-
在过去几十年中,农业和工业活动以及城市社区的污水导致了严重的水源污染[1]。面对越来越多的污染,衍生了各种新兴的污水处理技术。以电化学为基础的电化学高级氧化工艺受到了人们的青睐。在电化学高级氧化体系中可以通过阳极直接氧化、阴极还原或产生具有强氧化活性的物质,如羟基自由基(∙OH),将有机污染物矿化为CO2和H2O等[2-4]。但是在传统的电化学体系(二维电极体系)中存在电流效率低、电极面积小等缺点,三维粒子电极体系应运而生[5-6]。三维粒子电极是在二维电解槽中加入粒子电极,以此形成三维粒子电极系统。粒子电极的加入,可以通过增大电化学反应的面积,或形成一系列微电解池提高污染物去除效率,因此粒子电极的选择对于三维电极体系至关重要[7-8]。
蒙脱石是土壤中一种常见的黏土矿物,是膨润土的主要组成成分[9]。蒙脱石资源储量丰富,价格低廉。蒙脱石矿物表面常带有负电荷,为中和负电荷达到电荷平衡,在矿物层间吸附了大量的水合阳离子,使得层间具有大量的可交换阳离子[10-11]。因此,蒙脱石层间域除了具有交换吸附等性质,还具有层间柱撑的特性。以铁对蒙脱石进行改性作为催化剂已经有许多的研究报道,但是到目前为止,大部分研究更多集中于光-Fenton体系或作为非均相催化剂应用于Fenton体系中,将其作为粒子电极应用于电化学体系尚未见相关报道[9, 12-13]。而且铁改性蒙脱石多以粉末状作为催化形式,使用后回收困难,这限制了其应用[14]。因此,研究铁改性蒙脱石作为粒子电极的性能有助于拓宽污染物光/电复合降解体系的应用,解决催化剂难回收的问题,具有一定的实用意义。
本研究以铁改性蒙脱石(Fe-Mt)制备三维粒子电极,首先通过SEM-EDS和XRD表征对粒子电极进行了形貌与物相分析,并探究了pH、粒子电极投加量、槽电压以及进出水流量对电化学粒子电极体系的影响;然后通过与二维电极体系比较确定了Fe-Mt作为粒子电极的有效性,结合自由基抑制实验以及溶液中相关物质的检测初步探究了Fe-Mt粒子电极对亚甲基蓝去除的强化机理;最后进行了Fe-Mt粒子电极的稳定性实验。该研究有助于拓宽铁改性蒙脱石在污染物光/电复合降解体系的应用。
Fe-Mt三维粒子电极体系去除水中亚甲基蓝
Removal of methylene blue from water by Fe-Mt three-dimensional particle electrode system
-
摘要: 以铁改性蒙脱石(Fe-Mt)制备粒子电极,探究了其在三维电极体系中的催化性能。通过SEM-EDS和XRD对Fe-Mt粒子电极进行了形貌和物相表征,分析了不同反应条件(pH、投加量、槽电压等)对亚甲基蓝去除率的影响,进一步通过自由基抑制实验、H2O2的产生量以及总溶解性铁离子浓度检测探讨了Fe-Mt粒子电极对亚甲基蓝的氧化去除机理。结果表明,Fe-Mt粒子电极能够拓宽pH的有效作用范围,在pH=3.0、电压为5 V、粒子电极投加量为10 g∙L−1条件下,较二维电化学体系亚甲基蓝去除率提高了约25%。Fe-Mt粒子电极能够直接或间接催化H2O2以产生羟基自由基,并结合吸附-氧化降解耦合机制强化了亚甲基蓝去除率。以上研究结果可为拓宽以蒙脱石为基材的催化材料在高级氧化体系的应用提供参考。Abstract: In this study, iron-modified montmorillonite (Fe-Mt) was used to prepare the particle electrode, and its catalytic performance in three-dimensional electrode system was systematically investigated. The morphology and phase characteristics of Fe-Mt particle electrode were characterized by SEM-EDS and XRD, respectively, and the effects of different reaction conditions (pH, particle electrode dosage and cell voltage etc.) on the removal efficiency of methylene blue were analyzed. Furthermore, the mechanism of methylene blue oxidative removal by Fe-Mt particle electrode was discussed through free radical scavenging experiments, H2O2 production amount and total soluble iron ion concentration detection. The results showed that the Fe-Mt particle electrode can broaden the effective range of pH, and the removal efficiency of methylene blue increased by about 25% compared with the two-dimensional electrochemical system at pH 3.0, voltage of 5 V and particle electrode dosage of 10 g∙L−1. The Fe-Mt particle electrode can directly or indirectly catalyze H2O2 to generate hydroxyl radicals, and combined with the coupling mechanism of adsorption-oxidative degradation to enhance the methylene blue removal efficiency. This study can provide a reference for broadening the application of montmorillonite-based catalytic materials in advanced oxidation systems.
-
[1] AHMADZADEH S, DOLATABADI M. Removal of acetaminophen from hospital wastewater using electro-Fenton process[J]. Environmental Earth Sciences, 2018, 77(2): 53-64. doi: 10.1007/s12665-017-7203-7 [2] ANGLADA Á, URTIAGA A, ORTIZ I. Contributions of electrochemical oxidation to waste water treatment: Fundamentals and review of applications[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(12): 1747-1755. [3] ZAREI M, SALARI D, NIAEI A, et al. Peroxi-coagulation degradation of C. I. basic yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode[J]. Electrochimica Acta, 2009, 54(26): 6651-6660. doi: 10.1016/j.electacta.2009.06.060 [4] 毕强, 薛娟琴, 郭莹娟, 等. 电芬顿法去除兰炭废水COD[J]. 环境工程学报, 2012, 6(12): 4310-4314. [5] KERKEZ D V, TOMAŠEVIĆ D D, KOZMA G, et al. Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: A comparative study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2451-2461. doi: 10.1016/j.jtice.2014.04.019 [6] 陈芳艳, 王春玲, 陈存键, 等. 三维电极电化学氧化法深度处理DOP生产废水的研究[J]. 环境工程学报, 2012, 6(2): 540-544. [7] ZHANG Y M, CHEN Z, WU P, et al. Three-dimensional heterogeneous electro-Fenton system with a novel catalytic particle electrode for bisphenol A removal[J]. Journal of Hazardous Materials, 2019, 393: 120448-120453. [8] ZHAN J H, LI Z, YU G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes[J]. Separation and Purification Technology, 2019, 208: 12-18. doi: 10.1016/j.seppur.2018.06.030 [9] WEI G T, LI Y, ZHANG L, et al. Synthesis of bentonite-supported Fe(II) and heteropolyacid (HPW) composite through a mechanochemical processing[J]. Applied Clay Science, 2018, 152: 342-351. doi: 10.1016/j.clay.2017.11.035 [10] ZHANG L Y, CAI S Y, HUANG K, et al. Preparation of H3PMo12O40/organobentonite by chemical immobilization method and its catalytic performance in photo-Fenton process[J]. Desalination & Water Treatment, 2013, 51(40/41/42): 7815-7824. [11] PETRA L, BILLIK P, MELICHOVÁ Z, et al. Mechanochemically activated saponite as materials for Cu2+ and Ni2+ removal from aqueous solutions[J]. Applied Clay Science, 2017, 143: 22-28. doi: 10.1016/j.clay.2017.03.012 [12] WAN D, WANG G, LI W, et al. Investigation into the morphology and structure of magnetic bentonite nanocomposites with their catalytic activity[J]. Applied Surface Science, 2017, 413: 398-407. doi: 10.1016/j.apsusc.2017.03.265 [13] GAO Y W, GUO Y, ZHANG H. Iron modified bentonite: Enhanced adsorption performance for organic pollutant and its regeneration by heterogeneous visible light photo-Fenton process at circumneutral pH[J]. Journal of Hazardous Materials, 2016, 302: 105-113. doi: 10.1016/j.jhazmat.2015.09.036 [14] CHEN J X, ZHU L. Oxalate enhanced mechanism of hydroxyl-Fe-pillared bentonite during the degradation of orange II by UV-Fenton process[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1477-1481. [15] 刘一帆, 成思敏, 吴宏海, 等. 铁柱撑蒙脱石非均相UV/Fenton反应对模拟橙黄G染料废水的脱色机理研究[J]. 华南师范大学学报(自然科学版), 2014, 46(2): 72-78. [16] 齐志国, 郭江鹏, 柏雨岑. 蒙脱石的功能及其在畜禽养殖中的应用[J]. 中国畜牧杂志, 2019, 55(5): 29-34. [17] ZHANG Y P, JIA C G, PENG R, et al. Heterogeneous photo-assisted Fenton catalytic removal of tetracycline using Fe-Ce pillared bentonite[J]. Journal of Central South University, 2014, 21(1): 310-316. doi: 10.1007/s11771-014-1942-3 [18] 黄昱, 李小明, 杨麒, 等. 电-Fenton法预处理青霉素废水的降解规律研究[J]. 环境工程学报, 2007, 1(8): 20-25. doi: 10.3969/j.issn.1673-9108.2007.08.004 [19] KATHERESAN V, KANSEDO J, LAU S Y. Efficiency of various recent wastewater dye removal methods: A review[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4676-4697. doi: 10.1016/j.jece.2018.06.060 [20] MUNOZ M, PEDRO Z M D, CASAS J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation: A review[J]. Applied Catalysis B: Environmental, 2015, 176-177: 249-265. doi: 10.1016/j.apcatb.2015.04.003 [21] SIRÉS I, BRILLAS E, OTURAN M A, et al. Electrochemical advanced oxidation processes: Today and tomorrow: A review[J]. Environmental Science & Pollution Research International, 2014, 21(14): 8336-8367. [22] JINISHA R, GANDHIMATHI R, RAMESH S T, et al. Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst[J]. Chemosphere, 2018, 200: 446-454. doi: 10.1016/j.chemosphere.2018.02.117 [23] GU X C, LU X, TIAN J, et al. Degradation of folic acid wastewater by electro-Fenton with three-dimensional electrode and its kinetic study[J]. Royal Society Open Science, 2018, 5(1): 1-11. doi: 10.1098/rsos.170926 [24] GANIYU S O, HUONG LE T X, BECHELANY M, et al. Electrochemical mineralization of sulfamethoxazole over wide pH range using FeIIFeIII LDH modified carbon felt cathode: Degradation pathway, toxicity and reusability of the modified cathode[J]. Chemical Engineering Journal, 2018, 350: 844-855. doi: 10.1016/j.cej.2018.04.141 [25] 石岩, 王启山, 岳琳, 等. 三维电极-电Fenton法处理垃圾渗滤液[J]. 天津大学学报, 2009, 42(3): 248-252.