-
截至2018年底,我国投入运行使用的污水处理厂达4 332座,污水处理能力达1.95×108 m3·d−1,治理规模居世界首位[1]。这意味着,会有大量的剩余污泥伴随着污水处理的过程产生。据统计,我国剩余污泥年产量已超过4×108 t(按含水率80%计)。其中,仅有20%左右的剩余污泥能够得到安全处置[2]。滞后的污泥处理处置能力带来的环境问题已日益凸显,部分未经妥善处理的剩余污泥所含有的病原微生物、重金属等污染物会重回环境,造成对环境的二次污染。因此,污泥的处理处置问题受到了广泛关注[3]。传统的厌氧消化技术由于存在有机物利用率低、甲烷产率低、污泥停留时间长等问题,很大程度限制了污泥处理处置资源化与减量化的效率[4]。
近年来,国内外研究者探究了多种污泥厌氧消化预处理方法,主要包括超声波预处理法、热预处理法、碱预处理法和过氧化氢预处理法等[5-7]。上述方法虽均可以有效提高污泥消化性能、增加厌氧消化水解速度和提高甲烷产率[8-9],但也存在药剂投加量大、能耗高和加热过程中有臭气产生等问题。有研究[10-12]表明,微量氧气的供应可以加快厌氧消化微生物内酶的水解速率、提高其微生物种群的相对丰度;同时,污泥中COD的溶解性能也可以得到改善[13-14]。JENICEK等[15]在连续流反应器中探究了预曝气对硫化氢去除效率、磷酸盐释放的影响。RAMOS等[16]在连续流厌氧消化中试系统中观察微曝气对超载条件下厌氧消化性能的影响,实验结果表明,微曝气能够增加消化系统的负荷。
以通入微量氧气作为预处理方式不需额外投加药剂,有利于减少成本、防止环境的二次污染。有研究[17-18]表明,微好氧预处理可以有效改善污泥中有机质溶解性和增加甲烷产率,但关于微好氧预处理影响因素的研究还比较少。本研究以含固率4%的市政污泥为研究对象,研究曝气强度、时间等因素对微好氧预处理提升污泥厌氧消化有机质溶出率和甲烷产率的影响,以期为开发高效的污泥厌氧消化预处理技术提供支撑。
微好氧预处理对市政污泥厌氧消化产甲烷的影响
Effect of microaerobic pretreatment on municipal sludge anaerobic digestion and methane production
-
摘要: 针对目前市政污泥处理资源化与减量化效率低的问题,利用微好氧预处理技术进行预处理,提高其甲烷产量。利用有机物溶出效率、VSS减量、甲烷产量3项指标对预处理效果进行了评价;研究了不同参数条件下微好氧预处理对市政污泥厌氧消化产甲烷的影响;探讨了微好氧预处理对污泥胞外聚合物的影响。结果表明,微好氧预处理可以促进污泥溶解性有机物释放、提高VSS去除率;在最佳反应条件下(曝气强度0.30 m3·(min·m3)−1、预处理时间12 h),相对于未经过预处理的工况,甲烷产量可提高26.77%;微好氧预处理对剩余污泥活性细胞的影响主要发生在胞外聚合物部分,同时也存在对活性微生物的破解作用。市政污泥经过微好氧预处理后,可有效提升后续中温厌氧消化或高温厌氧消化的甲烷产量。Abstract: Aiming at low efficiency of municipal sludge resource reuse and reduction, microaerobic pretreatment was used to improve the methane production from municipal sludge. The pretreatment effect was evaluated by soluble organic dissolved rate, VSS reduction and methane production efficiency. The effects of microaerobic pretreatment on anaerobic digestion of municipal sludge under different conditions and extracellular polymeric substances were studied. The results indicated that microaerobic pretreatment could promote the release of soluble organic matter in municipal sludge and improve the removal efficiency of VSS. Under the optimal reaction conditions: aeration intensity of 0.30 m3·(min·m3)−1, pretreatment time of 12 h, the methane production increased by 26.77% with comparison with the sludge without pretreatment. The effect of microaerobic pretreatment on cells in excess activated sludge mainly occurred on the extracellular polymeric substances(EPS) and the disintegration of microorganisms. Microaerobic pretreatment could cause the significant increase of methane production rate of mesophilic and thermophilic anaerobic digestion.
-
Key words:
- microaerobic pretreatment /
- municipal sludge /
- anaerobic digestion /
- methane
-
表 1 供试污泥主要性质
Table 1. Main characteristics of experimental sludge
污泥类型 pH 总固体/% VSS/% SCOD/(mg·L−1) 总COD/(g·L−1) 市政污泥 6.56±0.29 3.96±0.02 2.45±0.01 402.33±57.33 37.85±3.87 接种污泥 7.61±0.15 2.14±0.22 1.23±0.05 254.30±26.63 16.18±1.19 -
[1] 叶云晖, 张伟. 生态环境部公布2018年度《水污染防治行动计划》重点任务实施情况[EB/OL]. [2019-07-25]. http://www.gov.cn/xinwen/2019-07/25/content_5415071.htm, 2019. [2] 陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J/OL]. 化工进展: 1-14[2019-10-08]. https://doi.org/10.16085/j.issn.1000-6613.2019-1128. [3] 胡维杰. 我国污水处理厂污泥处理处置需关注的若干内容[J]. 给水排水, 2019, 55(3): 35-41. [4] 王磊, 谭学军, 王逸贤, 等. 热水解预处理剩余污泥的有机物分布及厌氧消化特性[J]. 环境工程, 2019, 37(3): 35-39. [5] YAN Y Y, CHEN H L, XU W Y, et al. Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment[J]. Biochemical Engineering Journal, 2013, 70(15): 127-134. [6] 廖足良, 冉小珊, 刘长青, 等. 热水解和超声波预处理对污泥厌氧消化效能的影响研究[J]. 环境工程, 2014, 32(6): 52-56. [7] 张峰, 冉晓珊, 包苏俊, 等. 热水解超声组合预处理对污泥厌氧消化产气潜力的影响研究[J]. 环境污染与防治, 2013, 35(9): 71-74. doi: 10.3969/j.issn.1001-3865.2013.09.015 [8] RUIZ-HERNANDO M, MARTÍN-DÍAZ J, LABANDA J, et al. Effect of ultrasound, low-temperature thermal and alkali pre-treatments on waste activated sludge rheology, hygienization and methane potential[J]. Water Research, 2014, 61(15): 119-129. [9] 余华平, 黄瑛, 洪锋, 等. 不同预处理方法对脱水污泥厌氧消化的影响[J]. 环境工程学报, 2018, 12(9): 2594-2601. doi: 10.12030/j.cjee.201803102 [10] GERRITSE J, SCHUT F, GOTTSCHAL J C. Mixedchemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions[J]. FEMS Microbiology Letters, 1990, 66(1): 87-93. [11] KATO S, HARUTA S, CUI Z J. Stable coexistence of five bacterial strains as a cellulosedegrading community[J]. Applied and Environmental Microbiology, 2005, 71(11): 7099-7106. doi: 10.1128/AEM.71.11.7099-7106.2005 [12] GOEL R, MINO T, SATOH H, et al. Effect of electron acceptor conditions on hydrolytic enzyme synthesis in bacterial cultures[J]. Water Research, 1997, 31(10): 2597-2603. doi: 10.1016/S0043-1354(97)00100-0 [13] MSHANDETE A, BJORNSSON L, KIVAISI A K, et al. Enhancement of anaerobic batch digestion of sisalpulp waste by mesophilic aerobic pretreatment[J]. Water Research, 2005, 39(8): 1569-1575. doi: 10.1016/j.watres.2004.11.037 [14] NGUYEN P H L, KURUPARAN P, VISVANATHAN C. Anaerobic digestion of municipal solid waste as a treatment prior to landfill[J]. Bioresource Technology, 2007, 98(2): 380-387. doi: 10.1016/j.biortech.2005.12.018 [15] JENICEK P, CELIS C A, KOUBOVA J, et al. Comparison of microbial activity in anaerobic and microaerobic digesters[J]. Water Science and Technology, 2011, 63(10): 2244-2249. doi: 10.2166/wst.2011.579 [16] RAMOS I, FDZ-POLANCO M. The potential of oxygen to improve the stability of anaerobic reactors during unbalanced conditions: Results from a pilotscale digester treating sewage sludge[J]. Bioresource Technology, 2013, 140(7): 80-85. [17] MONTALVO S, HUILINIR C. Microaerobic pretreatment of sewage sludge: Effect of air flow rate, pretreatment time and temperature on the aerobic process andmethane generation[J]. International Biodeterioration & Biodegradation, 2016, 110(5): 1-7. [18] DUMAS C, PEREZ S, PAUL E, et al. Combined thermophilic aerobic process and conventional anaerobic digestion: Effect on sludge biodegradation and methane production[J]. Bioresource Technology, 2010, 101(8): 2629-2636. doi: 10.1016/j.biortech.2009.10.065 [19] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [20] AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2003, 38(2): 255-266. [21] SMITH P K, KROHN R I, HERMANSON G T, et al. Measurement of protein using bicinchoninic acid[J]. Analytical Biochemistry, 1985, 150(1): 76-85. doi: 10.1016/0003-2697(85)90442-7 [22] SUN Y, CLINKENBEARD K D, CLARKE C, et al. Pasteurella haemolytica leukotoxin induced apoptosis of bovine lymphocytes involves DNA fragmentation[J]. Veterinary Microbiology, 1999, 65(2): 156-166. [23] 李一兵, 张千, 张彦平, 等. Fenton试剂氧化破解污泥的影响因素研究[J]. 河北工业大学学报, 2017, 46(1): 98-102. [24] 周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757. [25] 刘翔. 活性污泥和生物膜的胞外聚合物性质及其对污泥性能影响的比较研究[D]. 上海: 复旦大学, 2009. [26] MORGAN J W, FORSTER C F, EVISON L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research, 1990, 24(6): 743-750. doi: 10.1016/0043-1354(90)90030-A [27] HARIKLIA N, GAVALA, YENAL U, et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pretreatment at elevated temperature[J]. Water Research,, 2003, 37(19): 4561-4572. doi: 10.1016/S0043-1354(03)00401-9 [28] BURGESS J E, PLETSCHKE B I. Hydrolytic enzymes in sewage sludge treatment: A mini-review[J]. Water SA, 2008, 34(3): 343-349. [29] HASEGAWA S, SHIOTA N, KATSURA K, et al. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion[J]. Water Science and Technology, 2001, 41(3): 163-169. [30] LIU X, WANG W, GAO X B, et al. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste[J]. Waste Management, 2012, 32(2): 249-255. doi: 10.1016/j.wasman.2011.09.027 [31] JANG H M, CHO H U, PARK S K, et al. Influence of thermophilic aerobic digestion as a sludge pretreatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process[J]. Water Research, 2014, 48(6): 1-14. [32] WANG Z W, LIU Y, TAY J H. Biodegradability of extracellular polymericsubstances produced by aerobic granules[J]. Applied Microbiology and Biotechnology, 2007, 74(2): 462-466. doi: 10.1007/s00253-006-0686-x [33] MORE T T, YADAV J S S, YAN S, et al. Extracellular polymeric substances of bacteria and their potential environmental applications[J]. Journal of Environmental Management, 2014, 144(1): 1-25. [34] 袁冬琴, 王毅力. 活性污泥胞外聚合物(EPS)的分层组分及其理化性质的变化特征研究[J]. 环境科学, 2012, 33(10): 3522-3528. [35] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030. doi: 10.1016/j.watres.2006.06.037 [36] WANG H W, DENG H H, MA L M, et al. Influence of operating conditions on extracellular polymeric substances and surface properties of sludge flocs[J]. Carbohydrate Polymers, 2013, 92(1): 510-515. doi: 10.1016/j.carbpol.2012.09.055