-
在全程硝化反硝化工艺中,总氮的去除是在有氧环境下经由NH3-N→
$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N→$ {\rm{NO}}_{\rm{3}}^ - $ -N等一系列氧化过程,再在缺氧环境下经由$ {\rm{NO}}_{\rm{3}}^ - $ -N→$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N→N2等一系列还原过程来实现[1]。从硝化与反硝化路径可以看出,硝化反应中$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N氧化成$ {\rm{NO}}_{\rm{3}}^ - $ -N与反硝化反应中$ {\rm{NO}}_{\rm{3}}^ - $ -N还原成$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N是刚好相反的路径,如果将其从反应路径中去掉,采用短程硝化反硝化工艺,即NH3-N→$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N→N2,总氮的去除是同样可以实现的[2]。相比全程硝化反硝化工艺而言,短程硝化反硝化工艺因为略去了$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N向$ {\rm{NO}}_{\rm{3}}^ - $ -N的转化步骤,硝化阶段可节约曝气量25%左右[3-8];因为省去了$ {\rm{NO}}_{\rm{3}}^ - $ -N还原为$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N步骤,根据反应计量学,1 mol$ {\rm{NO}}_{\rm{3}}^ - $ -N和1 mol$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N还原为N2,分别需要2.86 mol和1.71 mol的BOD[9],从理论上讲,可节约反硝化碳源40%左右[10-12];因为整个反应路径缩短,反应器容积减小,可节约大笔污水处理厂基建费用[13-14]。成功启动短程硝化反硝化的关键在于使氨氧化细菌(AOB)达到富集状态,同时抑制亚硝态氮氧化细菌(NOB)的增殖或活性,使AOB在整个系统中成长为优势菌种,逐步将NOB淘洗出系统,从而使硝化反应中氮素的转化停留在$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N环节,达到$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N累积的目的[15-16]。当前,我国城市污水C/N普遍为3.8~8.5,属于典型低C/N污水[17-18],采用传统污水处理工艺往往会因为碳源不足,导致总氮的去除困难重重[19-20],无法满足当下国家对污水排放标准不断升级的要求。而短程硝化反硝化工艺因能节约大量反硝化碳源,实现低C/N下氮素的深度去除而备受研究人员和工程技术人员的广泛关注。高春娣等[21]在(24±2) ℃下采用交替好氧缺氧短程硝化工艺处理低C/N生活污水,
$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N累积率可稳定维持在90%以上,NH3-N的去除率可达100%,COD的去除率在80%左右,TN的去除率要高于普通好氧缺氧模式,能达到70%左右。徐浩等[22]在(30±1) ℃下成功启动短程硝化工艺,处理低C/N城市污水,NH3-N的平均转化率可达到99%,$ {\rm{NO}}_{\rm{2}}^{\rm{ - }}$ -N的平均累积率可达90%以上。可以看出,在已有的研究中,普遍开展的是基于实验室或中试规模的中、高温条件下的短程硝化反硝化工艺研究,但将其成功应用于低温环境下的工程实践却鲜有报道。鉴于此,本研究针对低C/N城市污水,在具体工程实例中,探讨了低温环境下启动短程硝化反硝化的可行性,通过对好氧池溶解氧进行分区定量优化,实现了对好氧池的“缺氧扰动”,考察了不同溶解氧分布对短程硝化反硝化工艺的影响,从而为该工艺在实际生产运行中的优化控制提供参考。
交替好氧/缺氧短程硝化反硝化工艺处理低C/N城市污水
Alternating aerobic/anoxic short-cut nitrification and denitrification process for treating low C/N urban sewage
-
摘要: 采用好氧/缺氧交替运行模式处理低C/N城市污水,考察了低温环境下启动短程硝化反硝化的可行性,重点研究了好氧池区域Ⅰ、区域Ⅱ、区域Ⅲ溶解氧分布对短程硝化反硝化脱氮效果的影响。结果表明,采用好氧/缺氧交替运行模式,对好氧池溶解氧进行分区优化后,在低温环境下启动短程硝化反硝化具有可行性。在所采用的7种工况中,较为优化的工况是区域Ⅰ、区域Ⅱ、区域Ⅲ,溶解氧分别为0.8~1.2、<0.5、1.2~1.8 mg·L−1,该工况下亚硝态氮累积率稳定在78%以上,出水总氮去除率在73%左右。相比短程硝化反硝化启动前,去除率提高了19.4%,氨氮浓度低于0.60 mg·L−1,出水氮素指标显著优于GB 18918-2002一级A排放标准,出水COD去除率为86.9%~94.9%,出水总磷浓度低于0.15 mg·L−1,可控性仍然较强。对于已启动短程硝化反硝化的A/O工艺处理低C/N城市污水,全年可节约碳源投加资金97×104元左右,节约电费42×104元左右,有效实现了成本与水质的双赢。以上结果可为短程硝化反硝化工艺的工程推广提供参考。Abstract: The alternating aerobic/anoxic operation mode was used to treat low C/N urban sewage. The starting up feasibility of the short-cut nitrification and denitrification in low temperature environment and the effect of dissolved oxygen distribution in aerobic zone I, II and III on the nitrogen removal by the short-cut nitrification and denitrification were studied. The results show that it was feasible to start up the short-cut nitrification and denitrification at low temperature by using the alternating aerobic/anoxic operation mode and partition-optimizing the dissolved oxygen in aerobic tank. Based on the seven different operating conditions, the dissolved oxygen distributions in the more optimal zones I, II and III were 0.8~1.2 mg·L−1, lower than 0.5 mg·L−1, and 1.2~1.8 mg·L−1, respectively. Under this operating condition, the accumulation rate of nitrite nitrogen maintained above 78%, the removal rate of total nitrogen in the effluent was about 73%. Compared with that before the start-up of the short-cut nitrification and denitrification, the removal rate increased by 19.4%, the concentration of ammonia nitrogen was lower than 0.60 mg·L−1, and the nitrogen index of effluent was significantly better than the emission standard of the first level A of GB 18918-2002. The COD removal rate of the effluent was between 86.9% and 94.9%. The total phosphorus concentration of the effluent was lower than 0.15 mg·L−1 with strong controllability. For the low C/N urban sewage treated by using the short-cut nitrification and denitrification A/O process, it can save more than 970 000 yuan of carbon source investment fund and 420 000 yuan of electricity cost in the whole year, and effectively realize the win-win of cost and water quality. This study provides a case and parameter support for the engineering popularization of the short-cut nitrification and denitrification process.
-
表 1 工况参数
Table 1. Parameters of the operating conditions
工况 溶解氧/(mg·L−1) MLSS/
(mg·L−1)MLVSS/
(mg·L−1)污泥负荷/
(kg·(kg·d)−1)容积负荷/
(kg·(m3·d)−1)产泥率/
(t·(104 m3)−1)污泥龄/d 区域Ⅰ 区域Ⅱ 区域Ⅲ 工况A 1.0~1.5 1.5~2.0 2.0~2.5 4 016 1 740 0.23 0.41 1.70 18 工况B 1.0~1.5 0.5~1.0 2.0~2.5 4 114 1 651 0.22 0.37 1.65 18 工况C 0.8~1.2 0.5~1.0 2.0~2.5 4 032 1 592 0.22 0.34 1.53 18 工况D 0.8~1.2 <0.5 2.0~2.5 3 977 1 548 0.20 0.31 1.46 18 工况E 0.8~1.2 <0.5 1.5~2.0 3 893 1 484 0.18 0.26 1.19 17 工况F 0.8~1.2 <0.5 1.0~1.5 3 967 1 457 0.18 0.27 1.23 17 工况G 0.8~1.2 <0.5 1.2~1.8 3 816 1 402 0.19 0.26 1.07 17 -
[1] WANG F, LIU Y, WANG J H, et al. Influence of growth manner on nitrifying bacterial communities and nitrification kinetics in three lab-scale bioreactors[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4): 595-604. [2] 张周, 赵明星, 阮文权, 等. 短程硝化反硝化工艺处理低C/N餐厨废水[J]. 环境工程学报, 2015, 9(9): 4165-4170. doi: 10.12030/j.cjee.20150912 [3] KATSOGIANNIS A N, KORNAROS M, LYBERATOS G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs[J]. Water Science & Technology , 2003, 47(11): 53-59. [4] ZHU G B, PENG Y Z, GUO J H. Biological nitrogen removal with nitrification and denitrification via nitrite pathway[J]. Applied Microbiology & Biotechnology, 2006, 73(1): 15-26. [5] 郭建华, 彭永臻, 黄惠珺, 等. 好氧曝气时间实时控制实现短程硝化[J]. 清华大学学报(自然科学版), 2009, 49(12): 1997-2000. doi: 10.3321/j.issn:1000-0054.2009.12.021 [6] GAO C D, FAN S X, JIAO E L, et al. Operation and optimization of an alternating oxic-anoxic shortcut nitrification-denitrification system[J]. Advanced Materials Research, 2014, 1030-1032: 387-390. doi: 10.4028/www.scientific.net/AMR.1030-1032.387 [7] 常赜, 孙宁, 李召旭, 等. 硫化物抑制亚硝酸氧化菌推动短程硝化反硝化生物脱氮技术[J]. 环境工程学报, 2018, 12(5): 1416-1423. doi: 10.12030/j.cjee.201710144 [8] 高春娣, 赵楠, 安冉, 等. FNA对短程硝化污泥菌群结构的影响[J]. 中国环境科学, 2019, 39(5): 1977-1984. doi: 10.3969/j.issn.1000-6923.2019.05.022 [9] JENNI S, VLAEMINCK S E, MORGENROTH E, et al. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios[J]. Water Research, 2014, 49(2): 316-326. doi: 10.1016/j.watres.2013.10.073 [10] ZHU G B, PENG Y Z, LI B K, et al. Biological removal of nitrogen from wastewater[J]. Reviews of Environmental Contamination and Toxicology, 2008, 192: 159-195. doi: 10.1007/978-0-387-71724-1_5 [11] KORNAROS M, DOKIANAKIS S N, LYBERATOS G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances[J]. Environmental Science & Technology, 2010, 44(19): 7245-7253. [12] TOBINO T, CHEN J X, SAWAI O, et al. Inline thickener-MBR as a compact, energy efficient organic carbon removal and sludge production devise for municipal wastewater treatment[J]. Chemical Engineering and Processing: Process Intensification, 2016, 107: 177-184. doi: 10.1016/j.cep.2015.11.010 [13] VERSTRAETE W, PHILIPS S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental Pollution, 1998, 102(1): 717-726. doi: 10.1016/S0269-7491(98)80104-8 [14] 高大文, 彭永臻, 王淑莹. 交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ. 方法实现与控制[J]. 环境科学学报, 2004, 24(5): 761-768. doi: 10.3321/j.issn:0253-2468.2004.05.002 [15] 曾薇, 张悦, 李磊, 等. 生活污水常温处理系统中AOB与NOB竞争优势的调控[J]. 环境科学, 2009, 30(5): 1430-1436. doi: 10.3321/j.issn:0250-3301.2009.05.030 [16] MA B, BAO P, WEI Y, et al. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via anammox using intermittent aeration with low dissolved oxygen[J]. Scientific Reports, 2015, 5(1): 13048. doi: 10.1038/srep13048 [17] 李思敏, 杜国帅, 唐锋兵. 多点进水改良型复合A2/O处理低C/N污水[J]. 化工学报, 2013, 64(10): 3805-3811. [18] 刘春, 王聪聪, 陈晓轩, 等. 微气泡曝气生物膜反应器处理低C/N比废水脱氮过程[J]. 环境科学, 2019, 40(2): 754-760. [19] CHEN Y Z, LI B K, YE L, et al. The combined effects of cod/n ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O)-biological aerated filter (BAF) systems[J]. Biochemical Engineering Journal, 2015, 93(10): 235-242. doi: 10.1016/j.bej.2014.10.005 [20] PELAZ L, GOMEZ A, LETONA A, et al. Nitrogen removal in domestic wastewater. Effect of nitrate recycling and COD/N ratio[J]. Chemosphere, 2018, 212: 8-14. doi: 10.1016/j.chemosphere.2018.08.052 [21] 高春娣, 李浩, 焦二龙, 等. 交替好氧缺氧短程硝化及其特性[J]. 北京工业大学学报, 2015, 41(1): 116-122. [22] 徐浩, 李捷, 罗凡, 等. 低C/N比城市污水短程硝化特性及微生物种群分布[J]. 环境工程学报, 2017, 11(3): 1477-1481. doi: 10.12030/j.cjee.201511206 [23] 张功良, 李冬, 张肖静, 等. 低温低氨氮SBR短程硝化稳定性试验研究[J]. 中国环境科学, 2014, 34(3): 610-616. [24] 吴春雷, 荣懿, 刘晓鹏, 等. 基于分区供氧与溶解氧调控的低C/N比污水短程硝化反硝化[J]. 环境科学, 2019, 40(5): 314-320. [25] 吴朕君, 穆剑楠, 单润涛, 等. 基于DO和ORP的短程硝化SBR控制方法研究[J]. 水处理技术, 2019, 45(7): 114-118. [26] 邱春生, 聂海伦, 孙力平, 等. 不同碳源条件下聚磷菌代谢特性[J]. 环境工程学报, 2014, 8(6): 2191-2197. [27] SHISKOWSKI D M, MAVINIC D S. Biological treatment of a high ammonia leachate: Influence of external carbon during initial startup[J]. Water Research, 1998, 32(8): 2533-2541. doi: 10.1016/S0043-1354(97)00465-X [28] 楚想想, 罗丽, 王晓昌, 等. 我国城镇污水处理厂的能耗现状分析[J]. 中国给水排水, 2018, 34(7): 70-74.