-
磺胺甲恶唑(sulfamethoxazole, SMX)作为一种广谱抗生素,由于其价格低廉、性质稳定、抗菌谱广等优点而被广泛应用于医疗、养殖等行业[1-2]。然而,SMX在环境中不易被降解,传统的城市污水处理厂对SMX的去除率仅为20%~30%[3],这使得其在城市污水处理厂的出水中可检测出较高的浓度[4-5]。此外,对我国自然水体中158种药品与护理品污染物(PPCPs)的监测结果表明,SMX是检出率最高的污染物[6]。环境中的SMX不仅对植物生长具有不利影响,也可对人体健康造成危害[7-8]。因此,需要研究高效的高级氧化方法以强化SMX去除。
非均相类芬顿催化氧化技术因其具有适用pH范围宽、催化剂可循环使用、二次污染少等优点近年来备受关注[9-10]。目前,研究的非均相类芬顿催化剂种类较多,Cu、Mn、Co、Ti、Ni等金属均可用于合成非均相类芬顿催化剂,在处理难降解有机物污染物的过程中表现出较好的氧化分解能力[10]。如采用膜分散法通过耦合沉淀反应合成的Cu2O催化剂,在其投加量为0.5 g·L−1、30%的H2O2投加量约49 mg·L−1时,4 min内可使15 mg·L−1罗丹明B脱色率达到100%[11]。水热法合成的γ-MnO2可在投加量为0.1 g·L−1、H2O2浓度为49.3 mg·L−1条件下,20 min内实现罗丹明B的完全脱色[12]。为了提高非均相催化剂的性能,常利用多种不同价态和氧化还原能力的金属离子,制备合成新型的类芬顿催化剂。如固定在有序介孔Si上的Fe-Cu双金属催化剂,在其投加量为1 g·L−1、2 000 mg·L−1 H2O2和中性pH条件下,30 mg·L−1氧氟沙星360 min的去除率达70%以上[13]。采用溶胶凝胶法合成的LaFeO3催化剂,在其投加量为1.4 g·L−1、782 mg·L−1 H2O2和pH=7.14条件下,3 mg·L−1的SMX 120 min的去除率达90%[14]。目前,利用非均相类芬顿反应降解SMX的研究虽有所报道[14-15],但仍需要合成具有高催化活性、强稳定性及易分离回收的类芬顿催化剂,以实现对SMX的高效去除。
本研究采用原位溶剂热生长法合成了Cu-Co非均相类芬顿催化剂,采用SEM、XRD等方法对催化剂的结构和形态进行了表征,探讨了不同反应条件对SMX降解率的影响,分析了Cu-Co双金属氢氧化物(CuCo-BH)非均相类芬顿催化剂的催化机制,以期为实际废水中SMX的类芬顿催化降解提供理论基础。
Cu-Co双金属氢氧化物非均相类芬顿催化剂去除磺胺甲恶唑
Degradation of sulfamethoxazole using the heterogeneous Fenton-like catalyst of Cu-Co bimetallic hydroxide
-
摘要: 作为一种广谱性抗生素,磺胺甲恶唑(SMX)在常规城市污水生物处理过程中去除率较低,仍需要发展高效的去除方法。为此,通过原位溶剂热生长法,在碳毡上合成Cu-Co双金属氢氧化物(CuCo-BH)非均相催化剂,且在此基础上开展了类芬顿催化剂催化降解SMX的研究。对催化剂的SEM、TEM、XPS和XRD表征结果表明,CuCo-BH在碳毡上异向生长并呈棒状结构,宽度为40~115 nm,最大长度可达650 nm。在生长温度为105 ℃、反应时间为5 h的条件下,制备得到性能较好的CuCo-BH催化剂,在pH=7、H2O2=50 mmol·L−1、反应时间60 min的条件下,对初始浓度为50 mg·L−1的SMX去除率达到100%;在SMX=3 mg·L−1、H2O2=15 mmol·L−1、pH=7、反应时间为30 min的条件下,催化剂重复使用5次,SMX的去除率仍高于94%。·OH和
${\rm{O}}_2^{ \cdot - }$ 的淬灭实验以及电子顺磁共振波谱仪(ESR)的测定分析结果表明,·OH对SMX的降解起到了关键的作用。以上研究结果可为SMX在污水深度处理中的高效去除提供一种新的方法。Abstract: Sulfamethoxazole (SMX) is a kind of broad-spectrum antibiotic. Its removal rate is low in the conventional biological treatment of municipal wastewater, and thus it is necessary to develop efficient methods for SMX removal. In this study, Cu-Co bimetal hydroxide heterogeneous (CuCo-BH) catalyst was synthesized on carbon felt by in-situ solvothermal growth method, and then was applied in the heterogeneous Fenton-like process for SMX degradation. The results of SEM, TEM, XPS and XRD showed that the catalyst anisotropically grew on the carbon felt and developed a rod-like structure with the width of 40~115 nm and the maximum length of 650 nm. The CuCo-BH catalyst with good performance was synthesized under the conditions of growth temperature 105 ℃ and growth time 5 h. At pH=7, H2O2=50 mmol·L−1, reaction time of 60 min and initial SMX concentration of 50 mg·L−1, the removal rate of SMX reached 100% using our catalyst. The SMX removal maintained above 94% after the catalyst was recycled for 5 times under the conditions of SMX=3 mg·L−1, H2O2=15 mmol·L−1, pH=7, and reaction time of 30 min. The quenching experiments of ·OH and${\rm{O}}_2^{ \cdot - }$ , and electron paramagnetic resonance spectrometer measurements showed that hydroxyl radical played a key role in the degradation of SMX. This study provides a new method for the efficient SMX removal in advanced wastewater treatment. -
-
[1] WANG J L, ZHUAN R, CHU L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview[J]. Science of the Total Environment, 2019, 646: 1385-1397. doi: 10.1016/j.scitotenv.2018.07.415 [2] WANG L, LIU Y, MA J, et al. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell[J]. Water Research, 2016, 88: 322-328. doi: 10.1016/j.watres.2015.10.030 [3] GUO W Q, YIN R L, ZHOU X J, et al. Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways[J]. Ultrasonics Sonochemistry, 2015, 22: 182-187. doi: 10.1016/j.ultsonch.2014.07.008 [4] BATT A L, BRUCE I B, AGA D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2): 295-302. doi: 10.1016/j.envpol.2005.10.010 [5] CLARA M, STRENN B, GANS O, et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Research, 2005, 39(19): 4797-4807. doi: 10.1016/j.watres.2005.09.015 [6] 桑稳姣, 李志轩, 黄明杰. 羟胺强化过渡金属活化过硫酸盐降解磺胺甲恶唑[J]. 环境科学学报, 2019, 39(6): 1772-1780. [7] HAPESHI E, ACHILLEOS A, VASQUEZ M I, et al. Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions[J]. Water Research, 2010, 44(6): 1737-1746. doi: 10.1016/j.watres.2009.11.044 [8] ZHENG Q, ZHANG R J, WANG Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33. doi: 10.1016/j.marenvres.2012.03.007 [9] RACHE M L, GARCíA A R, ZEA H R, et al. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst: Kinetics with a model based on the Fermi’s equation[J]. Applied Catalysis B: Environmental, 2014, 146: 192-200. doi: 10.1016/j.apcatb.2013.04.028 [10] PEREIRA M C, OLIVEIRA L C A, MURAD E. Iron oxide catalysts: Fenton and Fenton-like reactions: A review[J]. Clay Minerals, 2012, 47(3): 285-302. doi: 10.1180/claymin.2012.047.3.01 [11] 吴中杰, 刘国强, 张燕, 等. 类芬顿法脱除高盐废水中有机物工艺研究[J]. 化学工程, 2017, 45(5): 15-18. doi: 10.3969/j.issn.1005-9954.2017.05.004 [12] KIM E J, OH D, LEE C S, et al. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior[J]. Catalysis Today, 2017, 282: 71-76. doi: 10.1016/j.cattod.2016.03.034 [13] ZHENG C M, YANG C W, CHENG X Z, et al. Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon[J]. Separation and Purification Technology, 2017, 189: 357-365. doi: 10.1016/j.seppur.2017.08.015 [14] NIE Y L, ZHANG L L, LI Y Y, et al. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2[J]. Journal of Hazardous Materials, 2015, 294: 195-200. doi: 10.1016/j.jhazmat.2015.03.065 [15] 陈苗, 胡春华, 郭昌胜, 等. 磁性Fe3O4纳米颗粒的制备及其催化降解水中磺胺甲恶唑研究[J]. 水资源与水工程学报, 2018, 29(5): 46-52. [16] GANIYU S O, HUONG LE T X, BECHELANY M, et al. A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process[J]. Journal of Materials Chemistry A, 2017, 5(7): 3655-3666. doi: 10.1039/C6TA09100H [17] HAN X Y, FANG K G, ZHOU J, et al. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides[J]. Journal of Colloid and Interface Science, 2016, 470: 162-171. doi: 10.1016/j.jcis.2015.09.062 [18] NAGARAJU G, RAJU G S R, KO Y H, et al. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors[J]. Nanoscale, 2016, 8(2): 812-825. doi: 10.1039/C5NR05643H [19] CHEN H, WANG J. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites[J]. Chemosphere, 2019, 234: 14-24. doi: 10.1016/j.chemosphere.2019.06.014 [20] GUO X X, HU T T, MENG B, et al. Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: Defects facilitating hydroxyl radicals generation[J]. Applied Catalysis B: Environmental, 2020, 260: 118157. doi: 10.1016/j.apcatb.2019.118157 [21] ZHANG H, LI G, DENG L, et al. Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism[J]. Journal of Colloid and Interface Science, 2019, 543: 183-191. doi: 10.1016/j.jcis.2019.02.059 [22] MILH H, SCHOENAERS B, STESMANS A, et al. Degradation of sulfamethoxazole by heat-activated persulfate oxidation: Elucidation of the degradation mechanism and influence of process parameters[J]. Chemical Engineering Journal, 2020, 379: 122234. doi: 10.1016/j.cej.2019.122234 [23] MALESIC-ELEFTHERIADOU N, EVGENIDOU E N, KYZAS G Z, et al. Removal of antibiotics in aqueous media by using new synthesized bio-based poly(ethylene terephthalate)-TiO2 photocatalysts[J]. Chemosphere, 2019, 234: 746-755. doi: 10.1016/j.chemosphere.2019.05.239 [24] SONG Y L, QI J Y, TIAN J Y, et al. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2018, 341: 547-555. doi: 10.1016/j.cej.2018.02.063 [25] WANG H, SU Y, ZHAO H X, et al. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4[J]. Environmental Science & Technology, 2014, 48(20): 11984-11990. [26] ZHANG H, ZHAO L X, GENG F L, et al. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation[J]. Applied Catalysis B: Environmental, 2016, 180: 656-562. doi: 10.1016/j.apcatb.2015.06.056 [27] HUANG H W, HAN X, LI X W, et al. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 482-492. [28] 戴慧旺, 陈建新, 苗笑增, 等. 醇类对UV-Fenton体系羟基自由基淬灭效率的影响[J]. 中国环境科学, 2018, 38(1): 202-209. doi: 10.3969/j.issn.1000-6923.2018.01.024 [29] DUAN X, EVANS D G. Layered Double Hydroxides[M]. Berlin: Springer, 2006. [30] ZHANG F Z, ZHANG Y, YUE C L, et al. Facile fabrication of spherical architecture of Ni/Al layered double hydroxide based on in situ transformation mechanism[J]. AIChE Journal, 2014, 60(12): 4027-4036. doi: 10.1002/aic.14609 [31] HONG W, WANG J Q, NIU L Y, et al. Controllable synthesis of CoAl LDH@Ni(OH)2 nanosheet arrays as binder-free electrode for supercapacitor applications[J]. Journal of Alloys and Compounds, 2014, 608: 297-303. doi: 10.1016/j.jallcom.2014.04.131 [32] WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973. doi: 10.1016/j.seppur.2019.115973