-
正渗透技术是一种新兴的膜分离技术,其在污水浓缩处理中具有一定的应用潜力。正渗透(forward osmosis,FO)是一种膜工艺,在不同的行业中得到广泛的应用。在食品加工行业中,正渗透技术逐步取代了传统的热加工分离技术,SHALINI等[1]的研究表明,与热分离过程相比,通过正渗透过程后,甘蔗原汁可以在18 h内由250 mL浓缩至99.6 mL,且不会失去原有的色泽和风味的同时,提高了工作效率。在废水处理行业中,JIANG等[2]在4 mol·L−1的NH4HCO3作为汲取液的情况下,采用正渗透膜技术从油砂废水中回收85%以上的水,对离子型污染物有80%~100%的截留率。GE等[3]利用Na3[Cr(C2O4)3)]络合物作为汲取液,在60 ℃时,从高含砷原水中回收水,最终将含砷量降至10 μg·L−1以下,达到了世界卫生组织(WHO)的标准。在净水行业中,FO成为一种可行的海水淡化工艺,以NH3-CO2为汲取液应用于正渗透海水淡化,均获得了较高的脱盐效率,并且汲取液可以通过加热回收。由于不需要大量借助外力,FO技术耗能相当于传统脱盐技术的72%~85% [4]。
近年来,FO工艺因在废水资源回收方面的优势受到广泛关注[5-8]。FO不需借助大量外界能量,依靠渗透压差来浓缩污水[9-10],浓缩后的污水可以进行资源化处理;膜上积累的污染物结构松散,恢复性较好[11-14];被稀释后的汲取液,如氯化钠可以通过反渗透方式回收,氯化镁可以通过纳滤方式回收;回收后的汲取液重新进入FO系统[15],同时获得高质量出水,如图1所示。汲取液是否能提供高的渗透压、低的反混通量和便捷回收,是FO工艺的关键之一。
LIU等[16]使用碳酸氢铵与8种可溶性无机盐(K2SO4、NaCl、KCl、KNO3、NH4Cl、NH4NO3、尿素和(NH4)2HPO4)的混合汲取溶液处理去离子水和微咸水时,发现8种混合汲取液的水通量均得到增强。这说明混合无机盐汲取液具有一定的协同作用。HAMDAN等[17]利用渗透压计算得出,NaCl和MgCl2的混合汲取液可以获得优良的可持续性操作渗透压性能。目前,鲜有混合无机盐汲取液浓缩城市污水的有关研究报道。本研究考察了不同浓度配比的混合无机盐(MgCl2和NaCl)汲取液对我国南方低浓度城市污水的浓缩性能,并对膜污染进行了考察,为FO用于城市污水资源化提供参考。
混合无机盐汲取液在城市污水正渗透浓缩技术中的应用
Application of mixing inorganic salt as draw solution in forward osmosis concentration technology
-
摘要: 为实现浓缩城市污水以提高其资源化价值,构建了正渗透膜污水浓缩系统,研究了其对南方低浓度城市污水的有机污染物浓缩效果和膜污染特性。结果表明:使用含有1.6 mol·L−1 MgCl2 和2.4 mol·L−1 NaCl混合汲取液浓缩城市污水时,正渗透膜的水通量可达到27 L·(m2·h)−1;南方城市污水浓缩6倍以上可满足后续资源化处理要求,浓缩后的TOC、COD、总磷、氨氮的平均回收率分别达到96.3%,95.72%,99%和90.4%;浓缩过程中膜污染较轻,采用化学清洗,水通量恢复率较物理清洗更高。以上结果为正渗透浓缩城市污水中混合无机盐汲取液的研究提供参考。Abstract: In order to achieve municipal sewage concentrating and raise its resource value, a FO system was introduced to concentrate the municipal sewage with low concentration in southern China. The performance of concentrating organic pollutants and membrane fouling characteristics were investigated. The results of experiments showed that the water flux of FO membrane could reach 27 L·(m2·h)−1 when it was used to concentrate municipal with the mixed draw solution of 1.6 mol·L−1 magnesium chloride and 2.4 mol·L−1 sodium chloride. For the southern municipal sewage, it could be concentrated high than 6 times to meet the subsequent resource requirements, and the average recovery efficiencies of TOC, COD, TP, and NH3-N were 96.3%, 95.72%, 99% and 90.4%, respectively. The FO membrane showed low fouling potential during the concentration process, and the recovery rate of the membrane flux by chemical cleaning was higher than that by physical cleaning. These results provide guidance for the study of mixed inorganic salt draw solution in municipal sewage concentrating by FO.
-
Key words:
- forward osmosis /
- concentration /
- mixed inorganic salt solution /
- municipal sewage
-
表 1 不同体积浓缩倍数下的COD
Table 1. COD at different volume concentration multiples
体积浓缩/倍 COD/(mg·L−1) 浓度浓缩/倍 原液 225 — 2 340~390 1.51~1.7 3 520~390 2.31~2.52 4 690~738 3.06~3.28 5 810~859 3.6~3.81 6 1 018~1 200 4.52~5.33 表 2 体积浓缩6倍后的膜截留性能
Table 2. Membrane retention after six times volume concentration
分析指标 原料液浓度/(mg·L−1) 浓度浓缩/倍 汲取液浓度/(mg·L−1) 截留率/% 平均截留率/% TOC 320~373 4.1~4.6 9.9~15.2 95.9~97.1 96.3 COD 1 018~1 200 4.6~5.4 39.2~53.1 94.9~96.1 95.72 氨氮 83.5~96.7 3.35~3.87 8.05~9.81 90.2~92.25 90.4 总磷 51.3~57.7 4.8~5.4 0.46~0.69 98.7~99.2 99 -
[1] SHALINI H N, NAYAK C A. Forward Osmosis Membrane Concentration of Raw Sugarcane Juice[M]. Singapore: Springer Singapore, 2016. [2] JIANG Y X, LIANG J M, LIU Y. Application of forward osmosis membrane technology for oil sands process-affected water desalination[J]. Water Science and Technology, 2016, 73(8): 1809-1816. doi: 10.2166/wst.2016.014 [3] GE Q C, HAN G, CHUNG T S. Effective As(Ⅲ) removal by a multi-charged hydracid complex draw solute facilitated forward osmosis-membrane distillation(FO-MD) processes[J]. Environmental Science & Technology, 2016, 50(5): 2362-2370. [4] MCGINNIS R L, ELIMELECH M. Energy requirements of ammonia carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1/2/3): 370-382. doi: 10.1016/j.desal.2006.08.012 [5] CHEKLI L, PHUNTSHO S, KIM J E, et al. A comprehensive review of hybrid forward osmosis systems[J]. Journal of Membrane Science, 2016, 497: 430-449. doi: 10.1016/j.memsci.2015.09.041 [6] LUTCHMIAH K, VERLIEFDE A R D, ROEST K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197. doi: 10.1016/j.watres.2014.03.045 [7] SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis: Where are we now?[J]. Desalination, 2015, 356: 271-284. doi: 10.1016/j.desal.2014.10.031 [8] YANG Q, LEI J, SUN D D, et al. Forward osmosis membranes for water reclamation[J]. Separation & Purification Reviews, 2016, 45: 93-107. [9] ANSARI A J, HAI F I, GUO W, et al. Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater[J]. Bioresource Technology, 2015, 191: 30-36. doi: 10.1016/j.biortech.2015.04.119 [10] ZHANG X, NING Z, WANG D K, et al. Processing municipal wastewaters by forward osmosis using CTA membrane[J]. Journal of Membrane Science, 2014, 468: 269-275. doi: 10.1016/j.memsci.2014.06.016 [11] TANG C Y, SHE Q, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humid acid filtration[J]. Journal of Membrane Science, 2010, 354(1/2): 123-133. doi: 10.1016/j.memsci.2010.02.059 [12] MI B, ELIMELECH M. Chemical and physical aspects of organic fouling of forward osmosis membranes[J]. Journal of Membrane Science, 2008, 320(1/2): 292-302. doi: 10.1016/j.memsci.2008.04.036 [13] MI B, ELIMELECH M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents[J]. Journal of Membrane Science, 2010, 348(1/2): 337-345. doi: 10.1016/j.memsci.2009.11.021 [14] LEE S, BOO C, ELIMELECH M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. Journal of Membrane Science, 2010, 365(1): 34-39. doi: 10.1016/j.memsci.2010.08.036 [15] 吴秋燕, 张忠国, 杨柳, 等. 正渗透汲取液的研究进展[J]. 环境科学与技术, 2015, 38(6): 139-145. [16] LIU P, GAO B, SHON H K, et al. Water flux behavior of blended solutions of ammonium bicarbonate mixed with eight salts respectively as draw solutions in forward osmosis[J]. Desalination, 2014, 353: 39-47. doi: 10.1016/j.desal.2014.09.011 [17] HAMDAN M, SHARIF A O, DERWISH G, et al. Draw solutions for forward osmosis process: Osmotic pressure of binary and ternary aqueous solutions of magnesium chloride, sodium chloride, sucrose and maltose[J]. Journal of Food Engineering, 2015, 155: 10-15. doi: 10.1016/j.jfoodeng.2015.01.010 [18] NAWAZ M S, GADELHA G, KHAN S J, et al. Microbial toxicity effects of reverse transported draw solute in the forward osmosis membrane bioreactor (FO-MBR)[J]. Journal of Membrane Science, 2013, 429: 323-329. doi: 10.1016/j.memsci.2012.11.057 [19] 徐婷. 以膜分离为主的物化系统对城市污水污染因子的分离特性分析[D]. 苏州: 苏州科技大学, 2018. [20] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [21] 刘志强, 李慧, 程一桥, 等. 正渗透膜分离技术处理生活污水的实验研究[J]. 水处理技术, 2016, 42(12): 68-71. [22] 刘彩虹. 正渗透工艺特性及膜污染特征研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [23] 方舟, 高悦, 梁鹏, 等. 正渗透膜浓缩生活污水效果及膜过程特性[J]. 中国给水排水, 2015, 31(5): 40-44.