-
近年来,由于V/W/Ti系催化剂的高催化活性与热稳定性,其被广泛地应用于燃煤电厂的选择性催化还原(SCR)脱硝单元[1-3]。对于负载了钒氧化物的催化剂,在SCR反应过程中会发生SO2催化氧化生成SO3的副反应,其转化率为SO2浓度的0.5%~2%[4-6]。SO3是硫酸液滴和硫酸盐气溶胶等细微颗粒物(PM2.5)的来源之一,此外,其会增加烟囱中排烟的不透明度,并对锅炉运行产生不利影响[7-10]。现有技术尽管可以从SCR下游通过喷射碱性物质来控制SO3的排放,但由于运行成本太高且不能避免SO3生成对催化剂活性的影响,因此,应从催化剂入手最大限度地降低SO2的氧化率。为减少SO3的形成,应尽可能降低燃煤电厂SCR催化剂中V2O5的添加量[11];然而,为实现高NOx脱除效率,催化剂需要负载较高含量的V2O5[12]。因此,需要同时兼顾高NOx脱除效率和低SO3生成量之间的平衡。
为减少SO2氧化并减轻SO2对催化剂的毒性作用,研究人员探讨了SO2在不同催化剂上的氧化特性,并尝试使用不同的活性成分代替V2O5或添加助剂以减少SO2引起的副作用。WOJAYANTI等[13]发现,铜和铁基沸石催化剂比钒催化剂具有更高的氨储存能力。YU等[14]在SO2和H2O对催化剂活性影响的研究中发现,MnOx/SAPO-34催化剂比其他Mn基催化剂具有更好的抗SO2中毒性。在NH3-SCR中加入的SO2会在催化剂的表面以酸性硫酸铁的形式对Fe/CNTs产生不可逆的影响[15]。WOJAYANTI等[13]报道了Cu-SSZ-13催化剂在SO2存在下的催化活性,发现SO2会造成催化剂中毒而使其失活。有研究[16]发现,SO2对催化剂活性的影响更为温和且与物种无关,而SO3的存在对催化剂性能影响更为显著且更难逆转。HUANG等[17]在WO3(HWO)上添加V2O5以开发V2O5/HWO催化剂,发现其在SCR反应中表现出抗碱和抗硫中毒的特性。LIN等[18]发现CeO2-MnO2催化剂在SO2存在下会完全失活。此外,也有部分研究者[19-21]探究了新型低温催化剂配方,但研究的催化剂种类多样且并未实现工业应用,V/W/Ti系催化剂仍是目前使用的主流催化剂,因此,有必要深入研究V/W/Ti系催化剂表面SO3的生成特性。
MA等[22]报道了V2O5在V2O5/AC上去除SO2的主要作用,表明V2O5将通过类似VOSO4的中间物质催化SO2氧化,其会与O2反应生成SO3和H2SO4。SHANG等[23]研究了SO2在TiO2颗粒上的非均相反应,发现SO2在TiO2颗粒上非均相反应的主要产物是硫酸盐。这些研究仅用于单一反应,并且该反应中使用的催化剂仅具有单一组分,不能代表电厂使用的商业催化剂。此外,SO3是一种高活性物质,其测量非常困难[24]。SCHWAMMLE等[25]与ZHENG等[26]研究了SO2/SO3的转化,发现SO2氧化随壁厚几乎呈线性增加,受NH3的抑制程度较大。LI等[27]发现NO促进了SO2向SO3的转化。本团队的前期研究中也发现,烟气中的H2O与CO2等也会影响SO3的生成[2]。实际烟气的成分很复杂,各气体组分对SO2氧化的影响尚不清楚,其机理尚未得出明确的结论,因此,需要了解多组分复合气体气氛下催化剂表面SO2催化氧化成SO3的特性。
本研究旨在了解商用V/Ti/W系SCR催化剂上的SO2催化氧化生成SO3的特性,利用BET、XRF、XRD等仪器对催化剂的物化特性进行分析,研究了SO2对商用V/Ti/W系SCR催化剂脱硝性能的影响,并在固定床反应系统上研究了催化剂组分(V含量)、操作条件(温度、空速)和进气组分(O2、SO2和NH3与NO的体积比(NH3∶NO))等因素对催化剂表面SO3生成反应的影响特性,以期为实现燃煤电厂排放烟气中SO3的有效控制及污染物超低排放提供参考。
脱硝催化剂及运行参数对燃煤电厂SO3生成的影响
Influence of SCR catalysts and operating parameters on SO3 generation in coal-fired power plants
-
摘要: 为实现燃煤电厂尾部烟气中SO3的有效控制,实现燃煤电厂安全经济运行与污染物超低排放,选取不同燃煤电厂的商业V/W/Ti 系脱硝催化剂研究SO3的生成特性,系统地探讨了不同催化剂及运行参数(温度、空速、O2、SO2和NH3:NO比)对燃煤电厂尾部烟气中SO3生成的影响,以期为燃煤电厂SO3治理提供指导。结果表明:催化剂化学组成显著影响SO3的生成,催化剂中V负载量是决定SO3生成的重要参数;V负载量为1%~3%时,负载量的增加可对SO3的生成起促进作用,而Si对SO3的生成起显著抑制作用。对于催化剂样品A,当空速达到10 000 h-1时,SO3生成将不再随空速的增加而变化。随着反应温度的升高,催化剂表面SO3生成率逐渐增加。温度的升高有利于催化剂中活性组分V5+和V4+之间的转化,从而提高催化剂的氧化活性。即使燃煤电厂负荷降低,当烟气温度低至280 ℃时,催化剂表面仍然有SO3生成。此外,烟气中不同组分也会影响SO3的生成。随SO2浓度的增加,生成的SO3通过竞争吸附抑制SO2的氧化,导致SO3的生成率降低。而O2、NH3和NO的存在将促进SO2的转化,且浓度越高,其促进作用越大。综合上述结果可以看出,催化剂表面SO3的生成受催化剂组成、温度、空速、O2、SO2和NH3∶NO比值等多种因素影响,在实际工程中应综合考虑各因素的影响以实现对燃煤烟气SO3的有效控制。Abstract: In order to achieve the effective control of SO3 in flue gas of coal-fired power plants, the safe and economic operation of coal-fired power plants and the ultra-low emissions of pollutants, commercial V/W/Ti SCR catalysts used in different power plants were selected to study the characteristics of SO3 generation. The effects of different catalysts and the operating parameters (temperature, space velocity, contents of O2 and SO2, ratio of NH3∶NO) on SO3 generation in flue gas were systematically explored, which could provide guidance for SO3 control in coal-fired power plants. The results indicated that the chemical composition of catalyst significantly affected the generation of SO3. The amount of V supported in the catalyst was an important parameter that determined the generation of SO3. Within loading ratios of 1%~3%, the increase of V loading promoted the formation of SO3, while the existence of Si significantly inhibited the formation of SO3. For catalyst A, SO3 generation rate no longer changed with the increase of space velocity when space velocity reached 10 000 h−1. With the increase of reaction temperature, the SO3 generation rate on catalyst surface gradually increased. The increase of temperature was beneficial to the conversion reaction between V5+ and V4+, thus increasing the oxidation activity of the catalyst. Even the loading of coal-fired power plants was reduced, SO3 would be generated on the catalyst surface at the reaction temperature as low as 280 ℃. In addition, the different components in flus gas also affected the generation of SO3. With the increase of SO2 concentration, the generated SO3 inhibited the oxidation of SO2 through competitive adsorption, resulting in the reduction of SO3 generation rate. The presence of O2, NH3 and NO could promote the transformation of SO2, the higher the concentration, the greater the promoting effect. The above results showed that the characteristics of SO3 generation on the catalyst surface were affected by various factors such as catalyst composition, temperature, space velocity, O2, SO2 and NH3∶NO ratio, etc. In order to achieve effective control of SO3 in coal flue gas, the influences of various factors should be comprehensively considered in actual projects.
-
Key words:
- catalyst /
- SO2 transformation /
- SO3 generation /
- temperature /
- space velocity /
- oxygen content /
- ratio of NH3∶NO
-
表 1 催化剂样品的化学组成
Table 1. Chemical composition of catalyst sample
% 催化剂 Al Si S Ca Ti V Fe W Au A 0.74 0.86 2.11 0.69 83.81 1.73 0.08 7.73 2.25 B 1.06 2.56 1.42 0.93 83.88 1.51 0.09 6.48 2.08 C 0.98 1.35 0.82 1.18 82.28 2.68 0.08 7.9 2.73 D 1.15 3.42 0.88 1.25 76.96 1.87 0.16 11.62 2.68 E 7.82 53.46 0.79 4.96 28.03 1.74 0.44 2.26 0.51 表 2 催化剂样品的物理特性
Table 2. Physical properties of catalyst samples
催化剂 比表面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm A 50.04 0.25 20.11 B 65.99 0.32 19.17 C 12.37 0.11 36.54 D 35.69 0.23 26.29 E 115.14 0.23 8.03 -
[1] CHRISTENSEN S R, HANSEN B B, JOHANSEN K, et al. SO2 oxidation across marine V2O5-WO3-TiO2 SCR catalysts: A study at elevated pressure for preturbine SCR configuration[J]. Emission Control Science and Technology, 2018, 4: 289-299. doi: 10.1007/s40825-018-0092-8 [2] QING M X, SU S, WANG L L, et al. Effects of H2O and CO2 on the catalytic oxidation property of V/W/Ti catalysts for SO3 generation[J]. Fuel, 2019, 237: 545-554. doi: 10.1016/j.fuel.2018.09.152 [3] 潘伶, 杨沛山, 曹友洪. SCR脱硝反应器烟道内部流场的数值模拟与优化[J]. 环境工程学报, 2015, 9(6): 2918-2924. doi: 10.12030/j.cjee.20150663 [4] ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327-346. doi: 10.1016/j.fuel.2018.12.039 [5] SONG L Y, CHAO J D, FANG Y J, et al. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chemical Engineering Journal, 2016, 303: 275-281. doi: 10.1016/j.cej.2016.05.124 [6] DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B: Environmental, 1998, 19: 103-117. doi: 10.1016/S0926-3373(98)00060-5 [7] BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater[J]. Applied Thermal Engineering, 2018, 131: 669-677. doi: 10.1016/j.applthermaleng.2017.11.082 [8] CAO Y, ZHOU H C, JIANG W, et al. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods[J]. Environmental Science Technology, 2010, 44: 3429-3434. doi: 10.1021/es903661b [9] NIELSEN M T. On the relative importance of SO2 oxidation to high dust SCR DeNOx units[C]//Department of Energy/National Energy Technology Laboratory. Department of Energy/National Energy Technology Laboratory(DOE/NETL) Conference on SCR and SNCR for NOx Control, 2003: 1-12. [10] 马双忱, 邓悦, 吴文龙, 等. SCR脱硝副产物硫酸氢铵与空预器中飞灰反应特性[J]. 环境工程学报, 2016, 10(11): 6563-6570. doi: 10.12030/j.cjee.201507027 [11] FORZATTI P, NOVA I, BERETTA A. Catalytic properties in deNOx and SO2-SO3 reactions[J]. Catalyst Today, 2000, 56: 431-441. doi: 10.1016/S0920-5861(99)00302-8 [12] GUO X Y, BARTHOLAMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B: Environmental, 2009, 92: 30-40. doi: 10.1016/j.apcatb.2009.07.025 [13] WOJAYANTI K, LEISTNER K, CHAND S, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalyst Science Technology, 2016, 6: 2565-2579. doi: 10.1039/C5CY01288K [14] YU C L, DONG L F, FENG C, et al. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: A comparative study[J]. Environmental Technology, 2016, 38: 1030-1042. [15] TANG C, WANG H, DONG S C, et al. Study of SO2 effect on selective catalytic reduction of NOx with NH3 over Fe/CNTs: The change of reaction route[J]. Catalysis Today, 2018, 307: 2-11. doi: 10.1016/j.cattod.2017.06.005 [16] KUMAR A, SMITH M A, KAMASAMUDRAM K, et al. Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst[J]. Catalyst Today, 2014, 231: 75-82. doi: 10.1016/j.cattod.2013.12.038 [17] HUANG Z W, LI H, GAO J Y, et al. Alkali- and sulfur-resistant tungsten-based catalysts for NOx emissions control[J]. Environmental Science Technology, 2015, 49: 14460-14465. doi: 10.1021/acs.est.5b03972 [18] LIN F W, HE Y, WANG Z H, et al. Catalytic oxidation of NO by O2 over CeO2-MnOx: SO2 poisoning mechanism[J]. RSC Advance, 2015, 6: 31422-31430. [19] 崔晶, 黄华存, 董文华, 等. F掺杂改性及其制备方法优化对V2O5-WO3/TiO2催化剂低温SCR脱硝性能的影响[J]. 环境工程学报, 2018, 12(11): 3139-3152. doi: 10.12030/j.cjee.201806083 [20] 吴里程, 王谦, 赵炜, 等. F和S共掺V2O5/TiO2催化剂对NH3-SCR活性的影响[J]. 环境工程学报, 2016, 10(12): 7156-7160. doi: 10.12030/j.cjee.201507189 [21] 汪俊, 吴相浩, 周飞翔, 等. 电厂低负荷下V-W/TiO2基NH3-SCR催化剂的低温改性[J]. 环境工程学报, 2018, 12(8): 2244-2250. doi: 10.12030/j.cjee.201712080 [22] MA J R, LIU Z Y, LIU Q Y, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures-role of V2O5 on SO2 removal[J]. Fuel Processing Technology, 2008, 89: 242-248. doi: 10.1016/j.fuproc.2007.11.003 [23] SHANG J, LI J, ZHU T. Heterogeneous reaction of SO2 on TiO2 particles[J]. Science China Chemistry, 2010, 53: 2637-2643. doi: 10.1007/s11426-010-4160-3 [24] JAWOROWSKI R J, MACK S S. Evaluation of methods for measurement of SO3/H2SO4 in flue gas[J]. Journal of the Air Pollution Control Association, 1979, 29: 43-46. doi: 10.1080/00022470.1979.10470750 [25] SCHWAMMLE T, BERTSCHE F, HARTUNG A, et al. Influence of geometrical parameters of honeycomb commercial SCR-DeNOx-catalysts on DeNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chemical Engineering Journal, 2013, 22: 274-281. [26] ZHENG C H, XIAO L F, QU R Y, et al. Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874-884. doi: 10.1016/j.cej.2018.12.150 [27] LI H L, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219: 319-326. doi: 10.1016/j.cej.2012.12.100 [28] LIU X S, WU X D, XU T F, et al. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst[J]. Chinese Journal of Catalyst, 2016, 37: 1340-1346. doi: 10.1016/S1872-2067(15)61109-3 [29] KOBAYASHA M, KUMA R, MASAKI S, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2005, 60: 173-179. doi: 10.1016/j.apcatb.2005.02.030 [30] ZHAO K, HAN W L, TANG Z C, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 53-60. [31] YANG B, SHEN Y S, ZENG Y W, et al. Effects of tin doping level on structure, acidity and catalytic performance of Ti-Ce-Ox catalyst for selective catalytic reduction of NO by ammonia[J]. Journal of Molecular Catalysis A: Chemical, 2016, 418-419: 138-145. doi: 10.1016/j.molcata.2016.03.042 [32] KOBAYASHI M, HAGI M. V2O5-WO3/TiO2-SiO2- $ {\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B: Environmental, 2006, 63: 104-113. doi: 10.1016/j.apcatb.2005.09.015[33] 束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460-4468. [34] 马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. doi: 10.3969/j.issn.1002-3364.2010.08.012 [35] ZHOU H, ZHANG J K, ZHANG K. Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359-368. doi: 10.1016/j.fuproc.2018.07.030