-
氨气是一种无色、易反应、具有腐蚀性的气体,通常来自化肥生产行业、畜禽养殖业、化石燃料燃烧和污水处理厂[1]。氨气能够刺激人的皮肤、眼睛、呼吸系统,甚至是胃肠道。在浓度达到0.003~0.013 mg·L−1时,即可产生可识别的刺激性气味。氨气是大气中PM2.5的重要前体,其沉降后又会引发水体富营养化和土壤酸化[2],因此,其排放对人类健康及生态环境会产生潜在的危害。因此,世界各国政府都对不同的行业建立了严格的氨气排放标准。
含氨废气可以通过热氧化、催化燃烧、化学吸收和生物过滤的方法进行处理,其中生物过滤法由于其成本低、效率高被广泛应用于各行业[3]。生物滤池和生物滴滤池(biotrickling filter,BTF)是2种典型的生物过滤技术。传统的生物滤池以堆肥、泥炭和土壤为固体填料,这些填料为细菌附着提供载体,同时为细菌生长提供营养物质和pH缓冲体系。在BTF中,氨溶解进入液相,并输送到微生物表面,然后转移到细胞内,再通过生物转化,形成亚硝酸盐、硝酸盐和氮气。与生物滤池不同,BTF以惰性材料(聚氨酯泡沫、Kaldes环和多孔陶瓷)为细菌生长提供载体,以营养盐溶液的滴滤和再循环为细菌提供营养物质和pH缓冲体系。与化学洗涤法相比,BTF可将溶解在液相中的氨氧化成亚硝酸盐和硝酸盐,这有助于氨的进一步溶解,同时达到淋洗液循环使用的目的[4-5]。但是,由于游离亚硝酸(free nitric acid,FNA)对氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的抑制作用,淋洗液中的亚硝酸盐和硝酸盐积累会降低BTF的硝化性能[6-7]。而含有亚硝酸盐和硝酸盐的淋洗液排放后,仍能引发水体富营养化。因此,仅通过BTF的硝化作用并不能达到总氮控制的要求。为此,SAKUMA等[1]和RABONI等[8]利用反硝化处理BTF中的硝化淋洗液,取得了良好的效果。以葡萄糖和甘油作为碳源后,亚硝酸盐和硝酸盐显著降低,近70%的氨氮通过反硝化作用转化为氮气。若将反硝化过程的出水回流至BTF中,反硝化产生的碱度可以为硝化细菌创造合适的pH,从而强化硝化过程。利用反硝化处理BTF出水的唯一问题在于,须严格控制C/N,以防止有机物重新进入BTF中,影响硝化反应。
厌氧氨氧化是以亚硝酸盐为电子受体,在厌氧条件下将氨转化为氮气和少量硝酸盐的自养生物过程[9]。这一新型氮素转化途径经常与短程硝化过程联用,目前已被广泛应用于各类含氨废水的处理中[10-11]。本研究探讨了利用BTF对氨气淋洗液进行短程硝化并通过厌氧氨氧化上流式厌氧污泥床(UASB)对BTF的淋洗液出液进行净化的可行性,考察了回流比和氨气负荷对BTF中短程硝化过程的影响,以期为采用短程硝化-厌氧氨氧化组合工艺处理氨淋洗液提供参考。
短程硝化-厌氧氨氧化组合工艺对氨淋洗液的处理效果
Treatment of ammonia percolate by a combined process of shortcut nitrification and anaerobic ammonium oxidation
-
摘要: 为证明短程硝化-厌氧氨氧化组合工艺处理氨淋洗液的可行性,采用生物滴滤池(BTF)进行氨淋洗液的短程硝化,然后利用厌氧氨氧化上流式厌氧污泥床(UASB)对淋洗液进行脱氮处理。结果表明:当氨浓度为0.03~0.31 mg·L−1时,80%以上的氨被淋洗至液相,淋洗液中28%~84%的氮素可通过后续厌氧氨氧化过程被去除;在低、高氨负荷(0.072~0.72 kg·(m3·d)−1)时,BTF均可实现对氨淋洗液的短程硝化,证明亚硝酸的积累与氨负荷无明显关系;利用淋洗液中游离氨、游离亚硝酸对氨氧化细菌和亚硝酸氧化细菌的抑制作用以及O2传质的限制作用实现短程硝化。保证短程硝化BTF中亚硝酸积累、氨吸收效果、氨生物转化效率的最佳回流比为1∶2。上述研究结果可为采用短程硝化-厌氧氨氧化组合工艺处理氨淋洗液提供参考。Abstract: In order to prove the feasibility of the combined process of shortcut nitrification and anaerobic ammonium oxidation (anammox) treating ammonia percolate, a biotrickling filter (BTF) was used to perform shortcut nitrification of ammonia percolate, and the subsequent anammox UASB was used to conduct denitrification treatment from the percolate. The results showed that more than 80% gaseous ammonia was transferred to liquid phase in the BTF when ammonia content was 0.03~0.31 mg·L−1, and 28%~84% of the total nitrogen in the percolate could be removed through the following anammox process. At both low and high ammonia loading of 0.072~0.72 kg·(m3·d)−1, BTF could achieve shortcut nitrification for the percolate, which proved that nitrite accumulation was irrelative with ammonia loading. Shortcut nitrification could be well controlled through the inhibition effect of free ammonia and free nitric acid on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as well as oxygen mass transfer limitation effect. The optimal recycle ratio for nitrite accumulation, ammonia removal and biological ammonium conversion was 1∶2. The results provided a reference for a combined process of shortcut nitrification and anaerobic ammonium oxidation treating ammonia percolate.
-
表 1 BTF和厌氧氨氧化UASB反应器的营养盐溶液组成
Table 1. Chemical composition of mineral medium solution for BTF and anammox UASB
表 2 BTF中FA和FNA变化
Table 2. Change of FA and FNA in the BTF
回流比 氨气浓度/(mg·L– 1) 进液FA/(mg·L– 1) 出液FA/(mg·L– 1) 进液FNA/(mg·L– 1) 出液FNA/(mg·L– 1) 1∶4 0.12 0.2±0.1 8.8±4.4 0.046±0.009 0.024±0.009 1∶3 0.12 0.4±0.2 8.6±2.8 0.049±0.011 0.032±0.010 1∶2 0.12 0.7±0.1 11.3±2.4 0.064±0.016 0.032±0.007 1∶1 0.12 1.5±0.5 23.1±6.4 0.075±0.010 0.023±0.009 2∶1 0.12 5.8±1.8 16.7±6.8 0.159±0.048 0.108±0.031 0 0.14 无 8.8±3.0 无 0.033±0.010 0 0.17 无 14.4±6.9 无 0.017±0.006 0 0.21 无 12.1±4.1 无 0.028±0.009 0 0.24 无 29.1±8.0 无 0.012±0.003 0 0.27 无 94.0±19.5 无 0.003±0.001 表 3 主要氮转化细菌的相对丰度
Table 3. Relative abundance of major nitrogen conversion bacteria
氮转化
细菌类别氮转化
细菌属名样品A相对
丰度/%样品B相对
丰度/%AOB Nitrosomonas 14.9 24.9 NOB Nitrobacter 0.05 0.03 反硝化细菌 Rhodanobacter 30.9 7.8 反硝化细菌 Comamonas 9.0 5.8 反硝化细菌 Thermomonas 3.22 2.36 -
[1] SAKUMA T, JINSIRIWANIT S, HATTORI T, et al. Removal of ammonia from contaminated air in a biotrickling filter-denitrifying bioreactor combination system[J]. Water Research, 2008, 42(17): 4507-4513. doi: 10.1016/j.watres.2008.07.036 [2] 黄做华, 黄伟庆, 陈继红, 等. 功能化纤维对氨气的吸附性能研究[J]. 河南科学, 2019, 37(10): 1579-1583. doi: 10.3969/j.issn.1004-3918.2019.10.006 [3] 陈颖, 郭进, 刘伟, 等. 高浓度氨气去除机理及微生物增长动力学[J]. 化学工程, 2017, 45(12): 1-5. doi: 10.3969/j.issn.1005-9954.2017.12.001 [4] YANG L, WANG X, FUNK T L. Strong influence of medium pH condition on gas-phase biofilter ammonia removal, nitrous oxide generation and microbial communities[J]. Bioresource Technology, 2014, 152: 74-79. doi: 10.1016/j.biortech.2013.10.116 [5] RYBARCZYK P, SZULCZYÑSKI B, GEBICKI J. Treatment of malodorous air in biotrickling filters: A review[J]. Biochemical Engineering Journal, 2019, 141(15): 146-162. [6] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039 [7] DUAN H, WANG Q, ERLER D V, et al. Effects of free nitrous acid treatment conditions on the nitrite pathway performance in mainstream wastewater treatment[J]. Science of the Total Environment, 2018, 644(10): 360-370. [8] RABONI M, TORRETTA V. A modified biotrickling filter for nitrification-denitrification in the treatment of an ammonia-contaminated air stream[J]. Environmental Science & Pollution Research, 2016, 23: 24256-24264. [9] XU D, KANG D, YU T, et al. A secret of high-rate mass transfer in anammox granular sludge: “Lung-like breathing”[J]. Water Research, 2019, 154(1): 189-198. [10] LI X, YUAN Y, WANG F, et al. Highly efficient of nitrogen removal from mature landfill leachate using a combined DN-PN-Anammox process with a dual recycling system[J]. Bioresource Technology, 2018, 265: 357-364. doi: 10.1016/j.biortech.2018.06.023 [11] KOWALSKI M S, DEVLIN T R, DI BIASE A, et al. Effective nitrogen removal in a two-stage partial nitritation-anammox reactor treating municipal wastewater-piloting PN-MBBR/AMX-IFAS configuration[J]. Bioresource Technology, 2019, 289: 121742. doi: 10.1016/j.biortech.2019.121742 [12] STROUS M, VAN GERVEN E, KUENEN J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge[J]. Applied and Environmental Microbiology, 1997, 63(6): 2446-2448. doi: 10.1128/AEM.63.6.2446-2448.1997 [13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control, 1976, 48(5): 835-852. [15] MA B, YANG L, WANG Q, et al. Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid[J]. Bioresource Technology, 2017, 245: 1266-1270. doi: 10.1016/j.biortech.2017.08.074 [16] PRAKASH O, GREEN S J, JASROTIA P, et al. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(10): 2457-2462. [17] PENG X, GUO F, JU F, et al. Shifts in the microbial community, nitrifiers and denitrifiers in the biofilm in a full-scale rotating biological contactor[J]. Environmental Science & Technology, 2014, 48: 8044-8052. [18] LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042 [19] XING W, LI D, LI J, et al. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification[J]. Bioresource Technology, 2016, 211: 240-247. doi: 10.1016/j.biortech.2016.03.044 [20] WU H, GUO C, YIN Z, et al. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene[J]. Bioresource Technology, 2018, 257: 201-209. doi: 10.1016/j.biortech.2018.02.108 [21] RODRIGUE-SANCHEZ A, LEYVA-DIAZ J C, GONZALEZ-MARTINEZ A, et al. Linkage of microbial kinetics and bacterial community structure of MBR and hybrid MBBR-MBR systems to treat salinity-amended urban wastewater[J]. Biotechnology Progress, 2017, 33(6): 1483-1495. doi: 10.1002/btpr.2513 [22] QIU Y L, KUANG X, SHI X, et al. Terrimicrobium sacchariphilum gen. nov., sp. nov., an anaerobic bacterium of the class Spartobacteria in the phylum Verrucomicrobia, isolated from a rice paddy field[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(5): 1718-1723. [23] 王博. 高氨氮废水亚硝化控制策略及运行特性[D]. 西安: 西安建筑科技大学, 2016. [24] BAQUERIZO G, MAESTRE J P, MACHADO V C, et al. Long-term ammonia removal in a coconut fiber-packed biofilter: Analysis of N fractionation and reactor performance under steady-state and transient conditions[J]. Water Research, 2009, 43: 2293-2301. doi: 10.1016/j.watres.2009.02.031 [25] 林兴, 王凡, 袁砚, 等. 基于厌氧氨氧化的含氨废气原位处理[J]. 环境科学, 2017, 38(7): 2947-2951.