-
合流制管网溢流(combined sewer overflows, CSOs)污染是地表水体突出的瞬时污染源,由于合流制管网部分位于城市河段的亲水景观区域,因此,对亲水空间的水环境质量影响较大,CSOs事件的发生往往会引发突出的环境问题和公共安全风险[1-3]。CSOs污水水质、水量动态过程的特征较为复杂[4-8],受到降水径流、生活污水、管道沉积物等诸多因素的影响,因此,其与降雨强度、降雨历时及晴天累计数等密切相关[6, 9-10]。
目前,有研究者[11-13]采用决策树、聚类分析、回归模型等统计分析方法对溢流事件进行了预测,包括溢流次数和溢流持续时间,但这些研究均没有给出具体的CSOs污染物浓度和污染物的排放量。还有一些研究者[10, 14]通过PCA (主成分分析)、相关性分析和回归模型等统计学方法探究了CSOs污染特征的动态变化,发现CSOs污染特征与降雨特征(如旱天天数、累积降雨量、最大降雨强度等因素)有一定的相关性,但对主要影响因素说明相对模糊。
与其他统计分析方法相比,条件回归树具有以下的优势[15]:不需要对变量进行任何特定的约束假设;能找到非线性关系并计算出变量的阈值;能挑选出对高维数据的目标变量影响最大的变量及其组合变量来解释并预测目标变量。
本研究针对北运河流域合流制管网溢流污染现状及其控制需求,选择北运河(北京段)流域沙河水库为研究对象,通过对典型溢流事件的连续监测,考察合流制管网溢流污染的水质、水量特征,并采用条件回归树分析方法,明确沙河流域CSOs污染特性的主要降雨影响因素,为北运河流域合流制管网溢流污染控制提供参考。
降雨特征对合流制管网溢流污染的影响
Effect of rainfall on the pollution characteristics of combined sewer overflows
-
摘要: 为明确北运河流域合流制管网溢流污染特性的影响因素,选取上游城乡结合部的合流制溢流口为对象,基于现场连续监测和采样调查结果,采用条件回归树方法分析了合流制管网溢流污染的水质水量等参数与降雨特征之间的响应关系,并通过分析典型强降雨形成的溢流污染过程,验证了条件回归树预测的阈值。结果表明:沙河库区合流制管网溢流的污水流量与降雨特征密切相关,次降雨量在15~19 mm时发生溢流,溢流事件和溢流量高峰滞后于降雨强度高峰15~60 min,初期溢流污染物浓度高峰在持续(45±5) min后达到稳定水平;次降雨量显著影响溢流的流量和浊度(P<0.001),次降雨量(P=0.029)、平均降雨强度(P<0.001)均显著影响溢流COD。研究结果可为北运河消减合流制管网溢流污染提供参考。Abstract: To determine the influence factors of pollution characteristics in combined sewer overflows in North Canal basin, one outlet of the combined sewer in the urban-rural junction area of the upstream was selected. The conditional regression tree method was implemented in this study to analyze the relationship between the pollution indicators such as water quality and overflow quantity and the rainfall characteristics, based on results of continuous monitoring and sampling surveys. Moreover, the predicted threshold of the conditional regression tree was verified by analyzing the typical process of the overflow pollution caused by heavy rainfall. Results showed that the overflow flux of the CSOs was significantly correlated with the rainfall in Shahe reservoir area. The overflows occurred at the overall rainfall of 15~19 mm per event. The overflows and its peak flux lagged behind the peaks of rainfall intensity for 15~60 min, the peak concentrations of pollutants in the initial CSOs reached stable after its lasting for (45±5) min. The cumulative rainfall per event significantly affected the quantity and turbidity of the CSOs (P<0.001). The cumulative rainfall per event (P=0.029) and average rainfall intensity (P<0.001) significantly affected the COD values of the CSOs. The research results can provide a reference for the North Canal to reduce the combined sewer overflows pollution.
-
Key words:
- combined sewer overflows /
- conditional regression tree /
- rainfall characteristics /
- COD /
- turbidity
-
表 1 2018—2019年的5场降雨特征
Table 1. Five rainfall characteristics from 2018 to 2019
编号 采样日期 次降雨
量/mm降雨历时/h 最大降雨强度/
(mm·(10 min)−1)平均降雨
强度/(mm·h−1)干旱时间/d 降雨类型
(以24 h计)[19]A 2018-07-03 16.6 8.2 2.3 2.0 2 中雨 B 2018-07-16 21.8 5.5 5.4 4.0 5 中雨 C 2018-08-08 75.2 5.3 13.4 14.2 9 暴雨 D 2019-04-24 21.4 15 0.5 1.4 5 中雨 E 2019-07-22 53.4 6.5 7.2 8.2 23 暴雨 表 2 5场降雨事件的溢流污染特征
Table 2. Pollution characteristics of CSOs during 5 rainfall events
编号 溢流历时/
min溢流量平均值/
(m3·h−1)溢流总量/
m3溢流量峰值/
(m3·h−1)COD均值/
(mg·L−1)COD峰值/
(mg·L−1)COD溢流
总负荷/kg浊度均值/
NTU浊度峰值/
NTUA 90 46 69.0 79.4 46.4 83 3.2 60 221 B 2 910 140.8 6 828.6 376 89.6 445 612.1 62 150 C 1 020 121.5 2 066.3 351 112.7 420 232.9 71 336 D 410 142.2 971.7 280 371.8 1 120 361.3 117.3 448 E 1 040 198.9 3 448.7 1 011 173.1 1 718 597.0 56.9 984 注:B组溢流事件由3次降雨引起,第1次降雨量为21.8 mm,第2次降雨量为6.2 mm,第3次降雨量为9.2 mm;3次降雨间隔时间为690 min和760 min。 -
[1] LYANDRES O, WELCH L. Reducing combined sewer overflows in the Great Lakes: Why investing in infrastructure is critical to improving water quality[Z]. Alliance for the Great Lakes, 2012. [2] FU X, HOPTON M E, WANG X, et al. A runoff trading system to meet watershed-level stormwater reduction goals with parcel-level green infrastructure installation[J]. Science of the Total Environment, 2019, 689: 1149-1159. doi: 10.1016/j.scitotenv.2019.06.439 [3] FU X, GODDARD H, WANG X, et al. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs)[J]. Journal of Environmental Management, 2019, 236: 571-580. doi: 10.1016/j.jenvman.2018.12.089 [4] SOONTHORNNONDA P, CHRISTENSEN E R. Source apportionment of pollutants and flows of combined sewer wastewater[J]. Water Research, 2008, 42(8/9): 1989-1998. [5] SZTRUHÁR D, SOKÁČ M, HOLIENČIN A, et al. Comprehensive assessment of combined sewer overflows in Slovakia[J]. Urban Water, 2002, 4(3): 237-243. doi: 10.1016/S1462-0758(02)00008-0 [6] 李海燕, 徐尚玲, 黄延, 等. 合流制排水管道雨季出流污染负荷研究[J]. 环境科学学报, 2013, 33(9): 2522-2530. [7] 赵磊, 杨逢乐, 王俊松, 等. 合流制排水系统降雨径流污染物的特性及来源[J]. 环境科学学报, 2008, 28(8): 1561-1570. doi: 10.3321/j.issn:0253-2468.2008.08.011 [8] JALLIFFIER V I, LECONTE R, HUARINGA A U, et al. Modelling the impacts of global change on concentrations of Escherichia coli in an urban river[J]. Advances in Water Resources, 2017, 108: 450-460. doi: 10.1016/j.advwatres.2016.10.001 [9] LAWLER D M, PETTS G E, FOSTER I D L, et al. Turbidity dynamics during spring storm events in an urban headwater river system: The upper tame, West Midlands, UK[J]. Science of the Total Environment, 2006, 360(1/2/3): 109-126. [10] MÉTADIER M, BERTRAND K J L. The use of long-term on-line turbidity measurements for the calculation of urban stormwater pollutant concentrations, loads, pollutographs and intra-event fluxes[J]. Water Research, 2012, 46(20): 6836-6856. doi: 10.1016/j.watres.2011.12.030 [11] MAILHOT A, TALBOT G, LAVALLÉE B. Relationships between rainfall and combined sewer overflow (CSO) occurrences[J]. Journal of Hydrology, 2015, 523: 602-609. doi: 10.1016/j.jhydrol.2015.01.063 [12] MONTSERRAT A, BOSCH L, KISER M A, et al. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems[J]. Science of the Total Environment, 2015, 505: 1053-1061. doi: 10.1016/j.scitotenv.2014.10.087 [13] YU Y, KOJIMA K, AN K, et al. Cluster analysis for characterization of rainfalls and CSO behaviours in an urban drainage area of Tokyo[J]. Water Science and Technology, 2013, 68(3): 544-551. doi: 10.2166/wst.2013.253 [14] LACOUR C, JOANNIS C, GROMAIRE M C, et al. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events[J]. Water Science and Technology, 2009, 59(8): 1471-1478. [15] BERSINGER T, BAREILLE G, PIGOT T, et al. Online monitoring and conditional regression tree test: Useful tools for a better understanding of combined sewer network behavior[J]. Science of the Total Environment, 2018, 625: 336-343. doi: 10.1016/j.scitotenv.2017.12.239 [16] 张伟, 张洪, 单保庆. 北运河源头区沙河水库沉积物重金属污染特征研究[J]. 环境科学, 2012, 33(12): 4284-4290. [17] 刘博, 徐宗学. 基于SWAT模型的北京沙河水库流域非点源污染模拟[J]. 农业工程学报, 2011, 27(5): 52-61. doi: 10.3969/j.issn.1002-6819.2011.05.009 [18] 李林, 张子曰, 范雪波, 等. 基于短时强降水特征的北京暴雨蓝色预警指标研究[J]. 气候与环境研究, 2018, 23(3): 268-274. [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会国家气象中心. 降水量等级: GB/T 28592-2012[S]. 北京: 中国标准出版社, 2012. [20] GROMAIRE M C, GARNAUD S, SAAD M, et al. Contribution of different sources to the pollution of wet weather flows in combined sewers[J]. Water Research, 2001, 35(2): 521-533. doi: 10.1016/S0043-1354(00)00261-X [21] 翟世奎, 张怀静, 范德江. 长江口及其邻近海域悬浮物浓度和浊度的对应关系[J]. 环境科学学报, 2005, 25(5): 693-699. doi: 10.3321/j.issn:0253-2468.2005.05.022 [22] BERSINGER T, LÉHECHO I, BAREILLE G, et al. Assessment of erosion and sedimentation dynamic in a combined sewer network using online turbidity monitoring[J]. Water Science and Technology, 2015, 72(8): 1375-1382. doi: 10.2166/wst.2015.350 [23] 水利部. 堰槽测流规范: SL 24-1991[S]. 北京: 中国水利水电出版社, 1991. [24] 国家环境保护总局. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. [25] SANDOVAL S, TORRES A, PAWLOWSKY R E, et al. The evaluation of rainfall influence on combined sewer overflows characteristics: The Berlin case study[J]. Water Science and Technology, 2013, 68(12): 2683-2690. doi: 10.2166/wst.2013.524 [26] 熊丽君, 黄飞, 徐祖信, 等. 基于 SWMM 模型的城市排水区域降雨及地表产流特征[J]. 应用生态学报, 2016, 27(11): 3659-3666. [27] GASPERI J, GROMAIRE M C, KAFI M, et al. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems[J]. Water Research, 2010, 44(20): 5875-5886. doi: 10.1016/j.watres.2010.07.008 [28] HANNOUCHE A, CHEBBO G, JOANNIS C. Assessment of the contribution of sewer deposits to suspended solids loads in combined sewer systems during rain events[J]. Environmental Science and Pollution Research, 2014, 21(8): 5311-5317. doi: 10.1007/s11356-013-2395-1