-
长光程差分吸收光谱技术(long-path differential optical absorption spectroscopy system, LP-DOAS)[1]早期主要应用于对流层和平流层中大气痕量组分的测量,解决卤素氧化物等大气层臭氧收支问题[2-6]。近年来,许多学者[7-12]对紫外-可见波段差分吸收光谱系统(ultraviolet-visible differential optical absorption spectrometry, UV-DOAS)连续监测大气中单环芳香烃(苯、甲苯等)、Hg、HCl、NH3、NO2、SO2和O3等污染物进行了研究,结果表明,该方法能满足大气环境中多种痕量气体的监测需求。
针对重点区域强化监督以及全面执行大气污染物特别排放限值的要求[13],本研究对位于上海市南端、东海之滨杭州湾北岸的上海化学工业区开展了常规污染物及挥发性有机物的长期自动监测及分析的工作。在上海化学工业区西北监测站点搭建长光程紫外-可见波段差分吸收光谱系统(ultraviolet-visible differential optical absorption spectrometry, UV-DOAS),长期自动监测化工区污染物排放情况。选取同站点的点位测量装置(气相色谱氢火焰离子检测器,gas chromatography-flame ionization detector, GC-FID)[14]的测量数据与UV-DOAS系统测量数据进行比对,验证系统测量的有效性和稳定性。结合该监测站点的气象数据,本研究对测量数据进行日均浓度分析以及月均浓度分析,判断温度、湿度和季节的变化以及化学工业区污染物排放对监测数据的影响。本研究采用基于拉格朗日传输、扩散模式的HYSPLIT_4模式[15]来模拟分析上海市化学工业区大气中污染物的扩散情况,分析化学工业区污染物的排放对上海城区的影响,以期为上海市大气环境污染物监测及治理提供参考。
基于长光程差分吸收光谱原理的污染物监测系统在化工区的应用
Application of LP-DOAS principle-based air pollutants monitoring system in a chemical industry park
-
摘要: 应用一种基于长光程差分吸收光谱(LP-DOAS)原理的仪器,对上海市典型化学工业区进行了长期自动监测。该测量系统搭建于化工区西北方向边界上,一旦污染物浓度超标就会报警,起到边界围栏的作用。选取同站点GC-FID系统测量的甲苯数据与LP-DOAS系统测量的甲苯数据进行了比对分析,2台仪器日均浓度值的拟合系数R2为0.87,验证了长光程测量系统数据的有效性。结合西北边界监测站点的气象数据对测量的HCl数据进行日均、月度平均分析,发现HCl的浓度变化主要与化工区的排放有关。采用基于拉格朗日传输、扩散模式的HYSPLIT_4模式分别对2017—2019年中每年6月份和2017年全年进行污染物追迹分析,发现2017—2019年中每年6月份有95%左右的污染物扩散时会经过上海城区,对上海地区造成影响。进一步分析表明,2017年,夏季化工区排放的污染物对上海城区的影响最大,秋季对上海城区的影响最小。上述研究结果可为上海市大气环境监测及治理提供参考。Abstract: In this study, an instrument based on the principle of long-path differential optical absorption spectroscopy (LP-DOAS) was used for long-term automatic monitoring of typical chemical industry park in Shanghai. The measurement system was built on the northwest boundary of the chemical industry park, and played the role of a border fence by alarming once the pollutant concentration exceeds the limit. A comparison was conducted between the toluene data measured by GC-FID system at the same site and the data measured by UV-DOAS system. The daily mean correlation coefficient R2 of the two instruments was 0.87, which proved the data validity measured by UV-DOAS system in this study. Combined with the meteorological data from the Northwest Boundary Monitoring Station, the analysis of the daily and monthly average value of HCl data indicated that the changes in HCl concentration were mainly related to the emissions from the chemical industry park by analyzing. Combined with HYSPLIT_4 transmission and diffusion mode, the pollutant tracking analysis was performed in each June of 2017 to 2019 and the four seasons of 2017, respectively. It was found that about 95% of the diffused pollutants in June passed through the urban area of Shanghai, causing pollution in Shanghai. Further analysis showed, during 2017, the pollutants discharged from the chemical industry park in summer had the maximum impact on the pollution of Shanghai urban area. In comparison, the pollutants had the minimum impact in autumn. The above results can provide a reference for the monitoring and governance of atmospheric environment in Shanghai.
-
-
[1] PLATT U, PERNER D, PÄTZ H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research Oceans, 1979, 84(C10): 6329-6335. doi: 10.1029/JC084iC10p06329 [2] PLANE J M C, NIEN C F. Differential optical absorption spectrometer for measuring atmospheric trace gases[J]. Review of Scientific Instruments, 1992, 63(3): 1867-1876. doi: 10.1063/1.1143296 [3] PLATT U, HAUSMANN M. Spectroscopic measurement of the free radicals NO3, BRO, IO, and OH in the troposphere[J]. Research on Chemical Intermediates, 1994, 20(3): 557-578. [4] BARREFORS G E. Monitoring of benzene, toluene and p-xylene in urban air with differential optical absorption spectroscopy technique[J]. Science of the Total Environment, 1996, 189-190: 287-292. doi: 10.1016/0048-9697(96)05221-7 [5] VOLKAMER R, ETZKORN T, GEYER A, et al. Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere[J]. Atmospheric Environment, 1998, 32(21): 3731-3747. doi: 10.1016/S1352-2310(98)00095-8 [6] 邵理堂. 差分吸收光谱法在线测量烟气浓度的理论与系统研究[D]. 南京: 东南大学, 2008. [7] 谢品华, 付强, 刘建国, 等. 差分吸收光谱方法反演大气环境单环芳香烃有机物[J]. 光谱学与光谱分析, 2006, 26(9): 1584-1588. doi: 10.3321/j.issn:1000-0593.2006.09.005 [8] WALLIN S, 黄兆开, 范海华. DOAS方法在连续排放污染源及过程气体在线监测中的实现[J]. 环境工程技术学报, 2011, 1(1): 38-45. doi: 10.3969/j.issn.1674-991X.2011.01.007 [9] 郑尼娜, 谢品华, 凌六一, 等. 紫外LED光纤耦合长程DOAS系统监测大气SO2和O3的研究[J]. 光学学报, 2013, 33(3): 44-52. [10] 魏永杰, 耿晓娟, 陈博, 等. 光纤收发的空气差分吸收光谱测量方法研究[J]. 光谱学与光谱分析, 2013(10): 193-196. [11] 孙延庆, 王飞, 邹捷书, 等. 基于光纤收发一体的紫外增强差分吸收光谱系统的研究[J]. 能源工程, 2015(4): 53-57. [12] NAWAHDA A. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman[J]. Environmental Monitoring & Assessment, 2015, 187(8): 485-492. [13] 生态环境部. 2018中国生态环境状况公报发布[J]. 中国能源, 2019, 41(6): 1. [14] 苏爱华. 环境空气VOC在线监测系统在化工业园区环境监测中的应用研究[J]. 环境科学与管理, 2018, 43(11): 93-97. doi: 10.3969/j.issn.1673-1212.2018.11.021 [15] DRAXIER R R, HESS G D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition[J]. Australian Meteorological Magazine, 1998, 47(4): 295-308. [16] NASSE J M, EGER P G, POHLER D, et al. Recent improvements of long-path DOAS measurements: Impact on accuracy and stability of short-term and automated long-term observations[J]. Atmospheric Measurement Techniques, 2019, 12(8): 4149-4169. doi: 10.5194/amt-12-4149-2019 [17] FINLAYSONPITTS B, PITTS J J, PITTS J, et al. Chemistry of the upper and lower atmosphere[J]. Chemistry of the Upper & Lower Atmosphere, 2000, 47(3): 17-18. [18] 唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 2版. 北京: 高等教育出版社, 2006. [19] KLEFFMANN J, GAVRILOAIEI T, HOFZUMAHAUS A, et al. Daytime formation of nitrous acid: A major source of OH radicals in a forest[J]. Geophysical Research Letters, 2005, 32(5): 347-354. [20] 楼晟荣. 大气环境中OH自由基反应活性的检测技术[D]. 上海: 上海交通大学, 2012. [21] 黄健, 颜鹏, DRAXLER R R. 利用HYSPLIT_4模式分析珠海地面SO2浓度的变化规律[J]. 热带气象学报, 2004, 18(4): 407-414. [22] 梁卓然, 江志红, 刘征宇, 等. 基于拉格朗日方法的气流轨迹模式在判定南海夏季风爆发时间中的应用分析[J]. 热带气象学报, 2011, 27(3): 357-364. doi: 10.3969/j.issn.1004-4965.2011.03.008