution of heavy metal pollution and assessment of its potential ecological risks in Ugan-Kuqa River Delta of Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 226-233. [8] 郭赟, 赵秀红, 黄晓峰, 等. 原位活性覆盖抑制河道底泥营养盐释放的效果研究及工程化应用[J]. 环境工程, 2018, 36(6): 6-11. [9] 雷晓玲, 韩亚鑫, 冉兵, 等. 环境因子对三峡库区底泥污染物释放的影响研究[J]. 环境工程, 2016, 34(1): 47-50. [10] KAISER D, UNGER D, QIU G, et al. Natural and human influences on nutrient transport through a small subtropical Chinese estuary[J]. Science of the Total Environment, 2013, 450-451: 92-107. doi: 10.1016/j.scitotenv.2013.01.096 [11] LIANG Z, LIU Z, ZHEN S, et al. Phosphorus speciation and effects of environmental factors on release of phosphorus from sediments obtained from Taihu Lake, Tien Lake, and East Lake[J]. Toxicological & Environmental Chemistry Reviews, 2015, 97(3/4): 335-348. [12] LI R F, FENG CH, WANG D X. Role of salinity in the multiphase redistribution of polycyclic aromatic hydrocarbons (PAHs) in sediment suspension[J]. Environmental Earth Sciences, 2016, 75(2): 116-122. doi: 10.1007/s12665-015-5014-2 [13] 张文斌, 董昭皆, 徐书童, 等. 微生物和藻类分解对荣成天鹅湖沉积物氮磷释放的影响[J]. 海洋环境科学, 2019, 38(4): 561-567. doi: 10.12111/j.mes20190412 [14] FERENCZ B, TOPOROWSKA M, JAROSLAW D, et al. Hydro-chemical conditions of shaping the water quality of shallow leczna-wlodawa lakes[J]. Clean-Soil Air Water, 2017, 45(5): 356-369. [15] DEVORE C L, RODRIGUEZ F L, MEHDI A, et al. Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA[J]. Environmental Science: Processes and Impacts, 2019, 21(3): 456-468. doi: 10.1039/C8EM00461G [16] YAO C, HU X Z, LU S Y, et al. Repression of nitrogen and phosphorus release from lakeshore sediment by five littoral-zone plants[J]. Environmental Science, 2017, 38(2): 589-599. [17] 张强, 曹秀芹, 胡明, 等. 扰动对城市河道底泥污染物释放影响[J]. 环境工程, 2019, 37(9): 40-44. [18] 张茜. 漳泽水库沉积物和上覆水污染特征及氮磷释放规律研究[D]. 西安: 西安理工大学, 2019. [19] 张硕, 方鑫, 黄宏, 等. 基于正交试验的沉积物-水界面营养盐交换通量研究: 以海州湾海洋牧场为例[J]. 中国环境科学, 2017, 37(11): 4266-4276. doi: 10.3969/j.issn.1000-6923.2017.11.032 [20] 姜伟, 周川, 纪道斌, 等. 三峡库区澎溪河与磨刀溪电导率等水质特征与水华的关系比较[J]. 环境科学, 2017, 38(6): 2326-2335. [21] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [22] 王圣瑞. 湖泊沉积物-水界面过程: 基本理论与常用测定方法[M]. 北京: 科学出版社, 2014. [23] JEROEN J M, CISKA C O, CHRISTIAN J J, et al. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments[J]. Wetlands, 2017, 37(5): 975-983. doi: 10.1007/s13157-017-0933-1 [24] 张红, 陈敬安, 王敬富, 等. 贵州红枫湖底泥磷释放的模拟实验研究[J]. 地球与环境, 2015, 43(2): 243-251. [25] BAREHA Y, GIRAULT R, JIMENEZ J, et al. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach[J]. Bioresource Technology, 2018, 263: 425-436. doi: 10.1016/j.biortech.2018.04.085 [26] 郭念, 闫金龙, 魏世强, 等. 三峡库区消落带典型土壤厌氧呼吸对铁还原及磷释放的影响[J]. 水土保持学报, 2014, 28(3): 271-276. [27] LI Z, WANG S R, WU Z H. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake, China[J]. Estuarine Coastal and Shelf Science, 2014, 149: 178-186. doi: 10.1016/j.ecss.2014.08.009 [28] 袁和忠, 沈吉, 刘恩峰, 等. 模拟水体pH控制条件下太湖梅梁湾沉积物中磷的释放特征[J]. 湖泊科学, 2015, 21(5): 663-668. [29] 王荣杰, 沈本贤, 刘纪昌, 等. 响应面分析法优化不溶性硫黄萃取提浓工艺[J]. 应用化工, 2018, 47(7): 1457-1461. doi: 10.3969/j.issn.1671-3206.2018.07.035 [30] 闫晓涛, 李杰, 冯淑琪, 等. 响应面法优化混凝处理黄河兰州段低温低浊水[J]. 水资源与水工程学报, 2018, 29(6): 68-74. [31] 杜凤龄, 王刚, 徐敏, 等. 新型高分子螯合-絮凝剂制备条件的响应面法优化[J]. 中国环境科学, 2015, 35(4): 158-164.