[1] BHATKHANDE D S, PANGARKAR V G, BEENACKERS A A C M. Photocatalytic degradation for environmental applications: A review[J]. Journal of Chemical Technology & Biotechnology, 2002, 77(1): 102-116.
[2] TURCHI C S, OLLIS D F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. Journal of Catalysis, 1990, 122(1): 178-192. doi: 10.1016/0021-9517(90)90269-P
[3] HOUAS A, LACHHEB H, KSIBI M, et al. Photocatalytic degradation pathway of methylene blue in water[J]. Applied Catalysis B: Environmental, 2001, 31(2): 145-157. doi: 10.1016/S0926-3373(00)00276-9
[4] YUAN R S, GUAN R B, SHEN W Z, et al. Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers[J]. Journal of Colloid and Interface Science, 2005, 282(1): 87-91. doi: 10.1016/j.jcis.2004.08.143
[5] PIZARRO P, GUILLARD C, PEROL N, et al. Photocatalytic degradation of imazapyr in water: Comparison of activities of different supported and unsupported TiO2-based catalysts[J]. Catalysis Today, 2005, 101(3/4): 211-218.
[6] BOUZAIDA I, FERRONATO C, CHOVELON J, et al. Heterogeneous photocatalytic degradation of the anthraquinonic dye, acid blue 25 (AB25): A kinetic approach[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168(1/2): 23-30.
[7] ARANA J, DONA-RODRGUEZ J, RENDÓN E T, et al. TiO2 activation by using activated carbon as a support: Part Ⅱ. Photoreactivity and FTIR study[J]. Applied Catalysis B: Environmental, 2003, 44(2): 153-160. doi: 10.1016/S0926-3373(03)00075-4
[8] 周春何, 卢晗锋, 曾立, 等. 沸石分子筛和活性炭吸附/脱附甲苯性能对比[J]. 环境污染与防治, 2009, 31(4): 38-41. doi: 10.3969/j.issn.1001-3865.2009.04.011
[9] 陈培煜, 杨骥. 改性活性炭对甲胺恶臭气体吸附研究[J]. 环境污染与防治, 2019, 41(9): 1032-1036.
[10] MA J, SUI M H, CHEN Z L, et al. Degradation of refractory organic pollutants by catalytic ozonation-activated carbon and Mn-loaded activated carbon as catalysts[J]. Ozone: Science and Engineering, 2004, 26(1): 3-10. doi: 10.1080/01919510490426027
[11] XIAO P Y, WANG P, LI H M, et al. New insights into bisphenols removal by nitrogen-rich nanocarbons: Synergistic effect between adsorption and oxidative degradation[J]. Journal of Hazardous Materials, 2018, 345: 123-130. doi: 10.1016/j.jhazmat.2017.11.001
[12] HUANG H B, LIU G Y, ZHAN Y J, et al. Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts[J]. Catalysis Today, 2017, 281: 649-655. doi: 10.1016/j.cattod.2016.07.005
[13] SHU Y J, XU Y, HUANG H B, et al. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation[J]. Chemosphere, 2018, 208: 550-558. doi: 10.1016/j.chemosphere.2018.06.011
[14] GUO T, BAI Z P, WU C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation[J]. Applied Catalysis B: Environmental, 2008, 79(2): 171-178. doi: 10.1016/j.apcatb.2007.09.033
[15] MATOS J, GARCIA A, CHOVELON J M, et al. Combination of adsorption on activated carbon and oxidative photocatalysis on TiO2 for gaseous toluene remediation[J]. Open Materials Science Journal, 2010, 4: 23-25.
[16] NARAYANAN N, DEEPAK N. Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity[J]. Solid State Sciences, 2018, 78: 144-155. doi: 10.1016/j.solidstatesciences.2018.02.017
[17] HU B J, SUN Q, ZUO C Y, et al. A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water[J]. Beilstein Journal of Nanotechnology, 2019, 10(1): 1157-1165.
[18] VIJAYAPRASATH G, SOUNDARRAJAN P, RAVI G. Synthesis of ZnO nanosheets morphology by Ce doping for photocatalytic activity[J]. Journal of Electronic Materials, 2019, 48(1): 684-695. doi: 10.1007/s11664-018-6763-y
[19] WANG G W, WANG LM, WU Z Q. Synthesis of Ce-doped GN/ZnO architectures with enhanced photocatalytic activity[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(1): 28-32. doi: 10.1080/1536383X.2018.1480478
[20] ONDARTS M, OUTIN J, REINERT L, et al. Removal of ozone by activated carbons modified by oxidation treatments[J]. European Physical Journal Special Topics, 2015, 224(9): 1995-1999. doi: 10.1140/epjst/e2015-02516-6
[21] YOU J H, CHIANG H L, CHIANG P C. Comparison of adsorption characteristics for VOCs on activated carbon and oxidized activated carbon[J]. Environmental Progress, 1994, 13(1): 31-36. doi: 10.1002/ep.670130115
[22] VALDÉS H, SÁNCHEZ-POLO M, RIVERA-UTRILLA J, et al. Effect of ozone treatment on surface properties of activated carbon[J]. Langmuir, 2002, 18(6): 2111-2116. doi: 10.1021/la010920a
[23] ÁLVAREZ P M, MASA F J, JARAMILLO J, et al. Kinetics of ozone decomposition by granular activated carbon[J]. Industrial & Engineering Chemistry Research, 2008, 47(8): 2545-2553.
[24] BELTRÁN F J, RIVAS J, ÁLVAREZ P, et al. Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon[J]. Ozone: Science & Engineering, 2002, 24(4): 227-237.
[25] SÁNCHEZ-POLO M, VON GUNTEN U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters[J]. Water Research, 2005, 39(14): 3189-3198. doi: 10.1016/j.watres.2005.05.026
[26] HUANG H L, HUANG H B, ZHAN Y J, et al. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism[J]. Applied Catalysis B: Environmental, 2016, 186: 62-68. doi: 10.1016/j.apcatb.2015.12.055
[27] ALBUQUERQUE A R, BRUIX A, SAMBRANO J R, et al. Theoretical study of the stoichiometric and reduced Ce-doped TiO2 anatase (001) surfaces[J]. Journal of Physical Chemistry C, 2015, 119(9): 4805-4816. doi: 10.1021/jp5105483
[28] ZHANG P Y, LIANG F Y, YU G, et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1/2/3): 189-194.
[29] FU P F, ZHANG P Y, LI J. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+185 nm irradiation[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 220-228.
[30] SHU Y J, JI J, XU Y, et al. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation[J]. Applied Catalysis B: Environmental, 2018, 220: 78-87. doi: 10.1016/j.apcatb.2017.08.019
[31] SUZUKI H, ARAKI S, YAMAMOTO H. Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water[J]. Journal of Water Process Engineering, 2015, 7: 54-60. doi: 10.1016/j.jwpe.2015.04.011
[32] SZETO W, LI J, HUANG H, et al. VUV/TiO2 photocatalytic oxidation process of methyl orange and simultaneous utilization of the lamp-generated ozone[J]. Chemical Engineering Science, 2018, 177: 380-390. doi: 10.1016/j.ces.2017.10.008
[33] MAWHINNEY D B, YATES JR J T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K: Direct COOH formation[J]. Carbon, 2001, 39(8): 1167-1173. doi: 10.1016/S0008-6223(00)00238-4
[34] SUBRAHMANYAM C, BULUSHEV D A, KIWI-MINSKER L. Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature[J]. Applied Catalysis B: Environmental, 2005, 61(1/2): 98-106.
[35] MOHAMED R, AAZAM E. Synthesis and characterization of Pt-ZnO-hydroxyapatite nanoparticles for photocatalytic degradation of benzene under visible light[J]. Desalination and Water Treatment, 2013, 51(31/32/33): 6082-6090.
[36] JAFARI A J, KALANTARY R R, ESRAFILI A, et al. Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene[J]. Process Safety and Environmental Protection, 2018, 116: 377-387. doi: 10.1016/j.psep.2018.03.015
[37] WU H J, WANG L D, ZHANG J Q, et al. Catalytic oxidation of benzene, toluene and p-xylene over colloidal gold supported on zinc oxide catalyst[J]. Catalysis Communications, 2011, 12(10): 859-865. doi: 10.1016/j.catcom.2011.02.012
[38] OGATA A, ITO D, MIZUNO K, et al. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor[J]. Applied Catalysis A: General, 2002, 236(1/2): 9-15.