-
海绵城市建设目标是指通过加强城市规划建设管理,充分发挥建筑、道路和绿地等生态系统对雨水的吸纳、蓄渗和缓释作用,有效控制雨水径流[1]。因此,对雨水径流指标控制效果的评估显得尤为重要。住建部发布的《海绵城市建设绩效评价与考核方法(试行)》中指出:应采取实地考察、查阅资料及监测数据分析相结合的方式,科学评估海绵城市建设成效[2]。由于海绵城市试点区域一般面积较大,涵盖商业区、工业区、行政区、居住区等不同下垫面类型;同时,不同下垫面类型区域又包含绿色屋顶[3]、生物滞留带[4]、透水铺装[5]等不同形式海绵设施。为做好不同类型下垫面和海绵设施基础数据的汇集和整理、科学评估试点区域的海绵城市建设效果,径流指标评估监测网络的构建是关键[6]。
现有海绵城市径流控制效果评估主要有监测法[7]、模拟法[8]和监测与模拟联合法[9]等方法。监测法选择代表场次日降雨,监测外排雨水径流流量和水质,计算径流控制效果。HU等[10]利用监测法评估某区域低影响开发设施对城市暴雨内涝的缓解效果,评估结果表明LID措施可以减少城市的洪水和内涝灾害,减少水深和灾害区域,但是这种单一的监测方法只适合小面积的研究区域。模拟法是指通过构建试点区域水文水质模型,模拟试点区域开发前后场次或全年雨水径流量水质,评估试点区域径流指标控制效果。MAO等[11]利用SUSTAIN软件实现了对LID-BMPs建设效果的模拟评估,评估对象包括总流量、峰值流量及COD、SS、TN、TP等污染因子。监测与模拟联合法融合监测法与模型模拟法的优点,利用有限次的监测数据和率定准确的模型对试点区域进行全过程监(预)测评估。郭效琛等[9]利用监测与模拟联合法对住宅小区海绵改造类项目进行评估,不仅获取到有效的监测数据,以支持监测期间项目径流总量控制率的计算分析,同时对模型参数进行率定和验证,进一步分析评估径流总量控制率,从而提高项目径流总量控制率计算的准确性和科学性。
3种方法具备不同优缺点和适用范围,但均离不开系统化监测网络的构建。2019年实施的《海绵城市建设评价标准》仅对道路、停车场以及广场等地块的海绵城市建设实施有效性进行了说明,并未介绍如何具体监测海绵设施;同时,监测网络的构建仍存在不系统问题,导致监测数据无法追溯、评估数据不够全面等问题。本研究以海绵城市径流指标评估监测网络的系统化构建方法和布点方法为出发点,结合海绵城市监测评估的要求,对监测网络的构建方法进行了探讨和分析,以期为海绵城市建设效果的定量化考核和评估提供参考。
海绵城市径流指标评估监测网络的构建方法
Construction method of monitoring network for runoff index evaluation in sponge city
-
摘要: 针对当前海绵城市径流监测网络的构建方法存在不系统、不实用,导致监测数据无法追溯、评估数据不全面等问题,对海绵城市径流指标评估中监测网络的系统化构建和布点问题进行探讨,并以深圳市某海绵城市试点区域为例进行应用。探讨结果表明,系统化构建监测网络需按照“源头-过程-末端”3个层级对“海绵设施-建设地块-排水分区”监测点位进行全方位布置,以便达到监测数据全过程记录和可追溯的目标。“源头-过程-末端”3个层级监测点位选取和布置时需要满足实用性、代表性及经济性等原则。系统化监测网络的构建思路和布点方法能较好地适用于该试点区域,满足该区域径流指标评估的需求,可为海绵城市建设效果的定量化考核和评估提供借鉴。Abstract: Aiming at the problems of unsystematic and impractical of the current construction method of the sponge city runoff monitoring network, which can lead to not tracing the monitoring data and incomplete evaluation data, the systematical construction and site distribution of monitoring network for runoff index evaluation in sponge city were discussed in this study, which was used in an example of a sponge city pilot area in Shenzhen city. The results show that the systematic construction of monitoring network should be arranged according to the “source-process-terminal” of three levels for the monitoring points of “sponge facility-construction plot-drainage area” in order to achieve the goals of the entire process recording and traceability of monitoring data. The selection and distribution of the monitoring points in “Source-Process-Terminal” of three levels need to meet the principles of practicability, representativeness and economy. Our ideas and systematic approach to monitoring the distribution network was well suited for the pilot area, and could meet the needs to assess the runoff index evaluation of pilot area, provide reference for the quantitative assesment and evaluation of urban construction sponge effect.
-
Key words:
- sponge city /
- runoff index evaluation /
- systematic monitoring network
-
表 1 源头监测点的布置原则
Table 1. Layout principle of source monitoring points
原则 内容 实用性 源头监测点与所评估的海绵设施或项目紧密相连,便于实际操作 代表性 监测使用占比高、建设条件相对成熟的海绵设施或项目,避免相同项目或设施监测点位的重复设置 经济性 综合考虑时间、成本、人力等问题,监测点可以实现“一点多测”的目的,即一个监测口可同时获取两个或多个设施的数据 表 2 源头监测点的布置方法
Table 2. Layout method of source monitoring points
方法 方法介绍 现场踏勘法 工作人员实地踏勘海绵设施,现场确认海绵设施的类型、面积、雨水进出口,以及海绵设施之间的衔接方式等 图纸分析法 根据设计单位提供的规划图纸,确认海绵设施的边界及其进出口,同时提取其覆盖面积、地块占比等数据 表 3 过程监测点的布置原则
Table 3. Layout principle of process monitoring points
原则 内容 便利性 过程监测点中地块的排水边界可能处于闹市区、机动车道或不便于采样人员靠近的地方,避免在此类位置设置监测点 全面性 不同用地类型地块的排水特征不同,过程监测点的设置要保证各类建设地块全覆盖,分析不同下垫面的径流控制效果 对比性 考虑相同类型地块之间的对比,地块内布设的海绵设施比例或地块的坡度、汇流集水时间不一定相同,径流控制效果存在差异 表 4 过程监测点的布置方法
Table 4. Layout method of process monitoring points
方法 方法介绍 现场踏勘法 实地踏勘建设地块的种类及其边界、汇水方向以及总汇水点的位置等信息,综合现场实际情况和原则优化过程监测点 图纸分析法 根据研究区的用地规划图、卫星影像图、以及地块与道路雨水主干道的衔接方式,布置各类地块的排水口 GIS水文分析 结合用地地块的DEM高程数据,对其进行“流向”分析,确定地块的整体流向,结合现场踏勘或图纸布置监测点 表 5 末端监测点的布置原则
Table 5. Layout principle of terminal monitoring points
布置原则 内容 便利性 末端监测点汇入湍急河流的,避免在此类位置设施监测点,应进行“上溯”处理,或利用多点加和等方式间接获取监测数据 经济性 在水利部门长期设置监测断面的河段,可直接采用水利部门的监测数据,避免点位重复,导致浪费 表 6 末端监测点的布置方法
Table 6. Layout method of terminal monitoring points
方法 方法介绍 图纸分析法 根据研究区管网走向,布置在区域内排水分区总排口或其上游的管网节点 GIS水文分析 结合研究区的DEM高程数据,对其进行河网定义和盆域分析,布置研究区域的排水分区,结合现场踏勘或图纸布置总排口 表 7 G区域监测网络点位信息
Table 7. Monitoring network point information in area G
所属层级 典型点位 覆盖范围 源头监测点 J2、J3等 绿色屋顶、生物滞留带、透水铺装
等海绵设施过程监测点 M1、G1等 工业用地、商业用地、公共设施用
地、绿地、行政用地、道路等地块末端监测点 Q1、Q2等 D片区、E片区等排水分区 -
[1] 和坤玲. 城市道路低影响开发设计技术的探讨[J]. 城市道桥与防洪, 2016(9): 18-22. [2] 曹会保. 住建部出台“海绵城市”建设绩效评价与考核办法[J]. 建筑砌块与砌块建筑, 2015(4): 54-54. [3] 陈小平, 黄佩, 周志翔. 绿色屋顶径流调控研究进展[J]. 应用生态学报, 2015, 26(8): 2581-2590. [4] 高建平, 潘俊奎, 谢义昌. 生物滞留带结构层参数对道路径流滞蓄效应影响[J]. 水科学进展, 2017, 28(5): 702-711. [5] 李美玉, 张守红, 王玉杰, 等. 透水铺装径流调控效益研究进展[J]. 环境科学与技术, 2018, 41(12): 105-112. [6] 王泽阳, 关天胜, 吴连丰. 基于效果评价的海绵城市监测体系构建: 以厦门海绵城市试点区为例[J]. 给水排水, 2018, 44(3): 23-27. doi: 10.3969/j.issn.1002-8471.2018.03.005 [7] 宫永伟, 张新勃, 李慧文, 等. 济南市海绵城市建设试点区水量水质监测方案[J]. 中国给水排水, 2017, 33(11): 116-119. [8] 由阳, 朱玲, 朱淑兰. 模型法海绵城市建设效果评估: 以贵州省贵安新区中心区为例[J]. 给水排水, 2018, 44(1): 36-43. doi: 10.3969/j.issn.1002-8471.2018.01.008 [9] 郭效琛, 杜鹏飞, 辛克刚, 等. 基于监测与模拟的海绵城市典型项目效果评估[J]. 中国给水排水, 2019, 35(11): 130-134. [10] HU M, SAYAMA T, ZHANG X, et al. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China[J]. Journal of Environmental Management, 2017, 193: 430-438. doi: 10.1016/j.jenvman.2017.02.020 [11] MAO X, JIA H, YU S L. Assessing the ecological benefits of aggregate LID-BMPs through modelling[J]. Ecological Modelling, 2017, 353: S20994292. [12] 魏保平, 柏云. PPP模式驱动海绵城市建设: 以镇江市海绵城市项目为例[J]. 中国投资, 2016(6): 72-74. [13] 朱玲, 由阳, 周鑫杨. 排水分区尺度的海绵设计及径流协调方法探讨[J]. 给水排水, 2018, 54(1): 56-60. doi: 10.3969/j.issn.1002-8471.2018.01.011 [14] 于海洋, 罗玲, 马慧慧, 等. SRTM(1″)DEM在流域水文分析中的适用性研究[J]. 国土资源遥感, 2017, 29(2): 138-143. doi: 10.6046/gtzyyg.2017.02.20 [15] 张叶. 城市建设用地的取得方式研究[D]. 保定: 河北农业大学, 2013. [16] 王耀建. 基于GIS的水文信息提取: 以深圳市光明森林公园水文分析计算为例[J]. 亚热带水土保持, 2013, 25(3): 61-62. doi: 10.3969/j.issn.1002-2651.2013.03.018