-
湖库是我国许多城市的重要饮用水水源地[1]。然而,我国35个城市水源水库中有80%的水体存在饮用水嗅味问题[2],其中由致嗅化合物2-甲基异莰醇(2-methylisoborneol,2-MIB)导致的水体土霉味问题居多[3-7]。由于该物质嗅阈值极低[5](4~16 ng·L−1),且很难通过常规水处理工艺去除[8],饮用水中残留的痕量2-MIB物质容易引发消费者对水质的担忧,威胁城市供水安全[4]。水源地嗅味问题已经成为我国供水行业中重点关注的问题之一[9]。
2-MIB主要由丝状蓝藻生长代谢产生,这类蓝藻包括颤藻属(Oscillatoria)、席藻属(Phormidium)、浮颤藻属(Planktothrix)以及伪鱼腥藻属(Pseudanabaena)等[9]。丝状蓝藻导致的2-MIB嗅味问题可最早追溯到1983年,由于水源水库底泥附着生长的颤藻引发美国加利福尼亚州3个供水系统出现嗅味问题[10];1991年,MARTIN等[11]在密西西比某池塘中采集到一株产2-MIB的颤藻;1998年,日本学者SUGIURA等[12]在Kasumigaura湖中分离出4株丝状产嗅蓝藻,包括2株席藻、1株颤藻和1株鞘丝藻,发现这些藻种生物量与水体土霉味之间存在正相关关系。
近10年来,我国关于水源地嗅味问题的报道越来越多。北京密云水库每年9—10月局部区域出现浮颤藻生长导致水体嗅味问题[7];上海市新建水源地青草沙水库由于丝状蓝藻爆发导致季节性嗅味问题[13];天津于桥水库、苏州东太湖湖滨水库、上海金泽水库及银川某化工园区水源水库等均存在由于不同种属的丝状产嗅蓝藻生长或爆发导致的嗅味问题[14]。
大部分水源地中2-MIB由丝状蓝藻产生,由于丝状蓝藻种类较多、形态相近,不同藻种具有不同的产2-MIB特征,甚至同一藻种在不同外部环境条件下也存在产嗅差异。传统方法主要依托显微镜镜检通过藻细胞形态进行藻种计数。然而,从细胞形态上无法区分产嗅丝状藻种与非产嗅丝状藻种,因此,无法特异性检测水体中的产嗅藻;此外显微镜镜检前处理耗时长,检测效率低,准确度与精确度较低[7]。致嗅物质2-MIB可基于气相色谱-质谱联用(GC-MS)方法[15]分析,但因仪器昂贵、操作要求高、运行维护成本高,大部分水源管理机构不具备该条件,且该方法只能测定水样中已产生的2-MIB物质浓度,无法提前预警,也不能鉴别产生来源。因此,有必要构建一种能特异性检测水体2-MIB产生潜力的方法。
由于丝状藻代谢产生2-MIB受相关功能基因控制,可通过实时荧光定量PCR(real-time quantitative polymerase chain reaction, qPCR)方法构建特异性检测2-MIB合成功能基因的方法。关于2-MIB的合成途径最初在放线菌中被发现[16],主要由SCO7701基因与SCO7700基因调控;随后,GIGLIO等[17]发现蓝藻中2-MIB的生物合成机制为GPP的甲基化和甲基GPP的环化反应,分别由GPPMT基因和2-MIBS基因调控。根据序列相似性分析,蓝藻和放线菌的2-MIB相关基因具有相对较高的相似度和同源性[18]。
本研究通过设计针对蓝藻中2-MIB功能基因的特异性引物,构建实时定量PCR方法,并采用实际水体检验方法的可行性,实现水源中丝状蓝藻的致嗅功能基因定量检测,进而评估水体产嗅潜力与产嗅风险,为水源嗅味问题的监测与预警提供实时、快速、科学的方法。
基于荧光定量PCR技术构建水源地典型致嗅物质2-甲基异莰醇的评估方法及其应用
Evaluation of typical odorant 2-methylisoborneol based on real time qPCR in source water and its application
-
摘要: 我国地表水源中由丝状蓝藻代谢产生2-甲基异莰醇(2-MIB)导致的嗅味问题十分普遍。由于传统显微镜检测方法无法鉴别产嗅藻种,不能满足水源水质管理要求,故有必要构建能特异性表征水体产嗅潜力的检测方法。由于丝状藻代谢产生2-MIB主要受其合成功能基因调控,设计了2-MIB功能基因引物,经引物特异性检验及PCR条件优化后,构建了基于2-MIB功能基因的定量PCR方法,并采用实际环境样品进行测试与验证。结果表明:引物特异性良好,定量PCR方法能有效检测2-MIB功能基因,并绘制了标准曲线,得出检测限为8.44×102 copies·L−1;实际样品测试结果显示其2-MIB功能基因浓度在2.09×107~1.94×1010 copies·L−1范围内,与基于仪器分析方法测定的2-MIB浓度符合线性关系(R2=0.63,P<0.01),表明定量方法可行。该方法具有灵敏性高、特异性好的特点,能特异性检测产嗅基因,可应用于水源地中产嗅潜力评估与预警。Abstract: Two-methylisoborneol (2-MIB) is a typical secondary metabolite released from cyanobacteria which causes off-flavor odor problem in surface water across China. Microscopy is the traditional method to identify such cyanobacteria. However, merely it is troublesome to distinguish between 2-MIB producers and non-producers by morphological structure and cannot meet the requirement of the source water quality management. It is necessary to build the test method which can specifically characterize the odor-producing capacity of waterbody. Due to the functional gene regulation for 2-MIB yield from cyanobacteria, the primers of 2-MIB function gene were designed and its specificity test was performed, then the PCR conditions were optimized. Real-time quantitative polymerase chain reaction (qPCR) can be an alternative method to evaluate 2-MIB syntheses which is controlled by 2-MIB functional gene. Here, 2-MIB identification primers (MIBF/MIBR) have been designed and tested with field samples. A good standard curve was established, R2=0.999 5, P<0.01, and the detection limit was 8.44×102 copies·L−1. The concentrations of 2-MIB gene of field samples were between 2.09×107 copies·L−1 to 1.94×1010 copies·L−1, which were significantly conformity with 2-MIB concentrations measured by GC-MS (R2=0.63, P<0.01). The high sensitivity and specificity of this qPCR-based method suggests that it can effectively evaluate the risk of 2-MIB occurrence and able to monitor source water quality management.
-
表 1 2-MIB功能基因引物
Table 1. Primers of 2-MIB function gene
序号 名称 引物序列(5′~3′) FACHB-1375 FACHB-1277 阴性对照 PCR产物长度/bp 来源 1 MIB3313F CTCTACTGCCCCATTACCGAGCGA + + − 913 [19] MIB4226R GCCATTCAAACCCGCCGCCCATCCA 2 MIB3324F CATTACCGAGCGATTCAACGAGC + + − 726 [19] MIB4050R CCGCAATCTGTAGCACCATGTTGA 3 MIBS-RTF CGCTCGCTTGTGAGTGAGATAG − − − 未检测 [19] MIBS-RTR GGCAGTAGAGTGGTGAGGCAGTT 4 MIBF GACCCAKMTCGGCTGYTGAT + + − 389 本研究 MIBR TAGAAGCTGTCGTGCTGKCG 注:“+”表示PCR结果为阳性,琼脂糖凝胶电泳检测结果有条带;“−”表示PCR结果为阴性,琼脂糖凝胶电泳检测结果无条带。 表 2 MIBF/MIBR NCBI比对结果
Table 2. NCBI blast result of MIBF/MIBR
序号 NCBI登记号 基因名 藻种拉丁名 藻种中文名 MIBF/% MIBR/% 1 HQ830028.1 2-methylisoborneol (2-MIB) synthesis complete sequence Pseudanabaena sp. 伪鱼腥藻属 100 100 2 HQ630883.1 MIB synthase gene Pseudanabaena limnetica 湖泊伪鱼腥藻 100 100 3 AB826230.1 pgmtc gene for monoterpene cyclase Pseudanabaena galeata 洋伪鱼腥藻 100 100 4 HQ630887.1 MIB synthase gene Pseudanabaena sp. 伪鱼腥藻属 100 100 5 LC486303.1 mic Microcoleus pseudautumnalis 微鞘藻属 100 100 6 HQ630885.1 MIB synthase gene Oscillatoria limosa 泥生颤藻 100 100 7 HQ830029.1 2-methylisoborneol (2-MIB) synthesis associated operon Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 8 KP013063.1 A2 MIB cyclase gene Leptolyngbya sp. 瘦鞘丝藻属 100 100 9 LC157987.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 10 LC157990.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 11 LC157992.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 12 LC157991.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 13 LC157989.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 14 LC157988.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 15 LC157986.1 MIB synthase Planktothricoides raciborskii 拉氏拟浮丝藻 100 100 16 KJ658377.1 2-methylisoborneol synthase gene Oscillatoria sp. 颤藻属 100 100 17 KJ658378.1 2-methylisoborneol synthase gene Planktothrix sp. 浮丝藻属 100 100 18 MN167115.1 MIB synthase gene Pseudanabaena galeata 洋伪鱼腥藻 100 100 19 MK759878.1 2-methylisoborneol (mib) gene, partial cds Oscillatoria prolifera 颤藻 0 0 20 KM013398.1 A2 MIB cyclase (mic) gene, partial cds Leptolyngbya sp. 瘦鞘丝藻属 0 0 21 KM013397.1 MIB cyclase (mic) gene, partial cds Planktothricoides sp. 浮丝藻属 0 0 22 KM013396.1 MIB cyclase (mic) gene, partial cds Planktothricoides raciborskii 拉氏拟浮丝藻 0 0 23 MK124613.1 MIB synthase gene, partial cds Pseudanabaena sp. 伪鱼腥藻属 0 0 -
[1] SU M, JIA D M, YU J W, et al. Reducing production of taste and odor by deep-living cyanobacteria in drinking water reservoirs by regulation of water level[J]. Science of the Total Environment, 2017, 574: 1477-1483. doi: 10.1016/j.scitotenv.2016.08.134 [2] SUN D L, YU J W, YANG M, et al. Occurrence of odor problems in drinking water of major cities across China[J]. Frontiers of Environmental Science & Engineering, 2014, 8(3): 411-416. [3] PETRO K, MANOLIS L, CHRISTINA K, et al. Treatment of unpleasant odors in municipal wastewater treatment plants[J]. Water Science and Technology, 2010, 61(10): 2635-2644. doi: 10.2166/wst.2010.211 [4] WANG C M, AN W, GUO Q Y, et al. Assessing the hidden social risk caused by odor in drinking water through population behavioral responses using economic burden[J]. Water Research, 2020, 172: 115507. doi: 10.1016/j.watres.2020.115507 [5] WAGNER K. A review of “algae: source to treatment (M57)”[J]. Lake & Reservoir Management, 2010, 26(4): 345-346. [6] SAADOUN I M, SCHRADER K K, BLEVINS W T. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp[J]. Water Research, 2001, 35(5): 1209-1218. doi: 10.1016/S0043-1354(00)00381-X [7] SU M, YU J W, ZHANG J Z, et al. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: Distribution and odor producing potential[J]. Water Research, 2015, 68: 444-453. [8] NERENBERG R, RITTMANN B E, SOUCIE W J. Ozone biofiltration for removing MIB and geosmin[J]. Journal of American Water Works Association, 2000, 92(12): 85-95. doi: 10.1002/j.1551-8833.2000.tb09073.x [9] WATSON S B. Cyanobacterial and eukaryotic algal odour compounds: Signals or by-products? A review of their biological activity[J]. Phycologia, 2003, 42(4): 332-350. doi: 10.2216/i0031-8884-42-4-332.1 [10] IZAGUIRRE G, HWANG C J, KRASNER S W, et al. Production of 2-methyliso borneol by two benthic cyanophyta[J]. Water Science & Technology, 1983, 15(6/7): 211-220. [11] MARTIN J F, IZAGUIRRE G, WATERSTRAT P. A planktonic Oscillatoria species from Mississippi catfish ponds that produces the off-flavor compound 2-methylisoborneol[J]. Water Research, 1991, 25(12): 1447-1451. doi: 10.1016/0043-1354(91)90173-N [12] SUGIURA N, IWAMI N, INAMORI Y, et al. Significance of attached cyanobacteria relevant to the occurrence of musty odor in Lake Kasumigaura[J]. Water Research, 1998, 32(12): 3549-3554. doi: 10.1016/S0043-1354(98)00153-5 [13] ZHANG K J, ZHANG T Q, DENG Y, et al. Occurrence of algae and algae-related taste and odour (T&O) compounds in the Qingcaosha Reservoir, China[J]. Journal of Water Supply: Research and Technology-Aqua, 2015, 64(7): 824-831. doi: 10.2166/aqua.2015.072 [14] YANG M, YU J W, LI Z L, et al. Taihu Lake not to blame for Wuxi’s woes[J]. Science, 2008, 319(5860): 158. [15] 钟秀华, 周丽辉, 余胜兵, 等. 顶空固相微萃取-气相色谱/质谱法测定饮水中2-甲基异莰醇和土臭素[J]. 环境卫生学杂志, 2015, 5(3): 97-100. [16] WANG C M, CANE D E. Biochemistry and molecular genetics of the biosynthesis of the earthy odorant methylisoborneol in Streptomyces Coelicolor[J]. Journal of the American Chemical Society, 2008, 130(28): 8908-8909. doi: 10.1021/ja803639g [17] GIGLIO S, CHOU W K W, IKEDA H, et al. Biosynthesis of 2-methylisoborneol in Cyanobacteria[J]. Environmental Science & Technology, 2011, 45(3): 992-998. [18] GIGLIO S, JIANG J Y, SAINT C P, et al. Isolation and characterization of the gene associated with geosmin production in cyanobacteria[J]. Environmental Science & Technology, 2008, 42(21): 8027-8032. [19] SUURNÄKKI S, GOMEZ-SAEZ G V, RANTALA-YLINEN A, et al. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds[J]. Water Research, 2015, 68: 56-66. doi: 10.1016/j.watres.2014.09.037 [20] 吴燕芳. 固相萃取-气相色谱法检测水样中的土臭素和2-甲基异茨醇[C]//中国化学会有机分析专业委员会, 国家自然科学基金委. 中国化学会第十四届有机分析及生物分析学术研讨会会议论文摘要集, 2007: 281-282. [21] 李学艳, 陈忠林, 沈吉敏, 等. 固相萃取-气质联机测定水中嗅味物质2-甲基异茨醇和土霉素[J]. 中国环境监测, 2006, 22(2): 18-21. doi: 10.3969/j.issn.1002-6002.2006.02.005 [22] 余沛芝, 阮春蓉, 陈琳琳, 等. 水中2-甲基异莰醇和土臭素的固相微萃取-气相色谱串联质谱检测方法[J]. 净水技术, 2018, 37(9): 10-14. [23] JOHN N, KOEHLER A V, BRENDAN R E, et al. An improved method for PCR-based detection and routine monitoring of geosmin-producing cyanobacterial blooms[J]. Water Research, 2018, 136: 34-40. doi: 10.1016/j.watres.2018.02.041