-
2018年中国黄金产量高达401 t,连续12年保持世界第一。目前,黄金冶炼行业仍然以传统的氰化法为主,生产过程中会产生大量的含氰废水。氰化物属于剧毒物质,在废水中易于分解且成分复杂,主要有游离态氰化物、金属氰络合物及其衍生物如硫氰酸盐等[1],这些物质进入水体后,会对人类生存环境带来极大的安全隐患。同时氰化废水在湿法冶金系统中的不断循环利用,整个体系中累积的重金属离子含量越来越大,从而导致氰化物的补加量越来越大,导致提金成本加大。现有的氰化废水处理技术主要有酸化法[2]、离子交换法[3-4]、化学氧化法[5]、化学沉淀法[6-7]、电化学法[8-9]等,在国内,仅有酸化法、碱氯化法[10]与SO2-空气法[11]实现了工业化应用,其他技术大多仍处于实验室研究阶段。但是,由于酸化法和SO2-空气法无法彻底除去氰化废水中的SCN−,碱氯化法则无法破坏铁氰络合离子,同时,酸化法的投资比碱氯化法要高4~8倍,这使得这几种技术仍然难以实现大规模的推广应用。因此,如何快速、高效处理氰化提金废水,真正实现资源综合利用及节能减排是解决目前黄金行业发展问题的关键。此外,由于金矿石中大量黄铁矿、磁黄铁矿、砷黄铁矿等伴生矿的存在[12],直接氰化浸出后的氰化废水中一般会含有大量稳定常数较高的铁氰络合离子,不能被高锰酸钾、双氧水等常规氧化剂氧化,也无法被二氧化氯氧化分解[13-14]。有研究[15]表明,紫外光的照射能够破坏铁氰化物,但这仅适用于低浓度含氰废水的处理,而且处理条件苛刻,难以应用于工业生产中。
本研究针对陕西太白金矿提金废水含铁浓度高的特点,提出采用沉淀-电解氧化联合工艺对其进行综合处理,并对沉淀、电解氧化过程进行系统分析,以期为高浓度氰化提金废水的综合处理提供新的途径。
沉淀-电解氧化法处理高铁氰化废水
Ferrocyanide wastewater treated by precipitation-electrolytic oxidation process
-
摘要: 采用沉淀-电解氧化联合技术处理高铁氰化提金废水,重点考察了沉淀剂添加量、沉淀时间、温度、电解电压、电解时间等因素对总氰、游离氰和铁氰络合物去除率的影响。结果表明,随着CuCl2加入量的增大,氰化废水中各主要离子的沉淀率逐步增加。常温下向100 mL含氰废水中加入3.0 g CuCl2并搅拌40 min后,总氰(CNT)、CN−、Fe离子的去除率分别可达到95.29%、98.00%与100%。以钛板为阴阳极,采用一阴两阳体系对沉淀后液进行电解氧化实验,当电压为6 V、极间距为15 mm、电解时间为5 h、初始浓度为60%的条件下,CNT和CN−的去除率最高可达到99.76%和99.90%。XRD分析表明,沉淀过程中铜氰、铁氰络合离子的去除主要归因于CuCN、Cu2Fe(CN)6、CuSCN等沉淀的形成。电解氧化过程中随着外加电压与氯离子浓度的增大,废水中残存的游离氰与金属氰络合离子的去除率逐渐增加,这主要是阳极反应产生的Cl2/ClO−等强氧化剂作用的结果。以上研究结果可为高铁氰化提金废水的综合处理提供参考。Abstract: The precipitation-electrolytic oxidation combined technology was used to treat high-ferric cyanide gold-lifting wastewater, and the effects of factors such as the dosage of precipitant, precipitation time, temperature, electrolysis voltage, and electrolytic time on the removal rates of total cyanide, free cyanide, and ferric cyanide complex were investigated. The results showed that with the increase of the dosage of CuCl2, the precipitation rate of the main ions in the cyanide wastewater increased gradually. At the CuCl2 dosage of 3.0 g to 100 mL of cyanide-containing wastewater, 40 min-stirring and room temperature, the removal rates of CNT, CN−, and Fe ions could reach 95.29%, 98.00% and 100%, respectively. The titanium plate was used as the cathode and anode, and the electrode parallel system (one cathode and two anodes) was used to conduct electrolytic oxidation experiments on the precipitated solution. When the voltage was 6 V, the electrode spacing was 15 mm, electrolysis time was 5 hours and the initial concentration was 60%, the removal rates of CNT and CN− could reach 99.76% and 99.90%, respectively. XRD analysis showed that the removal of copper cyanide and iron cyanide complex ions during precipitation was mainly attributed to the formation of CuCN, Cu2Fe(CN)6, CuSCN and other precipitates. With the increase of the applied voltage and chloride ion concentration during electrolytic oxidation, the removal rates of residual free cyanide and metal cyanide complex ions in wastewater increased gradually, which was mainly due to the strong oxidation of Cl2/ClO− produced during the anode reaction. The research results can provide a reference for the treatment of high-ferric cyanide gold-lifting wastewater.
-
Key words:
- cyanide /
- ferricyanide complex /
- chemical precipitation /
- electrolytic oxidation
-
表 1 氰化废水中各离子的浓度
Table 1. Concentrations of ions in cyanic wastewater
离子 质量浓度/(mg·L−1) 摩尔浓度/(mol·L−1) CNT 4 423.40 — CN− 1 040.80 4.00 Cu 99.85 1.85 Fe 2 880.00 51.43 Zn 7.75 0.11 SCN− 244.00 4.21 表 2 沉淀形成时所需的铜离子最小的浓度
Table 2. Minimum concentration of Copper ion required for formation of precipitate
离子种类 沉淀物 Ksp 所需铜离子
最小浓度/(mol·L−1)SCN− CuSCN 4.8×10−15 1.14×10−12 ${\rm{Cu}}\left( {{\rm{CN}}} \right)_3^{2 - }$ CuCN 3.5×10−20 1.25×10−53 ${\rm{Fe}}\left( {{\rm{CN}}} \right)_6^{4 - }$ Cu2Fe(CN)6 1.3×10−16 2.53×10−15 CN− CuCN 3.5×10−20 8.75×10−18 表 3 平行实验结果
Table 3. Parallel experiment results
组分 序号 沉淀后溶液/
(mg·L−1)电解后溶液/
(mg·L−1)去除
率/%平均去除
率/%CNT A 205.6 10.4 99.75 99.76 B 208.2 10.67 99.76 C 210.8 10.15 99.77 CN− A 21.21 1.04 99.9 99.9 B 20.82 0.99 99.91 C 20.6 1.09 99.9 -
[1] JOHNSON C A. The fate of cyanide in leach wastes at gold mines: An environmental perspective[J]. Applied Geochemistry, 2015, 57: 194-205. doi: 10.1016/j.apgeochem.2014.05.023 [2] 胡湖生, 杨明德, 党杰, 等. 电积-酸化法从高铜氰溶液中回收铜氰锌[J]. 有色金属, 2000, 52(3): 61-65. [3] 党晓娥, 兰新哲, 郭莹娟. 离子交换纤维法处理金矿含氰废水[J]. 有色金属(冶炼部分), 2007(5): 27-29. [4] ZHENG W, WANG Y, YANG L Q, et al. Novel adsorbent of polymeric complex derived from chaleting resin with Cu(II) and its removal properties for cyanide in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455: 136-146. [5] PARGA J R, SHUKLA S S, CARRILLO-PEDROZE F R. Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol[J]. Waste Management, 2003, 23(2): 183-191. doi: 10.1016/S0956-053X(02)00064-8 [6] 宋永辉, 屈学化, 吴春晨, 等. 硫酸锌沉淀法处理高铜氰化废水的研究[J]. 稀有金属, 2015, 39(4): 357-364. [7] 周军, 王丽君, 张华, 等. 含铁氰化提金废水综合回收研究[J]. 稀有金属, 2015, 39(10): 922-927. [8] BAN A, SCHAFER A, WENDT H. Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents[J]. Journal of Applied Electrochemistry, 1998, 28(3): 227-236. doi: 10.1023/A:1003247229049 [9] 宋永辉, 吴春辰, 田慧, 等. 高浓度氰化提金废水的电吸附处理实验研究[J]. 稀有金属, 2016, 40(5): 492-498. [10] KHODADAD A, TEIMOURY P, ABDOLAHI M, et al. Detoxification of cyanide in a gold processing plant tailings water using calcium and sodium hypochlorite[J]. Mine Water and the Environment, 2008, 27(2): 127-127. doi: 10.1007/s10230-008-0042-8 [11] 闵宇, 韩永群, 潘祖鸿. SO2/Air法-化学沉淀法联合处理氰化浸金废水[J]. 黄金, 2017, 38(12): 61-64. doi: 10.11792/hj20171217 [12] 张革利, 李伟, 侯俊富, 等. 陕西省太白县北沟金矿床地质特征与找矿潜力分析[J]. 黄金, 2016, 37(10): 30-34. [13] ROBERTS R F, JACKSON B. The determination of small amounts of cyanide in the presence of ferrocyanide by distillation under reduced pressure[J]. Analyst, 1971, 96(140): 209-212. [14] HANG S Y, SUN X B, QIAN F Y, et al. Removal of ferricyanide from wastewater by visible light photolysis-chloroalkali oxidation process[J]. Environmental Protection of Chemical Industry, 2014, 34(4): 316-320. [15] 张娟娟, 窦远明, 李静, 等. Bi2MoO6薄膜电极光电催化氧化处理氰化物的研究[J]. 环境科学学报, 2015, 35(3): 738-744. [16] 王碧侠, 屈学化, 宋永辉, 等. 二价铜盐沉淀-树脂吸附处理氰化提金废水的研究[J]. 黄金, 2013, 34(8): 67-71. doi: 10.11792/hj20130816 [17] 胡湖生, 杨明德, 党杰, 等. 从高铜氰溶液中电积铜和锌[J]. 化工冶金, 2000(3): 257-262.