Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气

凌昊, 孟捷, 陶进国, 罗鹏飞, 赵鹏, 宋万康, 成卓韦. Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J]. 环境工程学报, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034
引用本文: 凌昊, 孟捷, 陶进国, 罗鹏飞, 赵鹏, 宋万康, 成卓韦. Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J]. 环境工程学报, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034
LING Hao, MENG Jie, TAO Jinguo, LUO Pengfei, ZHAO Peng, SONG Wankang, CHENG Zhuowei. Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034
Citation: LING Hao, MENG Jie, TAO Jinguo, LUO Pengfei, ZHAO Peng, SONG Wankang, CHENG Zhuowei. Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034

Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气

    作者简介: 凌昊(1995—),男,硕士研究生。研究方向:光催化氧化。E-mail:linghao319@gmail.com
    通讯作者: 成卓韦(1982—),男,博士,副教授。研究方向:VOC废气净化。E-mail:86589068@qq.com
  • 基金项目:
    国家重点研发计划资助项目(2018YFC0214100);浙江省自然科学基金重点项目(LZ17E080001);浙江工业大学省属高校基本科研业务费项目(RF-A2019011)
  • 中图分类号: X511

Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation

    Corresponding author: CHENG Zhuowei, 86589068@qq.com
  • 摘要: 将Ce掺杂ZnO光催化剂通过负载活性炭 (AC)的方式制备Ce-ZnO/AC吸附-催化复合材料,并以对二甲苯为典型挥发性有机污染物(VOC),研究其在真空紫外体系中光催化转化性能。结果表明:活性炭的负载能有效提高臭氧的利用效率,强化对二甲苯的去除率和矿化率;当Ce-ZnO与活性炭的负载比例为1∶2时,复合材料的光催化性能达到最优,此时对二甲苯的转化率达到95%以上;活性炭的负载不仅可使污染物与催化剂充分接触,还可有效利用臭氧从而产生·OH等自由基,协同促进对二甲苯的降解,同时更多的中间产物被降解。复合催化材料显示了良好的稳定性,在利用5次后,仍可再生恢复其光催化性能至初始状态。相对于单独的真空紫外光解,Ce-ZnO/AC吸附-催化复合材料与真空紫外体系耦合降解二甲苯的能量利用率提高了2倍,经济性好。
  • 随着人类社会的发展和工业化进程的加快,环境污染问题已经严重影响到人类正常的生活和生产. 解决环境污染问题主要在于如何高效地处理污染物从而达到环境修复的目的. 吸附法作为一种操作简单、经济成本低且高效迅速的技术,是去除环境污染物的重要方法之一. 应用吸附法的关键主要在于对吸附剂的选择. 活性炭[12]、沸石[35]、生物炭[67]、氮化碳材料[89]、金属有机框架材料[10-11]、石墨烯基材料(graphene-based materials) [1213]、层状双金属氢氧化物(layered double hydroxide,LDHs) [1415]以及有机多孔材料[1617]等均是应用于环境污染物去除的吸附剂.

    共价有机框架(covalent organic frameworks,COFs)材料作为一种新型有机多孔材料,具有如密度低、良好的热稳定性和化学稳定性、大比表面和丰富的组成单元等众多优良特性,使得其自Yaghi等[18]报道后就引起了科研工作者的广泛关注. 经过众多科研工作者十几年来的努力,COF材料的构筑单体、拓扑结构、合成方法、功能应用等方面得到了瞩目的发展. 在这其中,COF通过引入带电基团可以为后续修饰带来更多的可操作性,因此离子型共价有机框架(ionic covalent organic frameworks,iCOFs)材料进入科研工作者的视野. iCOF除了具有COF材料的优良特性外,关键在于其含有数量众多的离子基团,能与客体分子的特定结构产生较强静电作用. 另外,通过改变离子基团的类型也可对其表面积、孔隙孔径以及性质进行调控,从而进一步扩充其应用领域.

    自2015年Peng等[19]首次报道了具有电负性的磺酸基iCOF以来,iCOF材料已被广泛应用于分离[2021]、质子传导[2223]、催化[2425]、生物医学[2627]等诸多领域. 本文从iCOF的结构、合成方法以及在环境修复中的应用等角度综述了近年来离子型共价有机框架材料的研究进展,并对其目前存在的挑战和应用前景进行展望.

    iCOF是晶体多孔结构与电离特性结合的产物,对其结构的探究能更好的解释其性能特征,这对功能性材料的设计也具有重要意义. 根据iCOF框架的离子性质,一般将iCOF分为带正电的阳离子型COF和带负电的阴离子型COF. 阳离子型COF具有的正电荷框架通常是通过引入的杂环化合物或脂肪族化合物中的氮原子来实现. 为了保持电中性,同时需要引入如F、Cl、Br、I等负离子组成的抗衡离子(如图1a所示). 此外,根据正电荷框架中离子部分所处的位置的不同,阳离子COF又可以分为三类(离子部分位于主链上、侧链上或者节点处). 相反,阴离子型COF由负电荷框架以及如H+、Li+、Na+、K+等抗衡阳离子构成(如图1b所示). 此外,2021年Fu等[28]合成出一种框架内部同时具有阴离子和阳离子的COF. 这种两性离子型COF的框架内分布有大量的正负电荷(如图1c所示),特殊的拓扑结构使其具有良好的结晶度和较高的比表面积,为COF的性能改进和机理探索等多个层面带来了深远的影响.

    图 1  (a)阳离子型COF与(b)阴离子型COF以及(c)两性离子型COF的结构示意图
    Figure 1.  Structural representation of(a)cationic COF and(b)anionic COF and(c) amphoteric COF

    构建iCOF通常有两种方法:直接合成法和合成后修饰法. 直接合成法顾名思义就是指直接使用离子单体合成. 预先选择离子单体作为核心结构单元,将其与中性连接剂进行聚合反应,两者通过共价键连接成预设的拓扑结构,从而得到最终产物. 直接合成法的优势在于能够预设离子位置以及控制最终产物的电荷密度. 此外,直接合成法所得的iCOF结构孔道较为完整,且产率比较高. 但由于离子单体之间固有的静电排斥作用限制,用于直接合成法的离子单体种类较少.

    不能通过直接合成法合成的iCOF可以用合成后修饰法(post-synthesis modification,PSM)来合成.通常有两种合成思路,除了直接将带电的离子基团引入中性框架外,另一种方法是将中性活性基团引入框架后再将其转化为离子基团,后者最大的优势在于赋予COF新功能特性的同时不改变共价有机框架材料的基本框架结构,但也存在中性活性基团转化率较低,导致最终产物电荷密度较低的缺点.

    常用的直接合成法主要包括热溶剂合成法、机械化学合成法以及微波合成法. 热溶剂合成法作为最主要的合成方法,已经广泛用于多种iCOF的合成. 在密闭且高温的条件下,将离子单体和中性连接剂放入容器内,经过3 d或者更长的反应时间,从而得到最终产物. 在合成过程中,密封容器内的压力、温度、反应时间、溶剂的比例、催化剂用量等都会对最终产物的结晶度有影响. 因此,想要通过热溶剂合成法来合成iCOF需要大量的前期工作来寻找最佳的反应条件和适宜的溶剂. 此外,由于iCOF对合成条件异常敏感,通过热溶剂合成法合成出的不同批次的iCOF之间也存在差异.

    机械化学合成法作为一种简单、环保、经济的方法,具体操作是将离子单体和中性连接剂放在研钵内,不加溶剂或者加入少量溶剂,在室温下通过不断研磨从而得到最终产物. 2016年,Peng等[29]将1,3,5-三甲酰基间苯三酚(1,3,5-triacylphloroglucinol,Tp)分别与两种不同的磺酸基单体在均三甲苯/二氧六烷/乙酸混合溶剂下混合研磨,合成出两种iCOF材料(NUS-9和NUS-10). 通过此法合成出的iCOF材料孔隙度和结晶度一般较低.

    微波合成法是指通过微波辐射来实现对反应体系温度的均匀升高,从而提高能量传导效率,最终使反应速率明显提高的一种方法. 利用微波合成法制备的iCOF材料往往具有较高的纯度、更窄的粒径分布和更为均匀的形态等优异特性. 2009年,Campbell等[30]首次采用微波合成法制备出两种iCOF(COF-5和COF-102). 与传统的热溶剂合成法的产物相比,COF-5和COF-102这两种iCOF材料表现出更高的表面积. 除此之外,微波合成法还具有节省能源的优点,能极大地缩短反应时间.

    直接合成法中常用的离子单体如图2所示,包括磺酸基类离子单体(图2a),氨基胍盐酸盐类离子单体(图2b),联吡啶类离子单体(图2c)以及溴化乙啶类离子单体(图2d).

    图 2  常用的离子单体:(a)磺酸基类离子单体;(b)氨基胍盐类离子单体;(c)吡啶类离子单体;(d)溴化乙啶类离子单体
    Figure 2.  Commonly used ionic monomers: (a)ionic monomer of sulfonic acid group; (b)aminoguanidine hydrochloride; (c)cationic monomers of 4,4'-bipyridine; (d)ionic monomers of ethyl bromide

    2015年Peng等[19]以2,5-二氨基苯磺酸为离子单体,Tp为中性连接剂,在120 ℃条件下通过热溶剂合成法得到了一种含有磺酸基的离子型COF(TFP-DABA),如图3(a)所示. 这种具有电负性的磺酸基COF成为近年来研究的热点. 2016年,Chandra等[31]在无水条件下证实TFP-DABA具有超高的质子导电性,为质子的高效传递提供了可能. 同年,Peng等[29]以2,5-二氨基-1,4-苯二磺酸为单体,得到另一种含有磺酸基的离子型COF(NUS-10),如图3(b)所示. 与TFP-DABA的合成单体相比,NUS-10的合成单体拥有两个磺酸基,因此NUS-10在导电性方面也更胜一筹. Chen等[32]将TFP-DABA结构中磺酸基所含的H+置换为Na+,得到了阴离子COF膜材料(TpPa-SO3Na). 这种膜材料在吸附有机染料方面展现出极强的性能,进一步扩展了磺酸基COF的应用范围. Yan等[33]以2,2'-双磺酸联苯胺为单体,制备出另一种磺酸基离子型COF(TFP-BDSA COF),如图3(c)所示. 由于2,2'-双磺酸联苯胺含有两个苯环结构,与TFP-DABA和 NUS-10相比,其孔径进一步扩大,可达2.3 nm. 大孔径使其对多种阳离子染料展现出优异的选择性吸附和分离功能.

    图 3  三种含磺酸基COF(TFP-DABA、NUS-10、TFP-BDSA COF)的合成示意图
    Figure 3.  Schematic diagram of the synthesis for TFP-DABA、NUS-10 and TFP-BDSA COF

    氨基胍盐类离子单体主要包括二氨基胍盐和三氨基胍盐(图2b所示),通常与含有醛基的连接剂用于合成iCOF. Mitra等[34]用三氨基胍盐(TGx)和Tp通过热溶剂合成法合成出一种具有自剥离性质的iCOF(TpTGx, x=Cl、Br、I),该材料能与带负电荷的细菌膜磷脂双分子层产生静电相互作用从而破坏细胞结构,因此对细菌具有良好的抑制效果. 2019年,Da等[35]用TGCl和2,5-二羟基对苯二甲酸(Dha)合成出的DhaTGCl具有高稳定性、有序的疏水孔通道和密度极高的阳离子位点等独特优势,能有效去除放射性离子.

    杂环和脂肪族化合物中的氮原子稳定性好且易于合成,是将阳离子引入COF框架的良好候选物质. 作为常见的富氮杂环化合物,含有4,4'-联吡啶结构的离子单体(图2c所示)在iCOF合成中得到了十分广泛的应用. Hao等[36]以1,1’-双(4-甲酰基苯基)-4,4’-二氯化联吡啶作为核心框架,制备出PS-COF-1具有大量的联吡啶结构,对99TcO4展现出优异的吸附性能. 探究发现,吸附驱动力主要来源于联吡啶基团与99TcO4的静电吸引力. Yu等[20]报道了一种二维阳离子型COF材料(PC-COF),含有丰富的联吡啶基团,因此能够在极低浓度条件下从水中吸收甲基橙、酸性绿25等有机染料并使其浓度降低至10−8 M以下. Buyukcakir等[37]制备出离子型共价三嗪骨架(cCTF)具有联吡啶结构,独特的产物选择性能快速地将CO2转化为对应的环状碳酸盐,为解决CO2造成的温室效应提供了可能.

    溴化乙啶(ethidium bromide,EB)具有易于调节的溴离子结构(图2d所示),常直接被用于合成iCOF. 2016年,Ma等首次[38]用EB和Tp得到一种离子型COF材料(EB-COF). EB-COF结构中的Br可通过离子交换作用置换为F、Cl和I等,通过控制抗衡离子来控制孔道孔径,该材料能用于新型释放载体的制备. 2021年,Deng等[39]将EB-COF制备成2D纳米片材料,通过机械分层加载技术能将其用于二氯喹啉酸(QNC)的释放,有望成为一种新型高效的农药制剂. 除了能用于制备2D材料外,EB也可用于3D阴离子COF的合成. Li等[40]将EB和一种四面体中性连接剂制备出一种具有高结晶度和孔隙度的正电荷三维COF材料,该材料对核废料和有机染料具有极强的吸附能力.

    随着对iCOF的深入研究,科研工作者发现直接合成法并不能合成所有的目标产物. 某些活性基团由于自身与COF的整体框架不相匹配或反应条件较为苛刻,不能通过简单的“自下而上”直接合成法引入框架中. 因此需要通过合成后修饰法(post-synthesis modification,PSM)来合成. PSM是指通过化学转化或修饰COF框架内预先建立的官能团,不改变其基本拓扑结构却能赋予COF新特性的一种方法.

    常用的PSM合成思路是直接在中性COF材料中引入带电基团. Hu等[41]通过离子交换先后将Mn2+和2,2-联吡啶基团直接引入到一种COF材料内(DhaTab),分别设计合成出两类iCOF([Mn(bpy)2]-DhaTab、[SO3Mn]-DhaTab). Mu等[42]在中性COF中引入甜菜碱基团从而制备出一种特殊的两性离子COF([BE]X%-TDCOFs),这种材料可精确控制CO2的还原,具有较高的产率和选择性. 除引入离子基团外,具有多功能性和高活性的离子液体(ionic liquids,ILs)也常被选择引入至中性COF内. Dong等[43]通过将离子液体引入COF通道壁上从而构建出一种具有催化活性的iCOF([Et4NBr]50%-Py-COF). 该材料对CO2具有极高的吸附量,是将CO2转化为甲酰胺的催化剂. 此外,Li等[44]在前人合成磺酸基离子型COF的基础上将其与离子液体浸渍,通过结合蚕丝纳米纤维(silk nanofibrils,SNFs)制备出一种COF/SNF复合膜材料,该复合膜具有极高的电导率.

    除了直接引入带电基团外,将COF本身的活性基团活化成离子基团也是常用的思路. 活性基团的转化率一般较低,因此合成出的iCOF电荷密度通常较低. 联吡啶结构具有易电离的特性,Aiyappa[45]将中性COF浸泡在甲醇醋酸钴溶液中,搅拌后使联吡啶活化,从而生成了一种iCOF(Co-TpBpy). 该材料具有极强的催化性,经多次循环使用后仍旧具有极高活性. Mi等将含有联吡啶结构的中性COF与1,2-二溴乙烷进行季胺化反应,将联吡啶结构转化为更稳定的顺式构型,此举增加了该COF的稳定性. 随后用连二亚硫酸钠(Na2S2O4)进一步还原该产物,生成的iCOF(Py-BPy+·COF)可用于医学中的光声成像和光热治疗.

    除了上述的两种合成后修饰思路外,预先设计出具有缺陷的COF,随后引入带电的活性基团填补缺陷,这也是一种PSM思路. 这种方法最初是在MOF合成中实现的,预设缺陷的MOF材料在引入新的活性基团后获得了许多新的功能. 基于此,Li等[46]以1,3,5-三(4-氨基苯基)苯(TAPB)为连接剂,2,5-二羟基对苯二甲醛(DHTA)和2,5-二羟基苯甲醛(DHA)为单体,通过DHA缺失的一个醛基预留出缺陷,将一种含咪唑基的离子引入得到dCOF-ImTFSI-Xs,如图4所示. 该材料不仅具有完整的孔通道,能为离子传输提供途径,而且还拥有咪唑基等阳离子和TFSI等阴离子能进行更好的离子传导,在303 K-423 K内均可作为一种良好电解质.

    图 4  具有缺陷的COF(dCOF-NH2-Xs)合成路线及其与TFSI进行离子交换的示意图
    Figure 4.  Synthesis of dCOF-NH2-Xs by TAPB, DHTA, and DHA; synthesis of dCOF-ImTFSI via ion exchange method.

    有机污染物如甲基橙、刚果红等有机染料以及抗生素和有机氟化物等,放射性核素如235,238U(Ⅵ)、232Th(Ⅳ)以及99Tc(Ⅶ)等,重金属如Cr(Ⅵ)、Pb(Ⅱ)和Hg(Ⅱ)等这些有毒有害物质均易通过食物链在生物体内积聚,从而对人体健康构成威胁. iCOF作为吸附剂去除环境污染物的相关进展及其相互作用机理总结于表1中.

    表 1  iCOF去除环境污染物及其影响吸附因素
    Table 1.  Removal of environmental pollutants by iCOF and its influence on adsorption factors
    iCOF 材料iCOF 污染物Pollutants 相互作用机理Interaction mechanism 参考文献Reference
    TpPa-SO3Na MB,EB,MO 静电相互作用和COF材料的孔径大小 [32]
    ImI@TpBd-(SO3)2 MB、碱性橙2 静电相互作用 [47]
    Tp-Bpy RhB,CR,BB 与含氮活性位点之间的静电相互作用 [48]
    PC-COF MO, DFBM, AG-25, IC 与结构中联吡啶基团之间的静电相互作用以及阴离子交换选择性 [20]
    Tp-MTABs FQs 与含氮基团之间的静电相互作用和π-π 相互作用 [49]
    Fe3O4 @TpBD BPA π-π 相互作用和氢键 [50]
    TFPT-TGCl-iCOF 2,4-dichlorophenol 与含氮基团之间的配位相互作用 [52]
    COF1 GenX, HFPO-TA 静电相互作用和疏水作用 [53]
    [[NH4]+[COF-SO3]] U(Ⅵ)、Th(Ⅳ) 与-SO3H基团之间的配位相互作用以及 阴离子交换选择性 [54]
    JUC-505-COOH U(Ⅵ) 与-COOH基团之间的配位相互作用 [55]
    PS-COF-1 Tc(Ⅶ) 与联吡啶基团之间的配位相互作用以及阳离子交换选择性 [56]
    PS-COF-1 Tc(Ⅶ) 与联吡啶基团之间的配位相互作用以及氢键 [36]
    SCU-CPN-1 Re(Ⅶ) 与联吡啶基团之间的配位相互作用以及氢键 [57]
    SCU-CPN-2 Tc(Ⅶ) 与联吡啶基团之间的配位相互作用以及氢键 [58]
    QUST-iPOP-1 Tc(Ⅶ) 与COF框架之间的静电相互作用 [59]
    BT-DGCl Cr(Ⅵ) 与COF框架之间的静电相互作用和阴离子交换选择性 [60]
    Tp-DGCl Cr(Ⅵ) 与COF框架之间的静电相互作用和氢键 [61]
    COF-TP、COF-TE Pb(Ⅱ) 与-NHR 基团之间的配位相互作用和静电相互作用 [62]
    iCOF-1 Pb(Ⅱ) 与COF框架之间的静电相互作用和阳离子交换选择性 [63]
    TpODH Hg(Ⅱ) 与-NH 基团和-CO基团之间的配位相互作用以及氢键 [64]
     | Show Table
    DownLoad: CSV

    水、土壤、湖泊中的有机染料在含量较低的水平下也能对人体健康构成巨大威胁. 有机颜料在水中通常以离子形式存在,因此可以通过静电吸引将其吸附,从而达到去除的目的. Chen等[32]用制备出具有磺酸基团的二维共价有机框架膜材料(TpPa-SO3Na)用来吸附MB、碱性橙2等有机染料. 阳离子有机污染物通过其微孔通道时,除了会受到与负电荷通道产生的静电作用力外,在进入微孔通道前还会受到刚性孔径大小的影响(图5a所示). 这两种因素使得该阴离子共价有机框架膜对阳离子有机染料具有较好的分离特性. 将亚甲基蓝(MB)和对硝基苯胺(NA)混合后通过该膜材料,选择性吸附效果如图5b所示,正电的MB基本完全被吸附,而中性的NA仍存在溶液中. 除MB外,该膜材料对溴化乙啶(EB)等阳离子有机染料也具有高拦截率,同时能保持良好的溶剂渗透性. Dang等[47]通过在COF中引入咪唑基来增强与有机染料的静电吸引,从而提高吸附量. 该材料对阴离子及中性染料表现出极低的吸附量,而对MB、碱性橙2等阳离子染料吸附量分别达到2865.3 mg·g−1和597.9 mg·g−1. 实验结果证明其具有的电荷选择性是选择性吸附的关键.

    图 5  (a) TpPa-SO3Na膜材料的纳米通道对有机染料分子筛分机理示意图[32](b) TpPa-SO3Na膜材料选择性吸附有机染料示意图[32](经ELSEVIER授权转载)
    Figure 5.  (a) Diagram of the extension of the organic dye molecular sieve by the nanochannel of the TPA-SO3Na[32]
    (b) Schematic diagram of the selective adsorption for cationic dyes by 2D anionic COF membrane TpPa-SO3Na[32] (Reprinted with permission of the ELSEVIER)

    Dey等[48]合成出4种具有不同孔径大小的阳离子型COF膜材料(Tp-Tta、Tp-Ttba、Tp-Bpy、Tp-Azo). 这4种材料均具有类似半透膜的性质,对水等溶剂表现出优异的渗透性,对刚果红(CR)、亮蓝G(BB)等阴离子有机染料产生静电吸引将其拦截,从而达到去除分离的目的. Yu等[20]以1,1’-双(4-甲酰苯基)-4,4’-二氯化联吡啶(BFBP2+•2Cl)为单体制备出一种二维阳离子型COF(PC-COF),其在处理有机污染物的过程中表现出了优良的特性. 由于富含大量联吡啶结构,PC-COF能与有机染料产生强烈的静电相互作用. 在低浓度条件下依旧能够从水中吸收如甲基橙(MO)、酸性绿25(AG-25)、直接红棕M(DFBM)、靛蓝胭脂红(IC)等多种阴离子有机染料,并使其浓度降低至10−8 mol·L−1. 对其吸附机理的探讨表明吸附驱动力主要来源于COF材料中阳离子联吡啶基团与有机染料阴离子的静电吸引力. 此外,所含的“硬碱”氯离子与有机染料之间的离子交换也增强了吸附作用.

    除有机染料外,水体环境中还存在着如抗生素、有机氟化物、双酚A等其他有机污染物. 这些物质对人体具有很高的毒性,很容易通过食物链在生物体内积累,从而对人体造成伤害. 氟喹诺酮类药物(fluoroq-uinolones,FQs)在人体内代谢不完全导致在水环境中能检测出其残余物. Jiang等[49]合成出一种离子型COF(Tp-MTABs)将其用于吸附FQs,30 s内就能达到吸附平衡. 实验证明在多种竞争离子和高盐度天然海水的复杂环境中,Tp-MTABs对FQs仍具有较高的选择性. Tp-MTABs能进行自剥离从而形成二维离子共价有机纳米片材料,促使其暴露更多的离子结合位点,因此能增强与目标离子间的静电相互作用和π-π相互作用,达到更好的吸附效果. Li等[50]使用Fe3O4@TpBD去除双酚A(BPA),在5 min内就能达到吸附平衡,吸附量可达161 mg·g−1. 实验探究发现,BPA与Fe3O4@TpBD的苯环结构之间存在π-π相互作用和氢键作用,是导致BPA吸附的主要原因. 类似机理如Liu等[51]用醛基和肼基对COF进行功能化后应用于废水中BPA的去除,去除率达到97%. Da等[52]通过使用不同的中性连接剂来提高层之间的π-π堆积效率,减少层之间强烈的电荷排斥,从而实现提高材料结晶度的目的. 根据此策略合成出的阳离子型COF(TFPT-TGCl-iCOF)对农药中间体2,4-二氯苯酚的最高吸附量可达893 mg·g−1. 除了静电相互作用、π-π堆积和氢键作用外,疏水相互作用也能影响吸附过程. Wang等[53]通过亚胺缩合反应制备的COF1具有疏水性,对同样具有疏水性的六氟环氧丙烷二聚酸(GenX)和六氟环氧丙烷三聚酸(HFPO-TA)具有特异的选择吸附. 在疏水作用和静电吸引的双重作用下,对GenX和HFPO-TA吸附量分别为684 mg·g−1和1214 mg·g−1,表现出优异的吸附能力.

    总的来说,iCOF吸附有机污染物的能力不仅与材料的结构性质和孔径通道大小有关,也和污染物分子的结构和大小有关. 通过密度泛函计算可以有效探究有机污染物与iCOF之间的相互作用机制,两者之间的作用主要以静电相互作用、π-π相互作用和氢键作用为主. 但如何尽可能地提高这些相互作用力从而扩展iCOF在处理有机污染物的应用仍旧是一个挑战.

    核工业的快速发展伴随着大量核废料的产生. 核废料中常见的放射性核素主要包括235,238U(Ⅵ)、232Th(Ⅳ)以及99Tc(Ⅶ)等. 放射性核素流动性高,易溶于水,可以对人体的中枢神经和内分泌系统造成伤害,大剂量或长时间接触会对人体造成明显伤害,增加患癌风险. 从废水中高效捕获和去除放射性核素是解决核废料造成的环境问题的主要途径之一. 近年来,众多iCOF广泛地应用于放射性核素.

    根据硬软酸碱(HSAB)理论,含氧基团对放射性核素的亲和力一般较好,可以用于放射性核素的去除. Xiong[54]将一种离子型COF材料([NH4]+[COF-SO3])用于吸附铀酰,该材料的合成步骤如图6所示. 将2,5-二氨基苯磺酸和Tp合成的COF-SO3H经氨水氨化后,磺酸基(−SO3H)失去H成为−SO3基团,−SO3基团能与U(Ⅵ)、Th(Ⅳ)等放射性离子产生配位作用,与此同时NH4+可以与放射性离子进行离子交换. 在两种作用下,该材料对铀酰的吸附量最高可达851 mg·g−1. 其同时对232Th(Ⅳ)也具有极强的吸附效果. [[NH4]+[COF-SO3]]具有选择性高、pH适用范围广、循环性能好等优点,有望成为处理核废料中放射性核素的高效吸附材料. 此外,Li等[55]合成出一种含有羧基(−COOH)的离子型COF(JUC-505-COOH),羧基与废水中的铀离子能产生较强的配位键,在较短的时间内就能吸附大部分铀离子. 由于该材料在低pH条件下表现的极强耐酸性,其在实际铀污染修复方面展现出巨大潜力.

    图 6  [[NH4]+[COF-SO3]]的合成路线以及通过配位作用和离子交换吸附UO22+示意图
    Figure 6.  Diagram of synthesis of [[NH4]+[COF-SO3]]and its adsorption towards UO22+ by ion exchange and coordination

    除含氧基团外,具有含氮基团的COF也能对放射性核素产生极强的吸附效果. 吡啶结构作为一种常用的富氮配体,结构中的N原子能与99Tc(Ⅶ)形成稳定的配位键. 因此含有吡啶结构的COF可用于吸附高锝酸根离子. 99Tc(Ⅶ)主要以高锝酸根(99TcO4)的形态存在于核废料中. Hao等[36]合成出具有丰富联吡啶基团结构的PS-COF-1,对99TcO4的吸附驱动力主要来源于联吡啶基团与99TcO4的静电吸引力. 此外联吡啶中的“硬碱”氯离子与99TcO4的离子交换也起到重要的作用. He等[56]以1,1’-双(4-氨基苯基)-4,4’-二氯化联吡啶(Viologen-NH2)作为核心框架,制备出的SCU-COF-1与PS-COF-1的结构相比,吡啶结构的数量相似,但增加了大量的亚氨基(—NH—)和羟基(—OH). 这两类官能团促使其吸附能力得到了提升. 由于99TcO4具有极高的辐射性,因此在实验中通常用电荷密度相同、阴离子交换性能相似且不具备放射性的铼酸根(ReO4)替代. Li等[57]报道的另一种富含吡啶结构的阳离子COF(SCU-CPN-1)对ReO4具有极快的吸附速率,在30s内就能去除溶液中超过99%的ReO4. 与之对比的两种商用交换树脂(A532E、A530E)在5 min内分别只能去除32%和38%的ReO4,且至少需要120 min才能达到吸附平衡.

    含氮基团中除吡啶外,咪唑基团与99TcO4之间的结合能也很高,咪唑基团也是该类型COF常选择的基团之一. 通过引入咪唑基团增强材料中的正电荷密度,增大材料与目标离子之间的静电作用力,相应地能使吸附量提高. 考虑到电荷排斥和空间位阻的影响,Li等[58]将吸附能力最强的1,3,5-三(咪唑基)苯与空间位阻较小的1,3,5-三(溴甲基)苯制备得到SCU-CPN-2. 该材料同时具有极高的正电荷密度和极强的抗辐射性能,对ReO4的最高吸附量可达1467 mg·g−1. Jiao[59]用三(4-咪唑基苯基)胺合成出QUST-iPOP-1,该材料在利用咪唑基团拉高电荷密度的同时,还具有高孔隙率和宽孔径分布的特点,对水中ReO4表现了极高的吸附性能.

    使用iCOF作为吸附剂来处理放射性核素的污染已经得到广泛研究. 科研人员往往通过iCOF的官能团来实现其目的. —COOH、—OH、—CHO等含氧官能团对放射性核素具有很好的亲和力,但由于其选择性不如含氮官能团,因此实际效果并不理想. 而吡啶和联吡啶、酰胺肟基团等含氮官能团对放射性核素具有很好的选择性,因此常用于萃取U(Ⅵ)、Tc(Ⅶ)在内的多种核素. 除此之外,核废水通常具有高酸性或高碱性、强辐射性等,因此在极性条件下COF的稳定性以及可重复利用性也需考虑.

    工业发展会导致大量重金属离子排入水体. 这些重金属离子会通过食物链转移到动植物体内. 重金属离子不仅影响动植物的生长发育,而且还会给人类健康带来一系列负面影响. Cr(Ⅵ)对人的呼吸道和皮肤均有刺激,对人体具有致癌和致突变的作用. 氨基胍盐类离子单体中存在的胍基与Cr(Ⅵ)之间会产生静电吸引,而结构中存在的羟基、氨基等能与Cr(Ⅵ)产生氢键,这两种因素使得含氨基胍盐的COF对Cr(Ⅵ)有极强的吸附能力,因此氨基胍盐常用于制备吸附Cr(Ⅵ)的iCOF材料. Li等[60]以1,3-二氨基胍盐酸盐为单体合成出一种具有二氨基胍基团的iCOF材料(BT-DGCl),将该材料用于吸附Cr2O72−. 对Cr2O72−的理论吸附量为BT-DGCl中总氯化物含量的一半. 因为在与Cr2O72−交换的过程中,每2个Cl与1个Cr2O72−进行交换. 在多种离子共存的条件下该材料依具有良好的选择性和快速吸附动力学,几分钟内能使Cr2O72−的浓度降低多个数量级. Zhuang等[61]以1,3-二氨基胍盐酸盐为单体合成出含有β-酮烯胺键的iCOF(Tp-DGCl). 通过提高材料中二氨基胍的密度,使其对目标离子具有更高的负载能力和亲和力. Tp-DGCl对Cr(Ⅵ)的最大吸附量可达336.04 mg·g−1. 如图7所示,通过Cl与Cr(Ⅵ)的离子交换作用和氢键相互作用来实现对Cr(Ⅵ)的快速高效吸附. 5 min内该材料对Cr2O72−的吸附就能到达最大吸附容量的一半,这与结构中含有较多的胍基有关. 另外,结构中的β-酮烯胺键结构极大地增大材料的表面积,增强了对目标离子的吸附.

    图 7  Tp-DGCl的合成路线以及通过离子交换作用和氢键吸附Cr(Ⅵ)示意图
    Figure 7.  Diagram of synthesis of Tp-DGCl and its adsorption towards Cr(Ⅵ) by ion exchange and hydrogen bond

    Pb(Ⅱ)会导致食欲不振、恶心、呕吐、贫血等症状,能对人体的神经、消化、心血管和内分泌等造成严重的危害. 基于分子结构设计策略原则,Li等[62]通过酰氯和氨基的聚合反应制备了两种酰胺基COF(COF-TP和COF-TE). COF-TP和COF-TE分别由对苯二胺、乙二胺与1,3,5-三甲苯甲酰氯合成. 如图8所示,COF-TE中的酰胺基能与Pb(Ⅱ)产生配位作用,表现出良好的吸附性. 在较高pH的条件下,COF-TE表现出比COF-TP更好的吸附效果. 这是由于COF-TE不但具有较多的负电荷,也存在更多的以酰胺基为代表的吸附位点,对Pb(Ⅱ)具有更高的吸附能力. Gupta[63]设计合成出一种框架内含有二甲基胺盐(DMA+)的iCOF-1,实验表明iCOF-1对DMA+和Pb2+的相互作用能分别为−24.5 kJ·mol−1 和−39.2 kJ·mol−1,说明iCOF-1能与Pb2+产生更强的吸附作用. iCOF-1通过离子交换过程将DMA+置换为Pb2+,从而达到去除分离的目的.

    图 8  COF-TE的合成路线及其通过配位作用吸附Pb2+示意图
    Figure 8.  The synthesis of COF-TE and its adsorption towards Pb2+ by coordination

    汞(Hg)对人体的呼吸系统、皮肤、血液以及眼睛都具有毒性,能对人体造成精神障碍、震颤以及肾脏损害等影响. Li等[64]将由草酰二肼(ODH)和Tp制备出的一种烷基胺类iCOF用于去除水中的Hg(Ⅱ). 由于具有不可逆的烯醇-酮互变结构,且分子内N—H键与O═C键之间存在氢键,因此其结晶度和化学稳定性都得到增强. 同时,该材料存在大量周期排列的含氮基团和含氧基团,有利于增强与Hg(Ⅱ)之间的亲和性及协同作用. 实验表明该材料对Hg(Ⅱ)的吸附量最高可达1692 mg·g−1. 此研究为构建用于环境修复的烷基iCOF提供了可能.

    以上结果表明,含N、O、S的官能团与重金属离子之间存在较强的作用力. 在适宜的条件下,这些官能团对重金属离子具有极强的吸附能力,但对目标金属离子的选择性普遍较差. 考虑到构成iCOF的有机配体可以提供特殊的活性位点,进而与目标离子之间形成稳定的作用. 因此,从iCOF的合成入手可以有效解决这一问题:通过选择特殊的有机配体从而实现对目标金属离子的选择性吸附. 除了从合成入手外,通过引入特殊官能团或与其他纳米材料结合,同样也能提高iCOF的选择吸附能力. 因此,构建具有特殊官能团的iCOF材料有利于吸附性能的提高.

    iCOF作为一种新兴材料,自2015年出现至今发展迅速. 由于其具有的电离特性以及晶体多孔材料的性质,因此具有巨大的应用前景. 本文综述了iCOF的结构和合成方法,以及其在环境修复领域展现出的独特优势和极高的应用价值,并对其相互机理进行了探究. iCOF对不同的环境污染物具有较高的吸附能力. 与污染物之间的静电吸引是其用于环境修复的重要机理. 在修复过程中,iCOF内部的活性离子基团与污染物基团进行置换或代替,使污染物滞留在iCOF框架内从而达到吸附分离的目的. 除静电吸引外,用特殊官能团进行表面修饰或引入特殊活性位点能有效提高对目标污染物分子的选择性去除. 近年来iCOF被广泛应用于污染物的去除.

    iCOF在环境修复领域展现出极高应用价值的同时,还有许多亟需解决的问题. (1)有机单体价格昂贵导致iCOF的合成成本很高且合成条件苛刻导致其不能大规模生产. 随着技术的发展,iCOF以较低成本、大规模地合成出来是毋庸置疑的. (2)iCOF合成之路仍需探索. 科研人员仍需筛选合适的合成单体和连接剂,丰富其拓扑结构以及所含官能团的种类. (3)如何对整体框架和离子基团的位置进行设计,有效地增强其在复杂环境中的稳定性和重复利用性以及对目标污染物的高效选择性仍是未来的主要挑战. (4)带电基团的引入导致iCOF发生静电排斥和堵塞孔道,因此其在结晶度和孔隙率方面的表现不理想. 如能将机器学习算法和人工智能应用于iCOF的合成,将有利于开发出高结晶度、高孔隙度以及缺陷少的iCOF. (5)将iCOF应用于环境修复无疑会将其释放到环境中. 因此还应考虑iCOF在自然水系统中的毒性,特别是其在食物链中的富集和最终对人体的毒性. 随着技术的快速发展,在不久的将来,iCOF在环境修复中一定具有巨大的应用潜力.

  • 图 1  光催化反应器示意图

    Figure 1.  Schematic diagram of the photo-reactor system.

    图 2  在暗反应过程中 Ce-ZnO∶AC=1∶2时对二甲苯的吸附

    Figure 2.  Adsorption of p-xylene by composite catalyst with Ce-doped ZnO∶AC = 1∶2 during dark reaction

    图 3  VUV-PCO系统不同工艺下CO2产量、出口O3浓度和对二甲苯去除率

    Figure 3.  CO2 production, outlet O3 concentration and p-xylene removal efficiency under different processes of VUV-PCO system

    图 4  在不同Ce-ZnO负载活性炭的比例下CO2产量、出口O3浓度和对二甲苯去除率

    Figure 4.  CO2 production, outlet O3 concentration and p-xylene removal efficiency under different ratios of Ce-doped ZnO to activated carbon

    图 5  对二甲苯在不同工艺下光催化降解的气相中间产物

    Figure 5.  Gas phase intermediates of p-xylene photo photocatalytic degradation under different processes

    图 6  VUV-PCO的催化稳定性

    Figure 6.  Catalytic stability of the VUV-PCO

  • [1] BHATKHANDE D S, PANGARKAR V G, BEENACKERS A A C M. Photocatalytic degradation for environmental applications: A review[J]. Journal of Chemical Technology & Biotechnology, 2002, 77(1): 102-116.
    [2] TURCHI C S, OLLIS D F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. Journal of Catalysis, 1990, 122(1): 178-192. doi: 10.1016/0021-9517(90)90269-P
    [3] HOUAS A, LACHHEB H, KSIBI M, et al. Photocatalytic degradation pathway of methylene blue in water[J]. Applied Catalysis B: Environmental, 2001, 31(2): 145-157. doi: 10.1016/S0926-3373(00)00276-9
    [4] YUAN R S, GUAN R B, SHEN W Z, et al. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers[J]. Journal of Colloid and Interface Science, 2005, 282(1): 87-91. doi: 10.1016/j.jcis.2004.08.143
    [5] PIZARRO P, GUILLARD C, PEROL N, et al. Photocatalytic degradation of imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts[J]. Catalysis Today, 2005, 101(3/4): 211-218.
    [6] BOUZAIDA I, FERRONATO C, CHOVELON J, et al. Heterogeneous photocatalytic degradation of the anthraquinonic dye, acid blue 25 (AB25): A kinetic approach[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168(1/2): 23-30.
    [7] ARANA J, DONA-RODRGUEZ J, RENDÓN E T, et al. TiO2 activation by using activated carbon as a support: Part Ⅱ. Photoreactivity and FTIR study[J]. Applied Catalysis B: Environmental, 2003, 44(2): 153-160. doi: 10.1016/S0926-3373(03)00075-4
    [8] 周春何, 卢晗锋, 曾立, 等. 沸石分子筛和活性炭吸附/脱附甲苯性能对比[J]. 环境污染与防治, 2009, 31(4): 38-41. doi: 10.3969/j.issn.1001-3865.2009.04.011
    [9] 陈培煜, 杨骥. 改性活性炭对甲胺恶臭气体吸附研究[J]. 环境污染与防治, 2019, 41(9): 1032-1036.
    [10] MA J, SUI M H, CHEN Z L, et al. Degradation of refractory organic pollutants by catalytic ozonation-activated carbon and Mn-loaded activated carbon as catalysts[J]. Ozone: Science and Engineering, 2004, 26(1): 3-10. doi: 10.1080/01919510490426027
    [11] XIAO P Y, WANG P, LI H M, et al. New insights into bisphenols removal by nitrogen-rich nanocarbons: Synergistic effect between adsorption and oxidative degradation[J]. Journal of Hazardous Materials, 2018, 345: 123-130. doi: 10.1016/j.jhazmat.2017.11.001
    [12] HUANG H B, LIU G Y, ZHAN Y J, et al. Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts[J]. Catalysis Today, 2017, 281: 649-655. doi: 10.1016/j.cattod.2016.07.005
    [13] SHU Y J, XU Y, HUANG H B, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation[J]. Chemosphere, 2018, 208: 550-558. doi: 10.1016/j.chemosphere.2018.06.011
    [14] GUO T, BAI Z P, WU C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation[J]. Applied Catalysis B: Environmental, 2008, 79(2): 171-178. doi: 10.1016/j.apcatb.2007.09.033
    [15] MATOS J, GARCIA A, CHOVELON J M, et al. Combination of adsorption on activated carbon and oxidative photocatalysis on TiO2 for gaseous toluene remediation[J]. Open Materials Science Journal, 2010, 4: 23-25.
    [16] NARAYANAN N, DEEPAK N. Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity[J]. Solid State Sciences, 2018, 78: 144-155. doi: 10.1016/j.solidstatesciences.2018.02.017
    [17] HU B J, SUN Q, ZUO C Y, et al. A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water[J]. Beilstein Journal of Nanotechnology, 2019, 10(1): 1157-1165.
    [18] VIJAYAPRASATH G, SOUNDARRAJAN P, RAVI G. Synthesis of ZnO nanosheets morphology by Ce doping for photocatalytic activity[J]. Journal of Electronic Materials, 2019, 48(1): 684-695. doi: 10.1007/s11664-018-6763-y
    [19] WANG G W, WANG LM, WU Z Q. Synthesis of Ce-doped GN/ZnO architectures with enhanced photocatalytic activity[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(1): 28-32. doi: 10.1080/1536383X.2018.1480478
    [20] ONDARTS M, OUTIN J, REINERT L, et al. Removal of ozone by activated carbons modified by oxidation treatments[J]. European Physical Journal Special Topics, 2015, 224(9): 1995-1999. doi: 10.1140/epjst/e2015-02516-6
    [21] YOU J H, CHIANG H L, CHIANG P C. Comparison of adsorption characteristics for VOCs on activated carbon and oxidized activated carbon[J]. Environmental Progress, 1994, 13(1): 31-36. doi: 10.1002/ep.670130115
    [22] VALDÉS H, SÁNCHEZ-POLO M, RIVERA-UTRILLA J, et al. Effect of ozone treatment on surface properties of activated carbon[J]. Langmuir, 2002, 18(6): 2111-2116. doi: 10.1021/la010920a
    [23] ÁLVAREZ P M, MASA F J, JARAMILLO J, et al. Kinetics of ozone decomposition by granular activated carbon[J]. Industrial & Engineering Chemistry Research, 2008, 47(8): 2545-2553.
    [24] BELTRÁN F J, RIVAS J, ÁLVAREZ P, et al. Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon[J]. Ozone: Science & Engineering, 2002, 24(4): 227-237.
    [25] SÁNCHEZ-POLO M, VON GUNTEN U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters[J]. Water Research, 2005, 39(14): 3189-3198. doi: 10.1016/j.watres.2005.05.026
    [26] HUANG H L, HUANG H B, ZHAN Y J, et al. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism[J]. Applied Catalysis B: Environmental, 2016, 186: 62-68. doi: 10.1016/j.apcatb.2015.12.055
    [27] ALBUQUERQUE A R, BRUIX A, SAMBRANO J R, et al. Theoretical study of the stoichiometric and reduced Ce-doped TiO2 anatase (001) surfaces[J]. Journal of Physical Chemistry C, 2015, 119(9): 4805-4816. doi: 10.1021/jp5105483
    [28] ZHANG P Y, LIANG F Y, YU G, et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1/2/3): 189-194.
    [29] FU P F, ZHANG P Y, LI J. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+185 nm irradiation[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 220-228.
    [30] SHU Y J, JI J, XU Y, et al. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation[J]. Applied Catalysis B: Environmental, 2018, 220: 78-87. doi: 10.1016/j.apcatb.2017.08.019
    [31] SUZUKI H, ARAKI S, YAMAMOTO H. Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water[J]. Journal of Water Process Engineering, 2015, 7: 54-60. doi: 10.1016/j.jwpe.2015.04.011
    [32] SZETO W, LI J, HUANG H, et al. VUV/TiO2 photocatalytic oxidation process of methyl orange and simultaneous utilization of the lamp-generated ozone[J]. Chemical Engineering Science, 2018, 177: 380-390. doi: 10.1016/j.ces.2017.10.008
    [33] MAWHINNEY D B, YATES JR J T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K: Direct COOH formation[J]. Carbon, 2001, 39(8): 1167-1173. doi: 10.1016/S0008-6223(00)00238-4
    [34] SUBRAHMANYAM C, BULUSHEV D A, KIWI-MINSKER L. Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature[J]. Applied Catalysis B: Environmental, 2005, 61(1/2): 98-106.
    [35] MOHAMED R, AAZAM E. Synthesis and characterization of Pt-ZnO-hydroxyapatite nanoparticles for photocatalytic degradation of benzene under visible light[J]. Desalination and Water Treatment, 2013, 51(31/32/33): 6082-6090.
    [36] JAFARI A J, KALANTARY R R, ESRAFILI A, et al. Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene[J]. Process Safety and Environmental Protection, 2018, 116: 377-387. doi: 10.1016/j.psep.2018.03.015
    [37] WU H J, WANG L D, ZHANG J Q, et al. Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst[J]. Catalysis Communications, 2011, 12(10): 859-865. doi: 10.1016/j.catcom.2011.02.012
    [38] OGATA A, ITO D, MIZUNO K, et al. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor[J]. Applied Catalysis A: General, 2002, 236(1/2): 9-15.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 3.2 %DOWNLOAD: 3.2 %HTML全文: 81.1 %HTML全文: 81.1 %摘要: 15.8 %摘要: 15.8 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 94.7 %其他: 94.7 %XX: 3.9 %XX: 3.9 %北京: 0.4 %北京: 0.4 %南京: 0.1 %南京: 0.1 %吉林: 0.1 %吉林: 0.1 %天津: 0.1 %天津: 0.1 %武汉: 0.1 %武汉: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.4 %深圳: 0.4 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.1 %邯郸: 0.1 %长春: 0.1 %长春: 0.1 %其他XX北京南京吉林天津武汉济南深圳西安运城邯郸长春Highcharts.com
图( 6)
计量
  • 文章访问数:  5448
  • HTML全文浏览数:  5448
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-07
  • 录用日期:  2020-03-01
  • 刊出日期:  2020-11-10
凌昊, 孟捷, 陶进国, 罗鹏飞, 赵鹏, 宋万康, 成卓韦. Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J]. 环境工程学报, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034
引用本文: 凌昊, 孟捷, 陶进国, 罗鹏飞, 赵鹏, 宋万康, 成卓韦. Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J]. 环境工程学报, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034
LING Hao, MENG Jie, TAO Jinguo, LUO Pengfei, ZHAO Peng, SONG Wankang, CHENG Zhuowei. Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034
Citation: LING Hao, MENG Jie, TAO Jinguo, LUO Pengfei, ZHAO Peng, SONG Wankang, CHENG Zhuowei. Catalytic degradation of p-xylene waste gas by Ce-ZnO/AC under vacuum ultraviolet irradiation[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3092-3101. doi: 10.12030/j.cjee.202001034

Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气

    通讯作者: 成卓韦(1982—),男,博士,副教授。研究方向:VOC废气净化。E-mail:86589068@qq.com
    作者简介: 凌昊(1995—),男,硕士研究生。研究方向:光催化氧化。E-mail:linghao319@gmail.com
  • 1. 浙江工业大学环境学院,杭州 310032
  • 2. 浙江泷赢环境科技有限公司,杭州 310012
基金项目:
国家重点研发计划资助项目(2018YFC0214100);浙江省自然科学基金重点项目(LZ17E080001);浙江工业大学省属高校基本科研业务费项目(RF-A2019011)

摘要: 将Ce掺杂ZnO光催化剂通过负载活性炭 (AC)的方式制备Ce-ZnO/AC吸附-催化复合材料,并以对二甲苯为典型挥发性有机污染物(VOC),研究其在真空紫外体系中光催化转化性能。结果表明:活性炭的负载能有效提高臭氧的利用效率,强化对二甲苯的去除率和矿化率;当Ce-ZnO与活性炭的负载比例为1∶2时,复合材料的光催化性能达到最优,此时对二甲苯的转化率达到95%以上;活性炭的负载不仅可使污染物与催化剂充分接触,还可有效利用臭氧从而产生·OH等自由基,协同促进对二甲苯的降解,同时更多的中间产物被降解。复合催化材料显示了良好的稳定性,在利用5次后,仍可再生恢复其光催化性能至初始状态。相对于单独的真空紫外光解,Ce-ZnO/AC吸附-催化复合材料与真空紫外体系耦合降解二甲苯的能量利用率提高了2倍,经济性好。

English Abstract

  • 挥发性有机污染物(VOCs)是指在常温常压下沸点为50 ~ 260 ℃、饱和蒸汽压大于133.13 kPa的有机化合物。VOCs 通常来源于包装印刷、石油化工等行业及机动车尾气排放,可能导致雾霾和光化学烟雾的形成和臭氧层破坏,而且也给人体健康带来威胁,故需要对相关排放源进行治理。

    光催化通过光源照射在半导体催化剂表面,引发电子从价带转移到导带,并与空气及水反应,生成羟基自由基等强氧化性基团;与污染物反应,从而达到强化降解污染物的目的[1-3]。通常,由于光催化材料的吸附能力通常较弱,因此,通过将光催化剂负载到吸附剂表面有着广阔的研究前景[4-7]。在基于真空紫外的光催化氧化(VUV-PCO)工艺中,O3通过185 nm真空紫外光辐射产生,可用于进一步增强污染物的氧化。但若未充分利用,出口处的高浓度O3同时也是二次污染物。活性炭(AC)拥有出色的吸附性能[8-9],具有一定的催化氧化作用,在减少O3污染排放的同时,可生成强氧化剂,增强对污染物的降解,并减少副产物的排放[10-11]。HUANG等[12]利用沸石良好的VOCs和臭氧吸收能力,以沸石作为载体制备了TiO2/ZSM-5催化剂,在提高苯吸收能力的同时,利用臭氧分解能力获得了较高的苯去除率。SHU等[13]制备0.1%Mn/40%TiO2/AC催化剂,在VUV-PCO工艺下,实现近86%的甲苯去除率,并可将O3催化转化为O(1D)和·OH高活性物种,辅助催化氧化。GUO等[14]和MATOS等[15]通过TiO2在活性炭上不同方式的负载,均得到了高效的气态甲苯去除率。采用溶胶-凝胶、浸渍法等原位负载或机械混合的方式负载活性炭[12],一方面发挥活性炭出色的吸附性能,另一方面也能发挥其与催化剂的协同效应,在增强降解性能的同时减少二次污染问题。

    本研究采用共沉淀法制备了Ce掺杂ZnO纳米催化剂,通过机械混合的方式将其负载在活性炭上,通过考察负载活性炭对光催化性能(污染物去除率、矿化率和O3消耗量)的影响,获得了Ce-ZnO和粉末活性炭最佳负载比例,进而提出了可能的降解机理,并探究了活性炭对催化剂使用寿命及降解产物的影响,最后对该工艺的能耗进行了分析。本研究结果可为VUV-PCO体系下增强催化性能和稳定性,优化能量利用率提供参考。

  • 对二甲苯、Ce(NO3)3·6H2O、Na2CO3购于阿拉丁试剂有限公司,ZnSO4·7H2O购置于上海凌峰化工有限公司,活性炭购于溧阳市天顺活性炭有限公司,无水乙醇购于安徽安特食品股份有限公司。若无特别说明,所有药剂均为分析纯。

  • Ce-ZnO的制备:将4.34 g硝酸铈六水合物溶于100 mL超纯水中,并加至七水硫酸锌溶液中,制备摩尔比为0.96%的混合溶液,以300 r·min–1的搅拌速度搅拌3 h,从而获得Ce掺杂的ZnO复合物的前体物;用乙醇和超纯水利用超声波清洗机洗涤沉淀物3次至纯净,置于65 ℃烘箱中干燥后,在351 ℃下煅烧339 min,得到Ce-ZnO。

    Ce-ZnO负载活性炭的制备:将Ce-ZnO和活性炭按不同比例加入无水乙醇,放至搅拌器中搅拌(100 r·min–1),然后将其放入超声波清洗器中,混合搅拌30 min;将混合物均匀涂覆在石英舟上,并将其置于65 ℃下干燥10 h。

  • 本研究中使用的性能测试系统见图1。测试系统主要由配气系统、光催化反应系统和检测系统3部分组成。通过配气系统产生不同浓度和湿度的对二甲苯废气。光催化反应系统由真空紫外灯管、光催化反应器和石英舟构成。光催化反应器包含圆形套管,内筒内放置紫外灯管,内筒(长44 cm)与外筒(长44 cm)夹层间放置涂覆有光催化剂的石英舟(长43 cm)。反应器的体积为600 cm3,长40 cm的紫外灯管(36 W,185 nm)置于反应器中,使VUV均匀辐射气流和光催化剂。实验中用无水乙醇将1 g催化剂均匀涂覆在石英舟上,涂覆面积为1 130 cm2。打开紫外灯的同时,连续通入对二甲苯混合气体,在一定时间内分别测定反应器出口处的对二甲苯浓度、二氧化碳浓度和臭氧浓度。实验中,通过调节配气比例和流量,控制对二甲苯浓度为150 mg·m–3,相对湿度为40%、停留时间为30 s。对二甲苯浓度和二氧化碳浓度由Agilent 6890气相色谱仪HP-Innowax型和HP-Plot-Q型毛细管柱定量分析,臭氧浓度利用德国德图(testo625)臭氧分析仪测定,中间产物由气相色谱-质谱联用(Agilent GC-7890,MS-5790)进行分析。

  • 许多研究[16-19]表明,Ce掺杂ZnO能够显著提高催化剂的光催化性能;但受制于其有限的活性位点,在较短的反应时间内,污染物无法与催化剂充分接触而被高效去除。活性炭作为一种有效的吸附材料,具有大比表面积和丰富的孔结构,通过表面碳原子与O3结合形成含氧基团,同时,其本身的催化活性也有一定的O3去除效果[20]。通过活性炭与Ce-ZnO的有效结合,有望获得较高的催化氧化性能。

    为考察Ce-ZnO/AC的吸附性能,在没有紫外光的条件下对催化剂进行了吸附稳定性测试(图2)。可以发现,复合材料对对二甲苯的吸附率持续下降。200 min后下降速率增加,并在9 h时降至60%以下。同时,测定了反应器出气中的二氧化碳,发现其浓度与进气中二氧化碳浓度相似。这说明在没有紫外光照射时,复合催化材料对对二甲苯只存在吸附作用。

    为验证复合催化剂的催化性能,考察不同工艺(VUV+ZnO、VUV+ZnO/AC、VUV+Ce-ZnO和VUV+Ce-ZnO/AC)对对二甲苯的去除效率,同时测定了反应器出口O3浓度和CO2浓度。如图3 (a)所示,单独使用ZnO作为光催化剂,120 min后对二甲苯的去除率从60%降低至40%左右,表明ZnO在反应过程中缓慢失活,催化稳定性较差。对照实验表明,ZnO失活后的降解效率来自真空紫外的贡献。当Ce掺杂到ZnO内部后,对二甲苯的去除率升高到70%以上,并且在120 min之后没有出现明显下降,表明Ce-ZnO具有良好的催化稳定性。ZnO负载活性炭时,对二甲苯的去除率在80%以上,并在160 min后开始有下降趋势;而当Ce-ZnO/AC放入反应器中时,对二甲苯的去除率进一步提高至98%以上,并在测试时段内保持稳定。这说明吸附-催化混合型催化剂具有优异的对二甲苯降解性能及稳定性。如图3 (b)所示,在单独VUV体系中,反应器出气中O3浓度为3 002.5 mg·m−3。当使用ZnO作为催化剂时,O3浓度降至340 mg·m–3,同时产生150 mg·m–3的CO2。当ZnO负载活性炭后,出气中O3浓度迅速降低至60 mg·m−3,但CO2生成量提升幅度较小。这说明,虽然活性炭具有较好的污染物富集能力[21-22],但富集到活性炭表面的对二甲苯不能被催化剂彻底矿化,因而CO2没有大幅提升。同时,活性炭具有一定的臭氧分解能力[23-25],使得出气中O3浓度大幅下降。当Ce-ZnO作为催化剂时,O3分解加快,CO2生成量达到170 mg·m−3。当Ce-ZnO与活性炭混合之后,出气中O3浓度进一步降低至20 mg·m−3,同时对二甲苯的矿化率进一步提高,CO2产生量达到190 mg·m−3。这些结果说明,活性炭的加入不仅对光催化氧化反应起促进作用,提高对二甲苯的降解效率,而且在臭氧的分解中也起到积极作用。

  • 虽然吸附-催化复合材料对对二甲苯具有良好的降解效果,但当催化剂在活性炭上的负载量过高时,部分催化剂将占据活性炭表面的微孔,抑制活性炭的吸附性能;当负载量过低时,光催化剂就无法发挥较大的作用,从而降低催化氧化的效果。因此,催化剂在活性炭上的负载比例尤为重要。因此,实验考察了Ce-ZnO与活性炭的质量比分别为1∶4、2∶4、3∶4和4∶4的催化性能,实验结果如图4(a)所示。当光催化剂与活性炭比例为1∶2时,对二甲苯去除率最高,且出口的O3浓度最低,为20 mg·m–3左右,CO2生成量达到175 mg·m–3。此后随着催化剂比例的增加,降解性能和矿化率都有所下降,出口气体中的臭氧残留较多。当催化剂负载比例较低时,在反应初始阶段,吸附催化性能较高,去除效果较好;但随着时间的推移,去除率缓慢下降。这是因为低负载比例下催化剂的降解性能有限,而活性炭的吸附作用占主导地位。当催化剂负载比例较高时,活性炭表面的催化剂含量相对较高,初始阶段的降解效果较好。但由于活性炭内部的部分孔径被催化剂所占据,无法与对二甲苯充分接触,发挥不了其富集作用,导致降解效率迅速降低。

    此外,在考虑负载比例时,既要充分利用O3的氧化性能,又要防止出口气体中O3浓度过高。由图4(b)可以看出,光催化剂与活性炭的比例为1∶2时,对二甲苯的转化率更高,矿化率更高,O3的排放量也更少。这说明在该比例下,催化剂充分利用了O3的氧化性能,污染物降解率有所提高。

  • 与传统的PCO工艺相比,VUV-PCO体系具有更多的降解途径。VUV(λ=185 nm) 辐射产生的高能光子可以使氧和水蒸气直接解离[26],反应见式(1)和式(2)。Ce-ZnO催化剂带隙激发产生的激发态导带电子和价带空穴,与吸附的电子供体得到受体发生电子转移反应[27-28],反应见式(3))。VUV辐射还将产生O3,并在后续降解过程中发挥重要作用[26-29],反应见式(4)~式(6)。

    VUV辐射产生的O3不仅具有一定的氧化作用,O3作为强氧化剂和良好的电子受体还可有效防止电子-空穴对的复合,从而延长光催化作用中空穴的寿命。同时,O3能在Ce-ZnO催化剂的作下,分解产生激发态的氧原子O(1D)和羟基自由基(·OH)等自由基[12, 26-30]。负载的活性炭可以将O3吸附至其表面,捕获电子形成臭氧化物离子(O3),然后形成·OH[13, 30-31],反应见式(7)~式(9)。O3分子也可以通过VUV辐射分解为O (1D) 和一个氧分子[32],反应见式(10)。以上反应过程中产生的激发态氧原子和自由基等均将增强VOC的降解效果。

    O3与活性炭之间存在的化学相互作用将生成羧基等含氧官能团。在催化剂负载过量的情况下,活性炭上活性位点被催化剂部分占据,此时官能团的迅速积累会导致活性炭表面更少的活性位点参与O3的分解(2个O3分子与表面位点相互作用以产生3个O2分子)[33-34]。而当负载量过少的情况下,虽然活性炭表面空余的活性位点相对增加,但此时Ce-ZnO的含量也相对较低,对吸附物质的催化氧化能力降低,协同效果不明显。

    在VUV-PCO体系中,Ce-ZnO/AC作为催化剂时对二甲苯的降解效率最优。由图3(a)可以看出,未负载活性炭时,VUV + Ce-ZnO对对二甲苯降解率约为70%,其中单独VUV作用时的降解率为40%,而活性炭的加入可将其提升至99%,降解效率提高了29%。同时,活性炭的加入能够产生更多的二氧化碳。如图3(b)所示,与未负载的Ce-ZnO催化剂相比,复合催化剂在降解过程中的矿化率提升了11.8%。复合催化剂的吸附催化机理可总结如下:1) 185 nm VUV产生高活性物质(如羟基自由基和O3)并对污染物产生降解作用;2)残留的对二甲苯及大量中间产物通过吸附在活性炭和Ce-ZnO表面延长接触时间,并通过光催化氧化和臭氧辅助氧化进一步降解;3)活性炭本身的催化氧化性能在分解臭氧减少二次污染的同时,产生的高活性物质也能进一步促进污染物的转化。活性炭的强吸附性能和Ce-ZnO的催化氧化性能共同形成了复合催化剂的高催化活性,两者的协同作用导致了对二甲苯的高效降解。

    利用气相色谱-质谱联用(GC-MS)对反应器出口尾气中的成分进行检测,考察活性炭的负载对对二甲苯在VUV-PCO体系下中间产物生成的影响。如图5所示,尾气中除了未参与反应的对二甲苯外,还有大量的降解中间产物。当采用Ce-ZnO/AC时,中间产物中部分大分子物质(如2,3-环氧丙酸乙酯、3-甲基-1-庚醇、壬醛和2,5 -二甲基环己烯等)几乎被完全去除,一些小分子物质的种类也有所减少。说明活性炭的存在能够减少难降解中间产物的生成,促进对二甲苯向小分子物质和二氧化碳转变,验证了矿化率的增加。

  • 许多研究探讨了催化剂的稳定性,如Pt-ZnO-HAP[35]、Si-GO/ZnO[36]和胶体Au-CeO[37]催化剂在降解气态苯时,分别在400、1 260、300 min后均保持了较好的催化活性。为评价本研究制备催化剂的稳定性,将Ce-ZnO/AC (Ce-ZnO∶AC=1∶2) 放入光催化反应器中连续运行6 h。由图6 (a)可以看出,污染物的去除率在6 h内从99%降低到97%,虽然活性炭的负载可促进中间产物的进一步转化,但仍有部分小分子有机物积聚在催化剂表面,导致其降解效率略有下降[38]。在停留时间为60 s,相对湿度为50%时,采用VUV对Ce-ZnO/AC进行再生,3 h后催化剂可恢复其原始催化活性,并且该操作可进行5个循环以上。再生过程中,VUV产生的O3等活性物质可以氧化去除催化剂表面覆盖的有机中间产物,恢复位点活性。由图6 (b)可以看出,反应器出口O3的浓度变化幅度较小,这进一步证明了该复合材料具有稳定的O3分解能力。这些结果表明,制备的负载活性炭的Ce-ZnO催化剂具有较好的稳定性,这对其潜在的工业应用具有重要意义。

  • 吸附-催化复合催化剂的催化活化需要利用紫外光,因此,催化剂的选择须考虑能量的利用情况。以降解单位污染物所需能量为指标,对不同工艺在降解过程中能耗的利用情况进行分析,计算过程见式(11)。

    式中:Cinlet为对二甲苯进口浓度,mg·m–3Coutlet为对二甲苯出口浓度,mg·m–3Q为进气流量,L·min–3P为紫外灯管功率,W;E为降解单位所需能量,Wh·mg–1

    不同处理工艺的能耗情况差异较大。在相同的紫外光源照射下,仅使用VUV处理对二甲苯时,降解1 mg对二甲苯需要(12.400 ± 0.512 4) Wh的能量;加入ZnO后,所需能量为(9.300 ± 0.131 8) Wh;使用Ce-ZnO催化剂时,需要(5.300 ± 0.393 4) Wh能量;当使用活性炭作为载体的复合催化剂时,所需能量降至(3.900 ± 0.212 8) Wh。相对于单独VUV,使用了吸附-催化复合材料后的能量利用率提升了近3倍。

  • 1) Ce-ZnO负载于活性炭上对对二甲苯的降解具有良好的促进作用。负载活性炭时,催化剂对二甲苯的去除率可达99%,相对未负载前矿化率提高了11.8%,同时提高了对真空紫外光解产生臭氧的利用效率,减少了出口气体中臭氧浓度。

    2)当Ce-ZnO与活性炭的负载比例为1∶2时,能够使吸附-催化降解的协同效果达到最大化。此时,复合催化剂具有较高的稳定性,能够在原位再生恢复其原始催化活性,在5次循环后对二甲苯的去除率仍可达到94.8%。

    3) VUV、光催化氧化和活性炭促进的臭氧辅助氧化的协同作用导致对二甲苯的高效去除。中间产物的分析表明,活性炭的负载能够促进对二甲苯转化为小分子物质,减少难降解中间产物的比例。

    4)吸附-催化降解工艺的能量利用效率较高,相对单独催化工艺能耗节省了近1/3,仅为单独VUV工艺的1/4。

参考文献 (38)

返回顶部

目录

/

返回文章
返回