[1] |
WANG J L, ZHUAN R, CHU L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview[J]. Science of the Total Environment, 2019, 646: 1385-1397. doi: 10.1016/j.scitotenv.2018.07.415
|
[2] |
WANG L, LIU Y, MA J, et al. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell[J]. Water Research, 2016, 88: 322-328. doi: 10.1016/j.watres.2015.10.030
|
[3] |
GUO W Q, YIN R L, ZHOU X J, et al. Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways[J]. Ultrasonics Sonochemistry, 2015, 22: 182-187. doi: 10.1016/j.ultsonch.2014.07.008
|
[4] |
BATT A L, BRUCE I B, AGA D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges[J]. Environmental Pollution, 2006, 142(2): 295-302. doi: 10.1016/j.envpol.2005.10.010
|
[5] |
CLARA M, STRENN B, GANS O, et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J]. Water Research, 2005, 39(19): 4797-4807. doi: 10.1016/j.watres.2005.09.015
|
[6] |
桑稳姣, 李志轩, 黄明杰. 羟胺强化过渡金属活化过硫酸盐降解磺胺甲恶唑[J]. 环境科学学报, 2019, 39(6): 1772-1780.
|
[7] |
HAPESHI E, ACHILLEOS A, VASQUEZ M I, et al. Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions[J]. Water Research, 2010, 44(6): 1737-1746. doi: 10.1016/j.watres.2009.11.044
|
[8] |
ZHENG Q, ZHANG R J, WANG Y H, et al. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities[J]. Marine Environmental Research, 2012, 78: 26-33. doi: 10.1016/j.marenvres.2012.03.007
|
[9] |
RACHE M L, GARCíA A R, ZEA H R, et al. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst: Kinetics with a model based on the Fermi’s equation[J]. Applied Catalysis B: Environmental, 2014, 146: 192-200. doi: 10.1016/j.apcatb.2013.04.028
|
[10] |
PEREIRA M C, OLIVEIRA L C A, MURAD E. Iron oxide catalysts: Fenton and Fenton-like reactions: A review[J]. Clay Minerals, 2012, 47(3): 285-302. doi: 10.1180/claymin.2012.047.3.01
|
[11] |
吴中杰, 刘国强, 张燕, 等. 类芬顿法脱除高盐废水中有机物工艺研究[J]. 化学工程, 2017, 45(5): 15-18. doi: 10.3969/j.issn.1005-9954.2017.05.004
|
[12] |
KIM E J, OH D, LEE C S, et al. Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior[J]. Catalysis Today, 2017, 282: 71-76. doi: 10.1016/j.cattod.2016.03.034
|
[13] |
ZHENG C M, YANG C W, CHENG X Z, et al. Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon[J]. Separation and Purification Technology, 2017, 189: 357-365. doi: 10.1016/j.seppur.2017.08.015
|
[14] |
NIE Y L, ZHANG L L, LI Y Y, et al. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2[J]. Journal of Hazardous Materials, 2015, 294: 195-200. doi: 10.1016/j.jhazmat.2015.03.065
|
[15] |
陈苗, 胡春华, 郭昌胜, 等. 磁性Fe3O4纳米颗粒的制备及其催化降解水中磺胺甲恶唑研究[J]. 水资源与水工程学报, 2018, 29(5): 46-52.
|
[16] |
GANIYU S O, HUONG LE T X, BECHELANY M, et al. A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process[J]. Journal of Materials Chemistry A, 2017, 5(7): 3655-3666. doi: 10.1039/C6TA09100H
|
[17] |
HAN X Y, FANG K G, ZHOU J, et al. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides[J]. Journal of Colloid and Interface Science, 2016, 470: 162-171. doi: 10.1016/j.jcis.2015.09.062
|
[18] |
NAGARAJU G, RAJU G S R, KO Y H, et al. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors[J]. Nanoscale, 2016, 8(2): 812-825. doi: 10.1039/C5NR05643H
|
[19] |
CHEN H, WANG J. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites[J]. Chemosphere, 2019, 234: 14-24. doi: 10.1016/j.chemosphere.2019.06.014
|
[20] |
GUO X X, HU T T, MENG B, et al. Catalytic degradation of anthraquinones-containing H2O2 production effluent over layered Co-Cu hydroxides: Defects facilitating hydroxyl radicals generation[J]. Applied Catalysis B: Environmental, 2020, 260: 118157. doi: 10.1016/j.apcatb.2019.118157
|
[21] |
ZHANG H, LI G, DENG L, et al. Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism[J]. Journal of Colloid and Interface Science, 2019, 543: 183-191. doi: 10.1016/j.jcis.2019.02.059
|
[22] |
MILH H, SCHOENAERS B, STESMANS A, et al. Degradation of sulfamethoxazole by heat-activated persulfate oxidation: Elucidation of the degradation mechanism and influence of process parameters[J]. Chemical Engineering Journal, 2020, 379: 122234. doi: 10.1016/j.cej.2019.122234
|
[23] |
MALESIC-ELEFTHERIADOU N, EVGENIDOU E N, KYZAS G Z, et al. Removal of antibiotics in aqueous media by using new synthesized bio-based poly(ethylene terephthalate)-TiO2 photocatalysts[J]. Chemosphere, 2019, 234: 746-755. doi: 10.1016/j.chemosphere.2019.05.239
|
[24] |
SONG Y L, QI J Y, TIAN J Y, et al. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2018, 341: 547-555. doi: 10.1016/j.cej.2018.02.063
|
[25] |
WANG H, SU Y, ZHAO H X, et al. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4[J]. Environmental Science & Technology, 2014, 48(20): 11984-11990.
|
[26] |
ZHANG H, ZHAO L X, GENG F L, et al. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation[J]. Applied Catalysis B: Environmental, 2016, 180: 656-562. doi: 10.1016/j.apcatb.2015.06.056
|
[27] |
HUANG H W, HAN X, LI X W, et al. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 482-492.
|
[28] |
戴慧旺, 陈建新, 苗笑增, 等. 醇类对UV-Fenton体系羟基自由基淬灭效率的影响[J]. 中国环境科学, 2018, 38(1): 202-209. doi: 10.3969/j.issn.1000-6923.2018.01.024
|
[29] |
DUAN X, EVANS D G. Layered Double Hydroxides[M]. Berlin: Springer, 2006.
|
[30] |
ZHANG F Z, ZHANG Y, YUE C L, et al. Facile fabrication of spherical architecture of Ni/Al layered double hydroxide based on in situ transformation mechanism[J]. AIChE Journal, 2014, 60(12): 4027-4036. doi: 10.1002/aic.14609
|
[31] |
HONG W, WANG J Q, NIU L Y, et al. Controllable synthesis of CoAl LDH@Ni(OH)2 nanosheet arrays as binder-free electrode for supercapacitor applications[J]. Journal of Alloys and Compounds, 2014, 608: 297-303. doi: 10.1016/j.jallcom.2014.04.131
|
[32] |
WANG S X, WANG H B, LIU Y Q, et al. Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid[J]. Separation and Purification Technology, 2020, 233: 115973. doi: 10.1016/j.seppur.2019.115973
|