[1] |
CHRISTENSEN S R, HANSEN B B, JOHANSEN K, et al. SO2 oxidation across marine V2O5-WO3-TiO2 SCR catalysts: A study at elevated pressure for preturbine SCR configuration[J]. Emission Control Science and Technology, 2018, 4: 289-299. doi: 10.1007/s40825-018-0092-8
|
[2] |
QING M X, SU S, WANG L L, et al. Effects of H2O and CO2 on the catalytic oxidation property of V/W/Ti catalysts for SO3 generation[J]. Fuel, 2019, 237: 545-554. doi: 10.1016/j.fuel.2018.09.152
|
[3] |
潘伶, 杨沛山, 曹友洪. SCR脱硝反应器烟道内部流场的数值模拟与优化[J]. 环境工程学报, 2015, 9(6): 2918-2924. doi: 10.12030/j.cjee.20150663
|
[4] |
ZHENG C H, WANG Y F, LIU Y, et al. Formation, transformation, measurement, and control of SO3 in coal-fired power plants[J]. Fuel, 2019, 241: 327-346. doi: 10.1016/j.fuel.2018.12.039
|
[5] |
SONG L Y, CHAO J D, FANG Y J, et al. Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction[J]. Chemical Engineering Journal, 2016, 303: 275-281. doi: 10.1016/j.cej.2016.05.124
|
[6] |
DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B: Environmental, 1998, 19: 103-117. doi: 10.1016/S0926-3373(98)00060-5
|
[7] |
BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater[J]. Applied Thermal Engineering, 2018, 131: 669-677. doi: 10.1016/j.applthermaleng.2017.11.082
|
[8] |
CAO Y, ZHOU H C, JIANG W, et al. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods[J]. Environmental Science Technology, 2010, 44: 3429-3434. doi: 10.1021/es903661b
|
[9] |
NIELSEN M T. On the relative importance of SO2 oxidation to high dust SCR DeNOx units[C]//Department of Energy/National Energy Technology Laboratory. Department of Energy/National Energy Technology Laboratory(DOE/NETL) Conference on SCR and SNCR for NOx Control, 2003: 1-12.
|
[10] |
马双忱, 邓悦, 吴文龙, 等. SCR脱硝副产物硫酸氢铵与空预器中飞灰反应特性[J]. 环境工程学报, 2016, 10(11): 6563-6570. doi: 10.12030/j.cjee.201507027
|
[11] |
FORZATTI P, NOVA I, BERETTA A. Catalytic properties in deNOx and SO2-SO3 reactions[J]. Catalyst Today, 2000, 56: 431-441. doi: 10.1016/S0920-5861(99)00302-8
|
[12] |
GUO X Y, BARTHOLAMEW C, HECKER W, et al. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Applied Catalysis B: Environmental, 2009, 92: 30-40. doi: 10.1016/j.apcatb.2009.07.025
|
[13] |
WOJAYANTI K, LEISTNER K, CHAND S, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalyst Science Technology, 2016, 6: 2565-2579. doi: 10.1039/C5CY01288K
|
[14] |
YU C L, DONG L F, FENG C, et al. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: A comparative study[J]. Environmental Technology, 2016, 38: 1030-1042.
|
[15] |
TANG C, WANG H, DONG S C, et al. Study of SO2 effect on selective catalytic reduction of NOx with NH3 over Fe/CNTs: The change of reaction route[J]. Catalysis Today, 2018, 307: 2-11. doi: 10.1016/j.cattod.2017.06.005
|
[16] |
KUMAR A, SMITH M A, KAMASAMUDRAM K, et al. Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst[J]. Catalyst Today, 2014, 231: 75-82. doi: 10.1016/j.cattod.2013.12.038
|
[17] |
HUANG Z W, LI H, GAO J Y, et al. Alkali- and sulfur-resistant tungsten-based catalysts for NOx emissions control[J]. Environmental Science Technology, 2015, 49: 14460-14465. doi: 10.1021/acs.est.5b03972
|
[18] |
LIN F W, HE Y, WANG Z H, et al. Catalytic oxidation of NO by O2 over CeO2-MnOx: SO2 poisoning mechanism[J]. RSC Advance, 2015, 6: 31422-31430.
|
[19] |
崔晶, 黄华存, 董文华, 等. F掺杂改性及其制备方法优化对V2O5-WO3/TiO2催化剂低温SCR脱硝性能的影响[J]. 环境工程学报, 2018, 12(11): 3139-3152. doi: 10.12030/j.cjee.201806083
|
[20] |
吴里程, 王谦, 赵炜, 等. F和S共掺V2O5/TiO2催化剂对NH3-SCR活性的影响[J]. 环境工程学报, 2016, 10(12): 7156-7160. doi: 10.12030/j.cjee.201507189
|
[21] |
汪俊, 吴相浩, 周飞翔, 等. 电厂低负荷下V-W/TiO2基NH3-SCR催化剂的低温改性[J]. 环境工程学报, 2018, 12(8): 2244-2250. doi: 10.12030/j.cjee.201712080
|
[22] |
MA J R, LIU Z Y, LIU Q Y, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures-role of V2O5 on SO2 removal[J]. Fuel Processing Technology, 2008, 89: 242-248. doi: 10.1016/j.fuproc.2007.11.003
|
[23] |
SHANG J, LI J, ZHU T. Heterogeneous reaction of SO2 on TiO2 particles[J]. Science China Chemistry, 2010, 53: 2637-2643. doi: 10.1007/s11426-010-4160-3
|
[24] |
JAWOROWSKI R J, MACK S S. Evaluation of methods for measurement of SO3/H2SO4 in flue gas[J]. Journal of the Air Pollution Control Association, 1979, 29: 43-46. doi: 10.1080/00022470.1979.10470750
|
[25] |
SCHWAMMLE T, BERTSCHE F, HARTUNG A, et al. Influence of geometrical parameters of honeycomb commercial SCR-DeNOx-catalysts on DeNOx-activity, mercury oxidation and SO2/SO3-conversion[J]. Chemical Engineering Journal, 2013, 22: 274-281.
|
[26] |
ZHENG C H, XIAO L F, QU R Y, et al. Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst[J]. Chemical Engineering Journal, 2019, 361: 874-884. doi: 10.1016/j.cej.2018.12.150
|
[27] |
LI H L, WU C Y, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219: 319-326. doi: 10.1016/j.cej.2012.12.100
|
[28] |
LIU X S, WU X D, XU T F, et al. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst[J]. Chinese Journal of Catalyst, 2016, 37: 1340-1346. doi: 10.1016/S1872-2067(15)61109-3
|
[29] |
KOBAYASHA M, KUMA R, MASAKI S, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2005, 60: 173-179. doi: 10.1016/j.apcatb.2005.02.030
|
[30] |
ZHAO K, HAN W L, TANG Z C, et al. Investigation of coating technology and catalytic performance over monolithic V2O5-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 503: 53-60.
|
[31] |
YANG B, SHEN Y S, ZENG Y W, et al. Effects of tin doping level on structure, acidity and catalytic performance of Ti-Ce-Ox catalyst for selective catalytic reduction of NO by ammonia[J]. Journal of Molecular Catalysis A: Chemical, 2016, 418-419: 138-145. doi: 10.1016/j.molcata.2016.03.042
|
[32] |
KOBAYASHI M, HAGI M. V2O5-WO3/TiO2-SiO2- $ {\rm{SO}}_{\rm{4}}^{{\rm{2 - }}}$ catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2[J]. Applied Catalysis B: Environmental, 2006, 63: 104-113. doi: 10.1016/j.apcatb.2005.09.015
|
[33] |
束航, 张玉华, 范红梅, 等. SCR脱硝中催化剂表面NH4HSO4生成及分解的原位红外研究[J]. 化工学报, 2015, 66(11): 4460-4468.
|
[34] |
马双忱, 金鑫, 孙云雪, 等. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. doi: 10.3969/j.issn.1002-3364.2010.08.012
|
[35] |
ZHOU H, ZHANG J K, ZHANG K. Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359-368. doi: 10.1016/j.fuproc.2018.07.030
|