沉淀-电解氧化法处理高铁氰化废水

赵玲玲, 宋永辉, 曾鑫辉, 李一凡, 兰新哲. 沉淀-电解氧化法处理高铁氰化废水[J]. 环境工程学报, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096
引用本文: 赵玲玲, 宋永辉, 曾鑫辉, 李一凡, 兰新哲. 沉淀-电解氧化法处理高铁氰化废水[J]. 环境工程学报, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096
ZHAO Lingling, SONG Yonghui, ZENG Xinhui, LI Yifan, LAN Xinzhe. Ferrocyanide wastewater treated by precipitation-electrolytic oxidation process[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096
Citation: ZHAO Lingling, SONG Yonghui, ZENG Xinhui, LI Yifan, LAN Xinzhe. Ferrocyanide wastewater treated by precipitation-electrolytic oxidation process[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096

沉淀-电解氧化法处理高铁氰化废水

    作者简介: 赵玲玲(1994—),女,硕士研究生。研究方向:氰化提金废水的处理。E-mail:1963581288@qq.com
    通讯作者: 宋永辉(1972—),男,博士,教授。研究方向:氰化废水无害化处理。E-mail:syh1231@126.com
  • 基金项目:
    国家自然科学基金资助项目(51774227);陕西省自然科学基金重点基金(2018JZ5011);陕西省自然科学基金企业联合项目(2019JLM-44)
  • 中图分类号: X703

Ferrocyanide wastewater treated by precipitation-electrolytic oxidation process

    Corresponding author: SONG Yonghui, syh1231@126.com
  • 摘要: 采用沉淀-电解氧化联合技术处理高铁氰化提金废水,重点考察了沉淀剂添加量、沉淀时间、温度、电解电压、电解时间等因素对总氰、游离氰和铁氰络合物去除率的影响。结果表明,随着CuCl2加入量的增大,氰化废水中各主要离子的沉淀率逐步增加。常温下向100 mL含氰废水中加入3.0 g CuCl2并搅拌40 min后,总氰(CNT)、CN、Fe离子的去除率分别可达到95.29%、98.00%与100%。以钛板为阴阳极,采用一阴两阳体系对沉淀后液进行电解氧化实验,当电压为6 V、极间距为15 mm、电解时间为5 h、初始浓度为60%的条件下,CNT和CN的去除率最高可达到99.76%和99.90%。XRD分析表明,沉淀过程中铜氰、铁氰络合离子的去除主要归因于CuCN、Cu2Fe(CN)6、CuSCN等沉淀的形成。电解氧化过程中随着外加电压与氯离子浓度的增大,废水中残存的游离氰与金属氰络合离子的去除率逐渐增加,这主要是阳极反应产生的Cl2/ClO等强氧化剂作用的结果。以上研究结果可为高铁氰化提金废水的综合处理提供参考。
  • 环境污染治理包括防治在生产建设或其他活动中产生的废气、废水、废渣、医疗废物、粉尘、恶臭气体、放射性物质等污染物,以及降低噪声、振动、光辐射、电磁辐射等对人体与环境的危害。其中,工业污染治理是环境污染治理的重点内容。燃油燃气锅炉、焦化、玻璃、陶瓷、水泥、垃圾焚烧、危废、酸洗、燃气发电等行业会排放大量气态硫化物、氮化物和汞,造成生态环境持久破坏,并危害人体健康,引起急、慢性中毒和致癌、致畸等远期危害[1]。现有的气体污染物净化方法包括:催化氧化还原、催化燃烧、利用吸收和吸附等[2]。然而,由于环境污染的复杂性,这些技术都不同程度地存在净化不彻底、投资成本高、操作复杂、回收率低、能耗高等缺点[2],也可能产生二次污染,所以需要探索和开发新技术、新方法,解决现有技术的问题。除反应机理和条件外,引入外加场也是提高反应效率和改善性能的方法,如引入磁场、电场等外加场会影响反应过程,并提高去除效率。

    磁场是一种特殊物质,也是一种能量场,已被化学家和物理学家广泛应用于化学和物理控制过程。永磁铁或电磁铁在空间上产生磁场强度较为均匀的磁场。电子的运动伴生着磁场,磁性来自电子的运动,物质中带电粒子的运动形成物质的元磁矩。当这些元磁矩取向有序时,便形成了物质的磁性。通常物质的磁性分为顺磁性、抗磁性以及铁磁性[3]。顺磁性物质具有固定磁矩,在外加磁场中呈现微弱磁性,并产生与外加磁场同方向的附加磁场,能被磁体轻微吸引。抗磁性物质在外加磁场中呈现微弱磁性,并产生与外加磁场反方向的附加磁场,能被磁体轻微排斥。抗磁性在所有物质中都存在,由于抗磁性极其微弱,故常常被掩盖。铁磁性物质在外加磁场中呈现很强的磁性,并产生与外加磁场同方向的附加磁场,能被磁体强烈吸引,具有磁矩的分子表现为顺磁性,外磁场会影响磁性分子的取向,亦即影响反应体系的熵[4-5]。磁场能有效控制某些反应的速率,影响反应历程[6]。由经典电磁理论,磁场会对运动的化学粒子产生洛仑兹力。仅从能量看,磁场提供的能量较热运动的能量,不足以影响化学反应。但量子力学认为,化学反应还取决于化学粒子的电子自旋,磁场会影响化学反应粒子未成对电子的自旋状态,改变反应体系的熵,从而影响化学反应的进程和结果。磁场对化学反应影响是量子力学效应和磁流体力学效应之一或共同作用的结果[7]。有关磁场效应(磁场效应主要来自量子效应、磁热力学效应、磁矩、洛伦兹力、法拉第力、涡流和能量输入)的研究也是一个重要领域[8-9]。磁场的这些特性逐渐被研究开发,因提升了污染物处理效果和去除效率,而被运用于工业废气和废水处理、分选、高分子聚合以及催化剂制备等领域,成为一种新型污染控制技术。

    近年来,利用磁场对磁性物质力的作用、对水中污染物的高能破坏作用和对微生物生长和酶活性的正向刺激作用,实现工业废水中污染物的去除已有一些研究进展[10]。在分选中利用其本身作用力,与磁场相互作用,受到转磁力矩和平动磁力而产生粒子聚集现象(粒子间磁偶极子力、拖曳力、布朗力、引力和范德华力),可实现杂质颗粒快速便捷分离和废物循环利用[11-13]。磁场在以自由基反应占主导地位的高分子聚合领域获得了一定成果,获得了产率高、分子量高且分布较窄的高聚物,且聚合物结晶度、大分子链的规整性、热性等都因磁场得到有效控制[14-16]。然而,磁场对工业废气污染的治理还未得到总结,目前磁场在废气治理研究方面,更多集中在废气脱硫脱硝和脱汞。

    磁场应用于水处理的研究早已兴起,而利用磁场处理工业废气的研究发展缓慢。最开始,陈凡植等[17]使用高梯度磁分离器处理氧气顶吹转炉和电弧炼钢炉产生的烟尘,取得较好的粉尘去除效果。俞明等[18]研究发现磁场运用于汽车尾气中能够对HC及CO排放量和燃油经济性有一定改善。朱传征等[19]发现,常压下磁场能够提高合成氨反应的反应速率和转化率。随着研究人员对磁场去除污染物影响规律和作用机理的研究深入,磁场应用于工业废气处理有了一定的发展。本文介绍磁场对二氧化硫、氮氧化物和汞这3种气体污染物去除的影响效果和作用机理,为实际利用磁场治理工业废气提供理论和技术参考,为工业废气净化应用研究提供新思路与方向。

    含硫工业废气源是导致雾霾和酸雨问题的一个重要因素。除硫方法主要分为干法、湿法、半干法等。近年来,出现了在反应器外部加磁场对颗粒磁性材料进行的气固流化,以磁流化床(magnetically fluidized bed,MFB)为反应器的半干式烟气脱硫(fiuidizedbedgas des,FGD)系统[20]。该技术克服了干法和湿法的局限,具有脱硫反应速度快、脱硫效率高,无污水废酸排出、脱硫后产物易于处理,适应范围广,投资、运行成本低等优点,成为MFB在FGD工艺(石灰石或石灰为吸收剂的强制氧化湿式脱硫方式)中的新应用。早在20世纪80年代,WYLOCK等[21]就概念性地提出了逆流MFB,并用于连续吸收分离纯化乙烯、低温植物气、天然气和烟气等气体的方法,并在实验上进行了验证,成功推动MFB在烟气脱硫过程中的应用,以下将从MFB反应器处理SO2的吸收过程,磁助脱硫机理和磁助脱硫影响因素几个方面详细介绍。

    反应塔是由不锈钢柱组成的磁性流化床,石灰浆作为吸收剂被连续地喷入反应器中,反应装置如图1所示[22]。铁磁粒子表面SO2的吸收过程[22]图1所示。气相中的SO2向铁磁粒子表面覆盖的液相扩散,溶解和电离SOx2−液膜。SO2溶解度高,而H2SO3电离度低。同时,Ca(OH)2分子向液相扩散。它在液体膜中溶解并电离成Ca2+,Ca(OH)2的溶解度较低,而电离度较高。SOx2−和Ca2+在液膜中扩散,并立即反应。这些积极和消极的电离相遇,密度下降为零。因此,H2SO3电离度和Ca(OH)2溶解度成为控制液膜中离子迁移的主要因素,从而控制脱硫效率[23]。H2SO3增强电离,转让SOx2−于液相中,使液膜变薄。另一方面,有外部磁场时,液相Ca2+密度和液膜中Ca2+密度梯度增大,从而促进了液膜中Ca2+的转移,中和反应界面向气液界面移动,从而改善硫与吸附剂之间的传质,提高了脱硫效率[22]

    图 1  FGD实验流程图
    Figure 1.  FDG Experimental flow chart

    一般来说,外加磁场强度的增加可以提高脱硫效率。实验中,外加磁感应强度由9 T增加到40 T,SO2去除效率提高近30%。一方面由于磁场会影响气固流化床铁磁颗粒的运动,随着磁场的增大,MFB的流动状态由“气泡床”变为“磁稳定床”;铁磁颗粒分布较好[24],附着在其表面的液滴越多;与烟气发生反应,脱硫产物在其表面聚集越多,反应后比表面积越大,从而使烟气和石灰充分有效接触。另一方面,磁场改善了S(IV)的氧化,液相中催化氧化S(IV)生成S(VI),导致SO2溶解度增加;从而增强SO2与Ca(OH)2的反应,促进了铁磁颗粒表面液膜中硫及其吸附剂之间的传质,SO2去除效率提高。具体反应见式(1)~式(4)所示。

    SO2+H2O+H2SO32HSO3+2H++2SO23+4H+ (1)
    2H++Fe2Fe2++H2 (2)
    HSO3+12O2SO24+H+ (3)
    SO23+12O2SO24 (4)
    图 2  有无磁场影响的单个铁磁粒子表面液膜传质过程的比较
    Figure 2.  Comparison of individual ferromagnetic particles surface film mass transfer process with magnetic field or not

    1)铁磁粒子。在MFB脱硫过程中,铁磁颗粒本身也参与脱硫,而铁磁颗粒不仅可作为石灰浆液在类似石英颗粒上的沉淀平台,还参与脱硫反应。微量铁磁粒子溶解在水相中产生铁离子,Fe3+通过催化剂自氧化引发的自由基机制催化S4+氧化为S6+。ZHANG等[25]利用磁流化床脱除SO2,铁磁颗粒代替石英颗粒对SO2的去除率比石英颗粒高14%,且随其平均粒径的增大,去除率降低。

    2)磁感应强度。外加磁场对流化床物理状态有不同程度影响。随着磁场的增强,磁流化床经历了3个阶段:在鼓泡流化状态下,床层压降不稳定,脱硫效率低;在磁稳流化状态下,床层压降小,脱硫效率快速提高;在磁聚状态下,床层压降较大,脱硫效率提高。ZHANG等[25]发现随着磁感应强度的增加,反应后铁磁粒子比表面积增大,磁感应强度为0、10、20 T时,反应前后比表面积之比分别为1.96、2.2、5.5,铁磁颗粒表面的形貌变得疏松,降低液相传质阻力,促进了流化床内的气固接触。张琦等[26]研究磁流化床脱硫过程中外加磁场对脱硫副产物影响时发现,在没有磁场的情况下,铁磁粒子表面会形成一个副产物的固体壳层,一旦固体壳层开始形成,随着液相传质阻力的大幅增加,SO2的吸收率急剧下降。在磁场的作用下,析出副产物团聚在一起,不能形成固体壳体,从而降低液相传质阻力,提高脱硫效率。另外,外加磁强度的增加不仅可以提高脱硫效率,对脱硫产物成分也有影响。实验中,当外加磁感应强度为0时,CaSO3衍射强度最大,说明其在反应产物中占主导地位。而当磁感应强度为40 T时,CaSO3在脱硫产物中只占很小比例,而CaSO4的衍射强度在所有成分中最高,已成为产品的主要成分。即外加磁场可以促进S(IV)的氧化,使更多的H2SO3和CaSO3分子转化为H2SO4和CaSO4。由于CaSO4·2H2O溶解度高于CaSO3·0.5H2O,石灰颗粒可溶性面积增大,溶解的石灰颗粒增多[25]

    3)磁场种类。磁场对除硫效果显著,但不同种类磁场去除机理也有所不同。在这里主要介绍直流磁场和交流磁场的不同。ZHANG等[25]发现提高直流磁场强度能提高Fe(II)和Fe(III)在S(IV)氧化反应中的催化活性,从而提高脱硫反应速率。当直流磁场应用于实际工业脱硫中,在90 T磁感应强度下,对于314 mg·m−3SO2气体和1 145 mg·m−3CO气体,获得了100%的去除率[27]。而交流磁场对SO2的去除则有不同作用。交流磁场会引起电子回旋和漂移运动,使气隙空间中的剩余时间更长,增强电子能量和电物理化学作用,有效去除污染物气体。

    氮氧化物(NOx)是大气主要污染物之一。目前,比较成熟的烟气脱硝技术主要为选择性催化还原、选择性非催化还原和SNCR/SCR组合技术。其中,选择性催化还原脱硝效率可达90%,属于较成熟的烟气脱硝技术,但仍然存在着缺点。按脱硝剂和脱硝反应产物的状态可以分为干法、湿法两类。利用磁场处理NOx,可从新角度研究对污染物的作用机理,将成为未来的研究方向。

    利用磁场处理NOx可影响化学反应的过程和结果[28],如反应与速率、取向、性质和结构,以及反应动力学等。在SCR中,反应速率、反应温度与SCR反应活化能有关,故将磁场用于SCR反应可增加反应活化能,提高SCR对中低温NO的脱除效率。BUSCA等[29-30]和RAMIS等[31]证明了温度为600 K时,外加磁场后SCR脱硝性能较好;APOSTOLESCU[32]发现以ZrO2为载体负载Fe2O3的SCR系统进行烟气脱硝,275 ℃时去除率可达90%,320~365 ℃可达到完全去除;LARRUBIA等[33]研究了负载铁氧化物的TiO2用于磁助SCR系统的烟气脱硝,负载率为6%时效果较好;YAMAZAKI等[34]发现纯Fe2O3在催化脱硝中具有中等活性,且Fe2O3表现出较好的热稳定性,580 ℃下负载6.6%Fe2O3的Pt/Ba/(Al2O3-CeO2-Fe2O3)催化剂对NO去除率可达85%。以上研究表明,金属铁及其氧化物对NO的去除具有较好活性,故MFB能用于中低温状态下的NOx处理。以下主要介绍利用MFB处理NOx的4种主要机理。

    YAO等[35]利用MFB磁性Fe2O3催化剂选择性催化还原NO,外加磁场降低了SCR的表观活化能,提高了Fe2O3催化剂的低温SCR活性,即利用磁性能将NO去除率较高的温度范围从493~523 K扩展至453~523 K。用磁感应强度为0.01~0.015 T的外加磁场,温度453~493 K时,NO去除率提高到90%以上,比不加磁场时提高了10%。利用MFB磁性Fe2O3催化剂去除NO,可实现催化剂的循环再生,其反应过程见图3,具体机理如式(5)~式(12)所示。

    图 3  利用MFB磁性Fe2O3催化剂以NH3选择性催化还原NO机理
    Figure 3.  Mechanism of selective catalytic reduction of NO to NH3 using MFB magnetic Fe2O3 catalyst
    4NO(g)+4NH3(g)+O2(g)4N2(g)+6H2O(g) (5)
    NO+Fe3+Fe3+NO (6)
    NH3+Fe3+Fe3+NH3 (7)
    Fe3+NH3+O2Fe2+NH2+OH (8)
    Fe2+NH2+Fe3+NON2+H2O+Fe3++Fe2+ (9)
    Fe2+NH2+NON2+H2O+Fe2+ (10)
    2OHH2O+O2 (11)
    2Fe2++12O22Fe3++O2 (12)

    进一步研究磁场对MFB中Fe2O3催化剂上NH3和NO的影响,可将Fe2O3催化剂上的反应归结为2个部分[36-37]:1)磁场增强了NO在Fe2O3表面的浓度以及吸附作用。NO易吸附在Fe和Fe2O3上,Fe2O3表面磁场受外加磁场和Fe2O3磁化强度的影响,其表面存在梯度磁场。由于NO是顺磁性的,从Fe2O3的环境空间转移到表面,直到表面周围的化学势相等,NO在表面的浓度增加;2)外加磁场加速了NH2活性自由基的生成和NH2与NO之间自由基的反应。GRZYBEK[38]证实了在473~533 K真空条件下,吸附在Fe2O3表面的NH3形成了稳定的NH2自由基。外加磁场会影响自由基中未配对电子的电子自旋,改变反应体系的顺序,从而改变Fe2O3催化剂上NO的SCR总速率。张雯等[39]利用外加磁场光催化降解Pt/TiO2也证实磁场增加了薄膜表面羟基自由基的生成速率。磁场可控制自由基对的系间迁跃,使自由基对尽可能保持在三重态,可有效抑制单重态自由基对的重结合,增加磁场作用下“笼”外反应的可能性[40]。通过将NO磁吸附在Fe2O3上,NO提供N原子的孤对电子,也通过配位吸附在相同或相邻Fe3+上,并保持其自由基活性。配位吸附氨上的一个H键通过脱氢分裂,生成活性表面NH2等自由基物质。Fe3+通过从分裂的H中获得一个电子而被还原。而H+与邻近的表面晶格氧离子迅速结合形成表面OH,增加NH2自由基的形成以及NH2自由基与NO的反应,提高NO的转化率。

    由于MFB中气相接触的改善,SCR发生了额外磁效应。磁性能可以控制床层结构、气固接触系数和NO在磁性Fe2O3催化剂上的SCR迁移率。通过提高相对气固速度,抑制和消除床内气泡,可实现床内粒子的良好诱导和混合[39]。除此之外,一些反应物分子与Fe2O3催化剂活性表面相互作用形成表面中间体NH2NO,迅速分解为N2和H2O。这些中间酸盐化合物提供了施加较小激活屏障的替代反应路径,因此,降低了脱硝反应所需的活化能,提高了反应速率。

    从磁场方面看,铁磁材料磁化产生的感应磁场比外加磁场强100~10 000倍,因此,粒子内部磁场强度很强,在磁化粒子的表面边界上有很大的磁场梯度。磁化后,催化剂颗粒周围的局部梯度磁场由外向内增大,NO分子被驱动力沿梯度磁场增加的方向强迫移动到铁磁粒子表面。磁化粒子外部磁场[39]图4所示。g-Fe2O3是铁磁性的,Fe3+磁化八面体配位是沿着外磁场的,磁化坐标与外部磁场成反比,以Fe3+-N-O形式吸附在具有高自旋的磁性Fe3+上,在八面体配位下更容易与Fe3+反应和吸收。铁磁g-Fe2O3催化剂颗粒在外加磁场的作用下被磁化,产生一个比颗粒周围外加磁场强的局部磁场。因此,对NO的非均相吸附会产生磁场效应,迫使NO向g-Fe2O3表面移动,增强了NO在磁性Fe3+上的吸附,进而促进NO的选择性催化还原[41]

    图 4  磁化粒子的外部磁场
    Figure 4.  An external magnetic field of magnetic particles

    由于铁磁催化剂颗粒被均匀磁化后,在顺磁性NO分子上会产生法拉第力,导致NO向颗粒表面移动产生边界效应,从而增强Fe3+磁性位。铁磁铁基材料与磁性能还有协同作用,可促进逆磁性反应物转化为顺磁性产物,以及电子反应中的转运。除了激活NH3、NO选择性催化还原反应,具有重要吸附作用,金属表面分子的化学吸附也不可忽视。过渡金属元素的磁性与其d带结构有关。d带结构的差异影响过渡金属表面位置分子的化学吸附[42-44]。DELBECQ等[42]指出,NO在磁性表面的化学吸附是由于NO分子上的2p自旋轨道与磁性表面上的空d自旋轨道相互作用而加速的。因此,磁性能增加NO在磁性Fe2O3催化剂表面的化学吸附。在低温、低成本、低污染下,利用含MFB的铁基催化剂可实现NO的高效去除。

    燃煤电站锅炉是汞的最大排放源之一。汞是一种重要污染物,对人类和环境健康具有威胁,由于其波动性、持续性和生物积累性,已引起全世界关注[45]。由于高成本、废催化剂/吸附剂无法回收利用和灰分利用等负面影响,现有的Hg0脱除技术,如催化氧化法[46-53]和改性吸附剂法[54-56],无法在工业上实现大规模应用。利用外加磁场的引入,开发可回收可再生的磁性吸附剂/催化剂来克服这些局限性,可能是一个可行的研究方向。

    磁场对工业废气中汞的净化有一定积极作用,磁性催化剂由于其反应的高效率和磁响应特征已被广泛关注。磁性催化剂在外加磁场的作用下,被磁化而拥有磁性,进而在磁场力作用下,分散催化剂到体系中,形成了各种微小磁场源。随着外磁场旋转及磁性微粒的运动,大小磁场产生的洛伦兹力不断变换,反应物汞分子不断受到扰动,促进反应进行[57-58]。DONG等[59]利用负载银纳米颗粒的磁性沸石复合材料研究对Hg0的去除影响,复合MagZ-Ag0(加磁)由磁铁矿(Fe3O4)绑定到沸石薄二氧化硅涂层。结果表明:加磁去除效果较好,5 min内Z-Ag0(不加磁)、MagZ-Ag0、2MagZ-Ag0吸附汞分别为98、139、148 mg·m−3;2MagZ-Ag0中可能会受到可用银吸附位点饱和或在随后的洗涤步骤中附着银离子损失的限制,且在400 ℃下进行累积或延长热处理可以提高汞捕集能力,使得吸附剂可以多次再生和再循环而不会出现性能下降。

    近年来,利用磁性催化剂去除Hg0的机理研究已有一些突破。YANG等[60]利用粉煤灰负载可再生钴系磁层催化剂,用浸渍和热分解法制备了Co-MF催化剂,在150 ℃时,负载5.8%Co-MF催化剂对Hg0的去除率达到95%。随着温度的增加,300 ℃时,Hg0去除率从94.7%下降到56.5%,这可能是由于吸附在催化剂表面的汞出现解吸。在此基础上,YANG等[61]利用改性CuCl2探究Hg0的去除机理。基于CuCl2改性的煤灰磁珠(CuCl2-MF)磁性催化剂处理Hg0,用粉煤灰磁球浸渍法制备了CuCl2-MF催化剂,在150 ℃时,最佳负载量为6%的CuCl2-MF催化剂对Hg0的去除率高达90.6%。分析其原因,可能是由于不同铜负载量的催化剂存在不同的铜配位,或催化剂表面吸附位点的化学吸附作用。除此之外,热解温度为600 ℃, FeCl3生物质浸渍质量比为1.5 g·g−1时,木屑活化磁化磁性生物炭在较宽的反应温度窗口(120~250 ℃)仍表现出优良的除汞性能[62]。新型磁性生物炭(magnetic biochar carbon,MBC)表面可以沉积高度分散的Fe3O4颗粒。随着FeCl3的活化,MBC上形成了更多的富氧官能团,尤其是C=O基团。MBC中Fe3O4和C=O基团中的Fe3+(t)配位和晶格氧均可作为Hg0的活性吸附/氧化位点。而C=O基团可作为电子受体,促进Hg0氧化的电子转移。以上负载磁性Ag、Co、Cu、Fe处理气态汞的研究,揭示了部分磁性催化剂对Hg0的去除机理[59-62](见表1),为进一步研究提供参考。

    表 1  负载磁性Ag、Co、Cu、Fe对去除Hg0的影响
    Table 1.  Effect of Hg0 removal using load magnetic Ag,Co,Cu,Fe
    载体 负载物质 制备方法 反应温度/℃ 负载量/% 去除率/% 反应式
    沸石 Ag 离子交换法 250 80 2Ag++Hg0→2Ag+Hg2+
    粉煤灰 Co 浸渍和热分解法 150 5.8 95 Hg0+CoxOy→HgO+CoxOy-1HgO+CoxOy-1→HgO+CoxOy
    粉煤灰 Cu 浸渍法 150 6 90.6 Cu2++ Hg0→Cu+Hg2+CuO+ Hg0→Cu+HgO
    MBC Fe 浸渍法 200 1.5 90 Hg0→2e-+Hg2+C==O+e- →C—OO2-+Hg2+ →HgO
     | Show Table
    DownLoad: CSV

    不同气体组分的存在也会干扰利用外加磁场辅助去除Hg0的反应过程。不同气体的存在对Co-MF催化剂干扰Hg0去除的作用机理及反应式[60]表2,故不同气体组成对磁助去除汞的影响效果主要是抑制、促进和双面效应。部分顺磁性气体,如O2,在磁性作用下可促进Hg0去除,而H2O的存在则相反。另外,还需进一步探究顺磁性气体组分在Hg0去除过程中的反应机理,以及磁场除汞的其他影响因素。

    表 2  不同气体对Co-MF催化剂去除Hg0的影响
    Table 2.  Effect of different gases for Hg0 removal in Co-MF catalyst
    气体组分 作用 添加气体浓度/(mg·m−3) Hg0去除率的变化情况 作用机理 反应式
    SO2 抑制 1 0473 141 降低3%降低13.4% SO2与Hg0在催化剂表面的竞争性吸附,与催化剂表面氧反应生成SO3 2SO2+O2→2SO3
    H2O 抑制 2 2085 889 下降7%下降14.9% H2O与Hg0的竞争性吸附,导致Hg0去除能力失活
    O2 促进 可再生所消耗的表面氧 CoxOy-1+1/2O2→CoxOy
    HCl 促进 15 上升5% 表面氧在纯N2气氛下作为氧化剂,HCl氧化成Cl2,可以显著促进Hg0氧化和化学吸附,HCl吸附在催化剂表面,形成表面活性氯种,发生了不均匀氧化 4HCl+O2→2Cl2+2H2O
    NO 双面效应 61368 上升8%降低,轻微抑制 少量NO提高Hg0去除效率,过量NO提高Hg0去除效率,晶格氧和化学吸附氧可以氧化NO,形成新的物种,如NO2、NO+等,Hg0与NO2相互作用 Hg0+NO2→HgO+NOHg0+2NO2+O2→Hg(NO3)2HgO+2NO+3/2O2→Hg(NO3)2
     | Show Table
    DownLoad: CSV

    1)磁场对脱硫脱氮除汞的效果有明显提升作用,磁助脱硫改善吸附剂传质性能、提高催化活性、改变催化剂材料的物理性质和反应体系的熵,而使有效反应温度降低;磁助脱硝可造成局部磁场叠加,促进自由基和中间产物生成速率、控制自由基对的系间迁跃、抑制单重态自由基对的重结合以促进反应进行,通过磁化力增强了运输效应和化学吸附;磁助脱汞可在体系里形成各种微小磁场源,加速反应中的电子传递、增强磁性位点上的活化反应来提高转化率。

    2)利用外加磁场脱硫脱硝脱汞,能够提高效率、快速便捷分离催化剂、多次催化剂再生和再循环而不会导致性能下降。现有研究大都处于实验阶段,还有许多问题亟待解决。首先,磁场作用于自由基活化反应以及对反应机制的影响等问题的机理不明确,受限条件及作用范围有待研究,具有一定的复杂性,尤其对于气体方面研究较少;其次,磁场对于单一顺磁性污染气体的处理效果较好,但用于含有顺磁性和逆磁性的多组分气体,作用效果还需进一步研究。开发出具有高吸附选择性、高稳定性的功能化磁性复合材料,利用磁场对顺磁性气体组分的促进作用,达到分开处理顺磁性和逆磁性气体,也是一个发展方向。

    3)磁场应用于环境污染处理的重难点在于,针对不同污染物类型,受限于顺磁逆磁材料、磁场种类、强度和共存气体组分影响,还受限于温度、磁场梯度和磁场范围的影响。除此之外,实验室条件下磁场参数与工业化应用有所区别。如何将反应器及材料有效布局最为经济合理,也是值得讨论的问题。研究均匀磁化、磁场梯度机理以及磁场对材料性能的影响机制,并将其放大应用到工业化生产中,对材料进行有效分选回收,治理环境污染,做到环境友好型循环,是今后的重要研究方向。

  • 图 1  工艺流程图

    Figure 1.  Process flow chart

    图 2  氯化铜添加量对总氰、游离氰、铁的去除率和沉淀物质量的影响

    Figure 2.  Effect of CuCl2 dosage on the removal rate of CNT,CN,Fe and the precipitate quality

    图 3  在不同用量的氯化铜下沉淀物的XRD图谱

    Figure 3.  XRD patterns of precipitate samples with different doses of CuCl2

    图 4  反应时间对总氰和游离氰去除率的影响

    Figure 4.  Effect of reaction time on the removal rates of CNT and CN

    图 5  沉淀温度对总氰和游离氰去除率的影响

    Figure 5.  Effect of precipitation temperature on the removal rates of CNT and CN

    图 6  电解电压对总氰和游离氰去除率的影响

    Figure 6.  Effect of electrolytic voltage on the removal rates of CNT and CN

    图 7  电解时间对总氰和游离氰去除率的影响

    Figure 7.  Effect of electrolytic time on the removal rates of CNT and CN

    图 8  废水处理浓度对总氰和游离氰去除率的影响

    Figure 8.  Effect of concentration on the removal rates of CNT and CN

    图 9  极板间距对总氰和游离氰去除率的影响

    Figure 9.  Effect of plate spacing on the removal rates of CNT and CN

    图 10  沉淀-电解氧化机理图

    Figure 10.  Scheme of precipitation-electrolytic oxidation mechanism

    表 1  氰化废水中各离子的浓度

    Table 1.  Concentrations of ions in cyanic wastewater

    离子质量浓度/(mg·L−1)摩尔浓度/(mol·L−1)
    CNT4 423.40
    CN1 040.804.00
    Cu99.851.85
    Fe2 880.0051.43
    Zn7.750.11
    SCN244.004.21
    离子质量浓度/(mg·L−1)摩尔浓度/(mol·L−1)
    CNT4 423.40
    CN1 040.804.00
    Cu99.851.85
    Fe2 880.0051.43
    Zn7.750.11
    SCN244.004.21
    下载: 导出CSV

    表 2  沉淀形成时所需的铜离子最小的浓度

    Table 2.  Minimum concentration of Copper ion required for formation of precipitate

    离子种类沉淀物Ksp所需铜离子最小浓度/(mol·L−1)
    SCNCuSCN4.8×10−151.14×10−12
    Cu(CN)23CuCN3.5×10−201.25×10−53
    Fe(CN)46Cu2Fe(CN)61.3×10−162.53×10−15
    CNCuCN3.5×10−208.75×10−18
    离子种类沉淀物Ksp所需铜离子最小浓度/(mol·L−1)
    SCNCuSCN4.8×10−151.14×10−12
    Cu(CN)23CuCN3.5×10−201.25×10−53
    Fe(CN)46Cu2Fe(CN)61.3×10−162.53×10−15
    CNCuCN3.5×10−208.75×10−18
    下载: 导出CSV

    表 3  平行实验结果

    Table 3.  Parallel experiment results

    组分序号沉淀后溶液/(mg·L−1)电解后溶液/(mg·L−1)去除率/%平均去除率/%
    CNTA205.610.499.7599.76
    B208.210.6799.76
    C210.810.1599.77
    CNA21.211.0499.999.9
    B20.820.9999.91
    C20.61.0999.9
    组分序号沉淀后溶液/(mg·L−1)电解后溶液/(mg·L−1)去除率/%平均去除率/%
    CNTA205.610.499.7599.76
    B208.210.6799.76
    C210.810.1599.77
    CNA21.211.0499.999.9
    B20.820.9999.91
    C20.61.0999.9
    下载: 导出CSV
  • [1] JOHNSON C A. The fate of cyanide in leach wastes at gold mines: An environmental perspective[J]. Applied Geochemistry, 2015, 57: 194-205. doi: 10.1016/j.apgeochem.2014.05.023
    [2] 胡湖生, 杨明德, 党杰, 等. 电积-酸化法从高铜氰溶液中回收铜氰锌[J]. 有色金属, 2000, 52(3): 61-65.
    [3] 党晓娥, 兰新哲, 郭莹娟. 离子交换纤维法处理金矿含氰废水[J]. 有色金属(冶炼部分), 2007(5): 27-29.
    [4] ZHENG W, WANG Y, YANG L Q, et al. Novel adsorbent of polymeric complex derived from chaleting resin with Cu(II) and its removal properties for cyanide in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455: 136-146.
    [5] PARGA J R, SHUKLA S S, CARRILLO-PEDROZE F R. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol[J]. Waste Management, 2003, 23(2): 183-191. doi: 10.1016/S0956-053X(02)00064-8
    [6] 宋永辉, 屈学化, 吴春晨, 等. 硫酸锌沉淀法处理高铜氰化废水的研究[J]. 稀有金属, 2015, 39(4): 357-364.
    [7] 周军, 王丽君, 张华, 等. 含铁氰化提金废水综合回收研究[J]. 稀有金属, 2015, 39(10): 922-927.
    [8] BAN A, SCHAFER A, WENDT H. Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents[J]. Journal of Applied Electrochemistry, 1998, 28(3): 227-236. doi: 10.1023/A:1003247229049
    [9] 宋永辉, 吴春辰, 田慧, 等. 高浓度氰化提金废水的电吸附处理实验研究[J]. 稀有金属, 2016, 40(5): 492-498.
    [10] KHODADAD A, TEIMOURY P, ABDOLAHI M, et al. Detoxification of cyanide in a gold processing plant tailings water using calcium and sodium hypochlorite[J]. Mine Water and the Environment, 2008, 27(2): 127-127. doi: 10.1007/s10230-008-0042-8
    [11] 闵宇, 韩永群, 潘祖鸿. SO2/Air法-化学沉淀法联合处理氰化浸金废水[J]. 黄金, 2017, 38(12): 61-64. doi: 10.11792/hj20171217
    [12] 张革利, 李伟, 侯俊富, 等. 陕西省太白县北沟金矿床地质特征与找矿潜力分析[J]. 黄金, 2016, 37(10): 30-34.
    [13] ROBERTS R F, JACKSON B. The determination of small amounts of cyanide in the presence of ferrocyanide by distillation under reduced pressure[J]. Analyst, 1971, 96(140): 209-212.
    [14] HANG S Y, SUN X B, QIAN F Y, et al. Removal of ferricyanide from wastewater by visible light photolysis-chloroalkali oxidation process[J]. Environmental Protection of Chemical Industry, 2014, 34(4): 316-320.
    [15] 张娟娟, 窦远明, 李静, 等. Bi2MoO6薄膜电极光电催化氧化处理氰化物的研究[J]. 环境科学学报, 2015, 35(3): 738-744.
    [16] 王碧侠, 屈学化, 宋永辉, 等. 二价铜盐沉淀-树脂吸附处理氰化提金废水的研究[J]. 黄金, 2013, 34(8): 67-71. doi: 10.11792/hj20130816
    [17] 胡湖生, 杨明德, 党杰, 等. 从高铜氰溶液中电积铜和锌[J]. 化工冶金, 2000(3): 257-262.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.0 %DOWNLOAD: 2.0 %HTML全文: 85.9 %HTML全文: 85.9 %摘要: 12.1 %摘要: 12.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 86.3 %其他: 86.3 %Anning Xilu: 0.1 %Anning Xilu: 0.1 %Baoding: 0.1 %Baoding: 0.1 %Beijing: 5.0 %Beijing: 5.0 %Boulder: 0.1 %Boulder: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chengdu: 0.2 %Chengdu: 0.2 %Chongqing: 0.1 %Chongqing: 0.1 %Dunhuang: 0.1 %Dunhuang: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou Shi: 0.2 %Guangzhou Shi: 0.2 %Gulan: 0.1 %Gulan: 0.1 %Hangzhou: 0.4 %Hangzhou: 0.4 %Huangpu Qu: 0.1 %Huangpu Qu: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinrongjie: 0.1 %Jinrongjie: 0.1 %Kunshan: 0.1 %Kunshan: 0.1 %Mandal: 0.1 %Mandal: 0.1 %Monclova: 0.1 %Monclova: 0.1 %Mountain View: 0.1 %Mountain View: 0.1 %New Taipei: 0.2 %New Taipei: 0.2 %Newark: 0.1 %Newark: 0.1 %Sanmenxia: 0.1 %Sanmenxia: 0.1 %Shanghai: 0.3 %Shanghai: 0.3 %Shenyang: 0.2 %Shenyang: 0.2 %Shenzhen: 0.1 %Shenzhen: 0.1 %Taichung: 0.2 %Taichung: 0.2 %Tianjin Municipality: 0.1 %Tianjin Municipality: 0.1 %Vancouver: 0.3 %Vancouver: 0.3 %Xi'an: 0.1 %Xi'an: 0.1 %XX: 4.3 %XX: 4.3 %Yuncheng: 0.1 %Yuncheng: 0.1 %上海: 0.1 %上海: 0.1 %北京: 0.3 %北京: 0.3 %海得拉巴: 0.1 %海得拉巴: 0.1 %深圳: 0.1 %深圳: 0.1 %荆州: 0.1 %荆州: 0.1 %运城: 0.1 %运城: 0.1 %阳泉: 0.1 %阳泉: 0.1 %其他Anning XiluBaodingBeijingBoulderChang'anChangshaChengduChongqingDunhuangGaochengGuangzhou ShiGulanHangzhouHuangpu QuHyderabadJinrongjieKunshanMandalMonclovaMountain ViewNew TaipeiNewarkSanmenxiaShanghaiShenyangShenzhenTaichungTianjin MunicipalityVancouverXi'anXXYuncheng上海北京海得拉巴深圳荆州运城阳泉Highcharts.com
图( 10) 表( 3)
计量
  • 文章访问数:  5958
  • HTML全文浏览数:  5958
  • PDF下载数:  56
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-14
  • 录用日期:  2020-05-12
  • 刊出日期:  2020-12-10
赵玲玲, 宋永辉, 曾鑫辉, 李一凡, 兰新哲. 沉淀-电解氧化法处理高铁氰化废水[J]. 环境工程学报, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096
引用本文: 赵玲玲, 宋永辉, 曾鑫辉, 李一凡, 兰新哲. 沉淀-电解氧化法处理高铁氰化废水[J]. 环境工程学报, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096
ZHAO Lingling, SONG Yonghui, ZENG Xinhui, LI Yifan, LAN Xinzhe. Ferrocyanide wastewater treated by precipitation-electrolytic oxidation process[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096
Citation: ZHAO Lingling, SONG Yonghui, ZENG Xinhui, LI Yifan, LAN Xinzhe. Ferrocyanide wastewater treated by precipitation-electrolytic oxidation process[J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3426-3434. doi: 10.12030/j.cjee.202001096

沉淀-电解氧化法处理高铁氰化废水

    通讯作者: 宋永辉(1972—),男,博士,教授。研究方向:氰化废水无害化处理。E-mail:syh1231@126.com
    作者简介: 赵玲玲(1994—),女,硕士研究生。研究方向:氰化提金废水的处理。E-mail:1963581288@qq.com
  • 1. 西安建筑科技大学冶金工程学院,西安 710055
  • 2. 陕西省黄金与资源重点实验室,西安 710055
基金项目:
国家自然科学基金资助项目(51774227);陕西省自然科学基金重点基金(2018JZ5011);陕西省自然科学基金企业联合项目(2019JLM-44)

摘要: 采用沉淀-电解氧化联合技术处理高铁氰化提金废水,重点考察了沉淀剂添加量、沉淀时间、温度、电解电压、电解时间等因素对总氰、游离氰和铁氰络合物去除率的影响。结果表明,随着CuCl2加入量的增大,氰化废水中各主要离子的沉淀率逐步增加。常温下向100 mL含氰废水中加入3.0 g CuCl2并搅拌40 min后,总氰(CNT)、CN、Fe离子的去除率分别可达到95.29%、98.00%与100%。以钛板为阴阳极,采用一阴两阳体系对沉淀后液进行电解氧化实验,当电压为6 V、极间距为15 mm、电解时间为5 h、初始浓度为60%的条件下,CNT和CN的去除率最高可达到99.76%和99.90%。XRD分析表明,沉淀过程中铜氰、铁氰络合离子的去除主要归因于CuCN、Cu2Fe(CN)6、CuSCN等沉淀的形成。电解氧化过程中随着外加电压与氯离子浓度的增大,废水中残存的游离氰与金属氰络合离子的去除率逐渐增加,这主要是阳极反应产生的Cl2/ClO等强氧化剂作用的结果。以上研究结果可为高铁氰化提金废水的综合处理提供参考。

English Abstract

  • 2018年中国黄金产量高达401 t,连续12年保持世界第一。目前,黄金冶炼行业仍然以传统的氰化法为主,生产过程中会产生大量的含氰废水。氰化物属于剧毒物质,在废水中易于分解且成分复杂,主要有游离态氰化物、金属氰络合物及其衍生物如硫氰酸盐等[1],这些物质进入水体后,会对人类生存环境带来极大的安全隐患。同时氰化废水在湿法冶金系统中的不断循环利用,整个体系中累积的重金属离子含量越来越大,从而导致氰化物的补加量越来越大,导致提金成本加大。现有的氰化废水处理技术主要有酸化法[2]、离子交换法[3-4]、化学氧化法[5]、化学沉淀法[6-7]、电化学法[8-9]等,在国内,仅有酸化法、碱氯化法[10]与SO2-空气法[11]实现了工业化应用,其他技术大多仍处于实验室研究阶段。但是,由于酸化法和SO2-空气法无法彻底除去氰化废水中的SCN,碱氯化法则无法破坏铁氰络合离子,同时,酸化法的投资比碱氯化法要高4~8倍,这使得这几种技术仍然难以实现大规模的推广应用。因此,如何快速、高效处理氰化提金废水,真正实现资源综合利用及节能减排是解决目前黄金行业发展问题的关键。此外,由于金矿石中大量黄铁矿、磁黄铁矿、砷黄铁矿等伴生矿的存在[12],直接氰化浸出后的氰化废水中一般会含有大量稳定常数较高的铁氰络合离子,不能被高锰酸钾、双氧水等常规氧化剂氧化,也无法被二氧化氯氧化分解[13-14]。有研究[15]表明,紫外光的照射能够破坏铁氰化物,但这仅适用于低浓度含氰废水的处理,而且处理条件苛刻,难以应用于工业生产中。

    本研究针对陕西太白金矿提金废水含铁浓度高的特点,提出采用沉淀-电解氧化联合工艺对其进行综合处理,并对沉淀、电解氧化过程进行系统分析,以期为高浓度氰化提金废水的综合处理提供新的途径。

  • 实验所用的氰化提金废水来自于陕西太白黄金冶炼厂,主要成分含量如表1所示,可以发现废水中总氰、游离氰及铁离子的含量均比较高,铜、锌离子含量并不是很高。

  • 取100 mL的含氰废水置于150 mL烧杯中,加入一定量的CuCl2,一定温度下搅拌反应一定时间后,进行固液分离,沉淀物采用去离子水反复洗至pH=7左右,置于DHG-9070A型电热恒温鼓风干燥箱中于100 ℃烘干,研磨至全部通过80 μm标准筛后待测。随后以规格为30 mm×40 mm×2 mm的钛板为阴阳极,采用一阴两阳并联体系对沉淀后液进行电解氧化实验,在不同的电压、极板间距、初始浓度下电解反应一定时间后,对溶液取样分析,测定游离氰、总氰及铁离子的含量。主要工艺流程如图1所示。

  • 游离氰、总氰的测定采用银容量法(HJ 484-2009),铁含量采用Sollars2型原子吸收光谱仪进行测定,沉淀物采用D/MAX2200型X射线衍射仪进行分析。离子去除率根据式(1)进行计算。

    式中:E为溶液中离子的去除率;C0为废水中各离子的初始浓度,mg·L−1Ce为沉淀或电解氧化处理后溶液中各离子的浓度,mg·L−1

  • 氯化铜用量对总氰、游离氰、铁离子去除率及沉淀渣的质量的影响如图2所示。由图2可知,氯化铜的添加量越大,产生的沉淀物越多,各离子的去除率也越大。当CuCl2添加量为3.0 g时,废水中总氰、游离氰及铁的去除率不再发生明显的变化,此时铁离子的去除率接近100%,总氰和游离氰浓度可分别降至291.42 mg·L−1和145.71 mg·L−1。废水中的CNFe(CN)46等离子可以和加入的Cu2+发生沉淀反应,氯化铜添加量的增大促使沉淀反应向正向进行,从而使废水中氰化物与铁离子的含量降低。实验过程发现,随着氯化铜添加量的增大,溶液的pH逐渐减少,这是因为氯化铜为强酸弱碱盐,其溶于水后会水解呈弱酸性,当添加量为3.0 g时,废水的pH由原来的11降至7,此时生成的Cu2Fe(CN)6沉淀可稳定存在,从而达到去除的目的。

    沉淀物的XRD分析结果如图3所示。由图3可知,随着CuCl2添加量的增加,得到的沉淀物组成不同。添加量较低时沉淀物主要由Cu2Fe(CN)6(2-0381)、CuCN(09-0152)与Zn(OH)2(20-1435)组成,直至添加2.5 g时才会有CuSCN(29-0581)沉淀生成。加入的Cu2+首先与Cu(CN)23、CN反应生成白色的CuCN沉淀,导致CN含量迅速降低,部分铜离子与Zn(CN)24中的CN反应生成CuCN沉淀,释放出的Zn2+与废水中的OH反应生成白色的Zn(OH)2沉淀。同时,Cu2+Fe(CN)46反应会生成砖红色的Cu2Fe(CN)6沉淀。当CuCl2添加量增加到2.5 g时,部分Cu2+与SCN反应生成Cu(SCN)2沉淀,随后继续分解为白色的CuSCN,部分Cu2+被水中的SO23还原生成Cu+,Cu+与SCN直接反应生成CuSCN沉淀。沉淀过程中的主要反应[16]如式(2)~式(8)所示。

    为了进一步说明沉淀物的形成次序,根据沉淀反应理论,对CNZn(CN)24Fe(CN)46Cu(CN)23、SCN 溶液体系进行了相关计算,离子浓度与溶度积常数之间的关系如式(9)~式(12)所示,各沉淀形成时所需的最小铜离子浓度如表2所示。

    表2可见,这几种离子形成沉淀时所需要的铜离子的浓度为[Cu2+]<[Cu2+]<[Cu2+]<[Cu2+]硫氰,这说明Cu(CN)23、CNFe(CN)46、SCN等离子依次转化为CuCN、Cu2Fe(CN)6、CuSCN,这与XRD的分析结果一致,说明只有加入足够的铜离子,才能保证废水中Fe(CN)46和SCN离子被完全沉淀。得到的沉淀物可以考虑采用酸、碱溶液处理,首先溶解铜、锌,得到的溶液返回沉淀环节循环利用,而Cu2Fe(CN)6不溶于酸或碱溶液,可考虑进一步提纯加工,实现沉淀物的综合利用,从而降低处理成本。

  • 取氯化铜加入量为3.0 g,对反应时间进行条件实验,结果如图4所示。随着反应时间延长,废水中CNT和CN的去除率均逐渐增大,游离氰的变化不大,而CNT去除率在40 min以前变化较大。化学沉淀反应速率较快,因此需要的反应时间很短,10 min以内,CNT与CN去除率就已达到了90%以上,40 min后,CNT和CN的去除率均达到了最大值,为95.29%和98%,因此,选择最佳沉淀时间为40 min。

  • 取反应时间为40 min,对反应温度进行条件实验,结果如图5所示。随着温度的增加,CNT和CN的去除率逐渐增加,但增加幅度并不是很大。由热力学理论可知,温度升高可使化学反应速率常数增大,溶液中离子的传质速度加快,沉淀反应速率加快,从而使含氰离子去除率增高。当温度由室温 (25 ℃)增至80 ℃时,废水中CNT含量为195.15 mg·L−1,与室温相比仅下降了13.16 mg·L−1,而CNT和CN的去除率也只提高了0.35%。因此,为了避免温度升高增大能耗及溶液的挥发导致氰化物进入空气对环境造成污染,选取室温为最佳沉淀温度。

  • 对沉淀后液进行不同外加电压下的电解氧化实验,结果如图6所示。由图6可见,外加电压对废水中氰化物的去除效果影响较大,随着外加电压的增加,总氰和游离氰的去除率逐渐增大,当电压为6 V时,总氰和游离氰的去除率均达到最大值,最低浓度分别为93.67 mg·L−1和1.04 mg·L−1,之后趋于稳定。当电压较低时,阳极主要发生的是OH分解生成O2的反应(式(13)),O2会将CN氧化为CNO,CNO进一步被氧化为N2和CO2。当阳极电压达到Cl的氧化电压时(式(15)),溶液中的Cl会被氧化为Cl2,Cl2溶于水后产生ClO,而ClO会将Cu(CN)23、CN、SCN等氧化为N2和CO2。随着电压的继续增大,电流密度增加,阳极产生ClO的浓度逐渐增大,从而导致废水中CNT、CN的去除率逐渐增大。同时,随着阴极电压逐渐增大,金属氰络合物及释放出的金属阳离子会依次被还原为锌、铜单质,在阴极板析出,从而使废水中的金属离子浓度下降。当外加电压为6 V时,溶液中各离子浓度已降至最低,传质效率下降,去除率不再发生明显变化。

  • 在外加电压为6 V时,进行不同反应时间的电解氧化实验,结果如图7所示。随着电解时间的增大,废水中CNT和CN的去除率逐渐升高。当电解时间为5 h时,总氰、游离氰去除率分别达到最大值,为65%和75%,之后不再发生明显的变化。这是因为电解时间越长,参加电化学反应的电子总数越多,氯离子在阳极电解产生的ClO量逐渐增大,废水中总氰和游离氰的氧化进行的越彻底。

  • 取电解时间为5 h进行不同初始浓度的电解氧化实验,结果如图8所示。随着初始浓度的增大,总氰和游离氰的去除率均先增大后减少。当初始浓度为60%(体积分数)时,总氰和游离氰的含量均降至最低值,为20.82 mg·L−1和2.08 mg·L−1。这是因为初始浓度越大,电解液中Cl浓度越大,体系中电子传递速率加快,电流效率增大,Cl在阳极氧化产生的Cl2/ClO浓度增加,从而导致总氰、游离氰的去除率逐渐升高。当体积分数超过60%后,体系中的游离氰浓度过大,铜氰络合离子更难解离,Cu(CN)23/Cu2+的还原电位减少,过电位增大,氰化物的降解能力降低[17],由此可见,电解氧化体系更适用于低浓度氰化提金废水的无害化处理。

  • 取初始浓度为60%进行不同极板间距的电解氧化实验,结果如图9所示。随着极板间距的增大,总氰、游离氰的去除率呈现出先增后减的趋势,当极板间距为15 mm时,二者均达到最大值95%。极板间距越大,溶液体系中电子传递距离越大,电子传递阻力越大,带电离子的定向迁移速率越小,废水中CN、SCN、ClO及金属氰络合离子扩散距离长、速率慢,从而影响到氰化物的去除效率。当极板间距过小时,离子迁移速率和阴阳极反应均会加快,此时单位时间阴阳极产生的气体量增加,这些气泡富集在电极表面,进而导致体系电流效率与各离子的去除率均有所下降。

  • 在CuCl2添加量为3.0 g、沉淀时间为40 min、沉淀温度为室温、电解时间为5 h、外加电压为6 V、废水体积分数为60%、极板间距为15 mm的条件下,开展氰化提金废水的沉淀-电解氧化验证实验,结果如表3所示。由表3可以看出,3组平行实验的结果非常稳定,废水中CNT和CN的去除率均达到了99.76%以上,铁的去除率均为100%,这说明采用沉淀-电解氧化技术处理高铁氰化提金废水的思路是可行的,完全可以满足氰化提金废水循环利用的需要。

  • 综上所述,沉淀-电解氧化联合工艺处理高铁氰化提金废水的过程可分为氯化铜沉淀和电解氧化两个阶段,反应机理示意图如图10所示。首先,加入的Cu2+与废水中的Fe(CN)46Zn(CN)24Cu(CN)23和CN、SCN等离子发生沉淀反应,生成以CuCN、Cu2Fe(CN)6、CuSCN 和Zn(OH)2为主的沉淀,此时废水中的铁氰络合离子基本沉淀完全。其次,沉淀后液采用电解氧化处理。残留于废水中的Zn(CN)24Cu(CN)23、CN、SCN和Cl在电场作用下向阳极定向迁移,迁移至阳极表面的Cl发生阳极氧化反应,生成的Cl2和ClO将迁移至阳极附近的CNCu(CN)23Zn(CN)24、SCN等氧化成N2和CO2,同时释放出的Cu2+、Zn2+阳离子定向迁移至阴极,在阴极发生还原反应得到金属单质。处理过程中可能发生的反应如式(13)~式(23)所示。阳极反应见式(13)~式(20),阴极反应见式(21)~式(23)。

  • 1)采用沉淀-电解氧化联合技术处理高铁氰化提金废水的思路是可行的。室温条件下,氯化铜添加量为3.0 g、搅拌40 min、沉淀40 min时,溶液中的CNT、CN和铁离子的沉淀去除率分别可达到95.29%、98.00%和100%,沉淀物主要由CuCN、Cu2Fe(CN)6、CuSCN组成。

    2)当沉淀后液浓度为60%,电解时间为5 h,外加电压为6 V、极板间距为15 mm时,废水中CNT和CN的总去除率分别达到了99.76%和99.90%。

    3)沉淀-电解氧化联合工艺适用于高铁氰化提金废水的综合处理,具有高效、处理工艺简单、效果好等优点,对黄金冶炼行业的环境友好发展具有重要意义。

参考文献 (17)

返回顶部

目录

/

返回文章
返回