-
酚类污染物是工业废水中常见的一类污染物,在石油精炼、塑料制造、树脂生产、农药生产、钢铁制造以及油漆生产等工业生产过程都有酚类污染物的产生[1]。酚类污染物的种类很多,其中以苯酚、甲酚、氯酚的污染最为突出[2]。由于苯酚及其衍生物有毒且难以降解,在水环境中分布广泛,已对生态环境造成损害,同时也严重威胁着人类的生存和发展,中国将苯酚、间甲酚、2, 4-二氯苯酚、2, 4, 6-三氯苯酚、五氯苯酚和对硝基苯酚列入环境优先处理的污染物“黑名单”[3]。因此,高效治理含酚废水的研究十分重要。
含酚废水的处理方法有很多,主要分为物理法、化学法和生物法。其中生物法因其成本低、二次污染小等优点而被广泛应用[4]。生物法处理含酚废水的关键在于降酚菌株的筛选[5]。据报道,国内外学者已从环境中成功分离、筛选出了一些降酚菌株。EREQAT等[6]从橄榄油废物中分离出1株苏云金芽孢杆菌(Bacillus thuringiensis),在96 h内对700 mg·L−1苯酚的最大去除率可达到88.6%;JIANG等[7]从工业废水处理系统中分离出1株德巴利氏酵母(Debaryomyces),在32 h内可完全降解500 mg·L−1苯酚;贾子龙[8]从焦化废水中分离出1株假单胞菌(Pseudomonas sp.),可在78 h内完全降解360 mg·L−1间甲酚;黄强等[9]筛选得到1株铜绿假单胞菌(Pseudomonas aeruginosa),其降解50 mg·L−1对硝基苯酚需要8 h;于彩虹等[10]从首钢焦化废水处理系统中分离出蜡状芽孢杆菌(Bacillus cereus),其完全降解400 mg·L−1和800 mg·L−1苯酚所需要的时间分别为24 h和72 h。这些菌株均能以单一酚为唯一碳源进行生长,但在有其他有机碳源存在时酚类物质降解的研究较少。酚类污染物种类繁多,寻求对酚类污染物具有降解广谱性,能够降解不同酚类物质的菌株对含酚废水的生物处理具有重要意义。同时,为了更好地研究降酚菌对酚类污染物的降解机理,降解动力学的研究是必不可少的[11]。微生物降解动力学有助于微生物处理的设计、运行合理化与科学化,克服长期以来微生物处理的设计和运行多为根据经验数据来进行的局限,为酚类污染物的生物处理提供理论依据[12]。
本研究报道了1株能以多种酚类污染物作为唯一碳源生长的红球菌对酚类污染物的耐受性,并针对其在耐受性强的3种酚中的生长情况结合降解特性进行了分析,发现该菌株在其他有机碳源存在时表现出更高的酚降解效率,这一特性更利于在酚类污染物土壤、水体治理中的实际应用。为阐明该菌株对苯酚、间甲酚、邻苯二酚3种酚类污染物的最适降解环境,根据菌株对3种酚的最小抑菌浓度,选择合适的浓度梯度建立动力学模型,为酚类污染物的治理提供技术基础。
嗜联苯红球菌B403对酚类污染物的降解特性及动力学分析
Degradation characteristics and kinetic analysis of phenolic pollutants by Rhodococcus biphenylivorans B403
-
摘要: 为提高降酚菌株的降酚能力,实验测定了嗜联苯红球菌B403对6种酚的最小抑菌浓度,考察了该菌在不同碳源条件下的生长与降酚特性及其关联,进而研究其降解动力学规律。结果表明,菌株B403对苯酚、间甲酚、邻苯二酚、对硝基苯酚、2, 4-二氯苯酚和2, 4, 6-三氯苯酚的最小抑菌浓度分别为1 190、630、700、140、70、48 mg·L−1,菌株B403对苯酚、间甲酚、邻苯二酚表现出较强的耐受性。分别以这3种酚为唯一碳源,该菌株能有效降解苯酚和间甲酚,无机盐培养基中处理30 h后,苯酚、间甲酚、邻苯二酚的降解率分别为97.85%、100%、56.54%;当有其他有机碳源存在时,菌株B403的生物量大幅度提高,3种酚的降解效率也显著提高,处理15 h后LB-无机盐混合培养基中苯酚、间甲酚、邻苯二酚的降解率分别为98.92%、99.93%、94.35%。菌株B403的降酚动力学过程符合Haldane模型,菌株B403降解苯酚的动力学参数为qm=0.503 h−1,Ks=270.9 mg·L−1,KI=69 mg·L−1;降解间甲酚时,qm=0.672 h−1,Ks=171.9 mg·L−1,KI=23.74 mg·L−1;降解邻苯二酚时,qm=1.749 h−1,Ks=541.9 mg·L−1,KI=42.61 mg·L−1。根据动力学方程,推论降解苯酚、间甲酚、邻苯二酚的最佳浓度分别为136.4、87.4、116.1 mg·L−1。综合上述结果,其他有机碳源的存在可以显著提高该菌株降酚能力和降解效率,在工业含酚废水治理及有机质丰富的酚类污染土壤修复领域具有一定的应用潜力。Abstract: The removal of phenolic pollutants is a key issue in the treatment of industrial wastewater, therefore, characterizing strains with degradation ability of phenolic pollutants is of great significance. In this study, the minimum inhibitory concentrations of Rhodococcus biphenylivorans B403 agaisnt six phenolic pollutants of phenol, such as m-cresol, catechol, p-nitrophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol, were determined. The results showed that the minimum inhibitory concentrations of strain B403 on phenol, m-cresol, catechol, p-nitrophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol were 1 190, 630, 700, 140, 70, 48 mg·L−1, respectively. And strain B403 had stronger tolerability on phenol, m-cresol and catechol than others. Subsequently, the growth and degradation properties of Rhodococcus biphenylivorans B403 for these three pollutants under different carbon sources were investigated. The strain B403 could effectively degrade phenol and m-cresol when a phenolic compound was used as the sole carbon source. After 30 h treatment in inorganic salt medium, the degradation rates of phenol, m-cresol and catechol were 97.85%, 100%, 56.54%, respectively. At the present of other organic carbon sources, the biomass of strain B403 greatly increased, and the degradation effieciency of the three types of phenolic pollutants was significantly improved. After 15 h treatment in the mixed medium of LB-inorganic salt, the degradation rates of phenol, m-cresol and catecholwere 98.92%, 99.93%, 94.35%, respectively. To further characterize the properties of strain B403, the Haldane model was used to fit the phenol degradation kinetics under optimal degradation conditions. For phenol degradation by strain B403 at different concentrations, the qm, Ks and KI were 0.503 h−1, 270.9 mg·L−1 and 69 mg·L−1, respectively. As to m-cresol and catechol degradation, the qm, Ks, KI were 0.672 h−1 and 1.749 h−1, 171.9 mg·L−1 and 541.9 mg·L−1, 23.74 mg·L−1 and 42.61 mg·L−1, respectively. Based on the kinetic equations, the optimum concentrations for phenol, m-cresol and catechol degradation by strain B403 were 136.4, 87.4, 116.1 mg·L−1, respectively. This study indicated that B403 presented stronger degradation ability agaisnt phenolic contaminants at the presence of other organic carbon sources,and strain B403 possesses certain application potential in the field of organic wastewater treatment with phenolic pollutants and organic phenol-contaminated soil remediation.
-
表 1 菌株B403在不同浓度酚类物质中的生长情况
Table 1. Growth of strain B403 in different concentrations of phenolic substances
苯酚/(mg·L−1) 间甲酚/(mg·L−1) 邻苯二酚/(mg·L−1) 对硝基苯酚/(mg·L−1) 2,4-二氯苯酚/(mg·L−1) 2,4,6-三氯苯酚/(mg·L−1) 1 100+++ 600+++ 600+++ 100+++ 0+++ 0+++ 1 110+++ 610++ 610+++ 110+++ 10+++ 8+++ 1 120+++ 620+ 620+++ 120++ 20+++ 16+++ 1 130+++ 630-* 630+++ 130+ 30+++ 24++ 1 140+++ 640- 640++ 140-* 40+++ 32+ 1 150++ 650- 650++ 150- 50++ 40+ 1 160+ 660- 660++ 160- 60+ 48-* 1 170+ 670- 670++ 170- 70-* 56- 1 180+ 680- 680+ 180- 80- 64- 1 190-* 690- 690+ 190- 90- 72- 1 200- 700- 700-* 200- 100- 80- 注:“+++”表示细菌生长量多;“++”表示细菌生长量较多;“+”表示细菌生长量较少;“-”表示不能生长;*表示最小抑菌浓度。 表 2 由Haldane模型得到的菌株B403降解苯酚、间甲酚、邻苯二酚的动力学参数
Table 2. Degradation kinetic parameters of phenol, m-cresol and catechol by strain B403 obtained from Haldane model
酚类污染物 qm/h−1 Ks/(mg·L−1) KI/(mg·L−1) 误差平方和 R2 苯酚 0.503 270.9 69 0.039 0.97 间甲酚 0.672 171.9 23.74 0.024 0.998 邻苯二酚 1.749 541.9 42.61 0.051 0.954 -
[1] 裴芳, 罗泽娇, 彭进进, 等. 某炼油厂退役场地土壤与浅层地下水酚类污染特征研究[J]. 环境科学, 2012, 33(12): 4251-4255. [2] 张帆, 刘媛, 贺盛福, 等. 处理含酚废水的研究进展[J]. 现代化工, 2015, 35(1): 67-72. [3] 贺强礼, 关向杰, 黄水娥, 等. 典型酚类废水的微生物处理研究现状及其进展[J]. 环境工程, 2014, 32(3): 6-9. [4] 赵娜娜, 许继飞, 宋晓雪, 等. 嗜盐高效降酚菌株Halomonas sp. H17的筛选及降解苯酚特性[J]. 环境科学学报, 2019, 39(2): 318-324. [5] 丁丽. 煤气废水优势降酚菌筛选及降酚效果研究[D]. 哈尔滨: 东北农业大学, 2010. [6] EREQAT S I, ABDELKADER A A, NASEREDDIN A F, et al. Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in Palestine[J]. Journal of Environmental Science and Health, Part A, 2017, 53(1): 1-7. [7] JIANG Y, SHANG Y, YANG K, et al. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 1883-1890. doi: 10.1007/s00253-015-7180-2 [8] 贾子龙. 假单胞菌降解间甲酚和好氧反硝化特性[D]. 太原: 太原理工大学, 2015. [9] 黄强, 张明强. 固定化铜绿假单胞菌生物降解对硝基苯酚[J]. 环境工程技术学报, 2012, 2(3): 247-252. doi: 10.3969/j.issn.1674-991X.2012.03.038 [10] 于彩虹, 陈飞, 胡琳娜, 等. 一株苯酚降解菌的筛选及降解动力学特性[J]. 环境工程学报, 2014, 8(3): 1215-1220. [11] HASAN S A, JABEEN S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species[J]. Biotechnology & Biotechnological Equipment, 2015, 29(1): 45-53. [12] 辛蕴甜. 石油降解菌的降解性能、固定化及降解动力学研究[D]. 上海: 东华大学, 2013. [13] 阮国洪. 水中苯酚、苯二酚和苯三酚的高效液相色谱分析方法的研究[J]. 环境与健康杂志, 2002, 19(1): 64-65. doi: 10.3969/j.issn.1001-5914.2002.01.026 [14] PETROUTSOS D, KATAPODIS P, SAMIOTAKI M, et al. Detoxification of 2, 4-dichlorophenol by the marine microalga Tetraselmis marina[J]. Phytochemistry, 2008, 69(3): 707-714. doi: 10.1016/j.phytochem.2007.09.002 [15] 胡婷, 谷洁, 甄丽莎, 等. 石油污染土壤中苯酚降解菌ad049的鉴定及降解特性[J]. 生态学报, 2014, 34(5): 1140-1148. [16] POLYMENAKOU P N, STEPHANOU E G. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad[J]. Biodegradation, 2005, 16(5): 403-413. doi: 10.1007/s10532-004-3333-1 [17] 张海涛, 刘文斌, 杨海君, 等. 一株耐盐高效苯酚降解菌的筛选、鉴定、响应面法优化与降酚动力学研究[J]. 环境科学学报, 2016, 36(9): 3200-3207. [18] GU Q, WU Q, ZHANG J, et al. Acinetobacter sp. DW-1 immobilized on polyhedron hollow polypropylene balls and analysis of transcriptome and proteome of the bacterium during phenol biodegradation process[J]. Scientific Reports, 2017, 7(1): 4863. doi: 10.1038/s41598-017-04187-6 [19] ALVA V A, PEYTON B M. Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity[J]. Environmental Science & Technology, 2003, 37(19): 4397-4402. [20] 陈晓华, 魏刚, 刘思远, 等. 高效降酚菌株Ochrobactrum sp. CH10生长动力学和苯酚降解特性的研究[J]. 环境科学, 2012, 33(11): 3956-3961. [21] 沈娥, 王平, 周豪, 等. 一株耐盐苯酚降解菌的分离、鉴定及耐盐机制研究[J]. 环境科学学报, 2013, 33(2): 377-382. [22] 高振贤, 马宏, 贾振华, 等. Ralastonia metallidurans CH34苯酚降解特性的研究[J]. 微生物学通报, 2005, 32(1): 44-47. doi: 10.3969/j.issn.0253-2654.2005.01.009 [23] 彭丽花, 任源, 邓留杰, 等. 间甲酚降解菌Citrobacter farmeri的降解特性及代谢途径解析[J]. 环境化学, 2009, 28(1): 44-48. doi: 10.3321/j.issn:0254-6108.2009.01.009 [24] 葛启隆. 波茨坦短芽孢杆菌异养硝化性能与关键酶活性研究[J]. 太原学院学报(自然科学版), 2017, 35(2): 31-35. [25] 白静. 粪产碱杆菌降解苯酚、间甲酚的特性及其动力学研究[D]. 天津: 天津大学, 2006. [26] WANG L M, LI Y, YU P, et al. Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 366-371. [27] BASAK B, BHUNIA B, DUTTA S, et al. Kinetics of phenol biodegradation at high concentration by a metabolically versatile isolated yeast Candida tropicalis PHB5[J]. Environmental Science and Pollution Research International, 2014, 21(2): 1444-1454. doi: 10.1007/s11356-013-2040-z [28] 张云波, 吴伟林, 薛蓉蓉, 等. 一株石油烃降解菌的筛选、鉴定及对石油烃模式物的降解特性研究[J]. 环境工程学报, 2011, 5(8): 1887-1892. [29] 邓维琴, 刘书亮, 姚开, 等. 3-苯氧基苯甲酸降解菌Sphingomonas sp. SC-1降解苯酚环境条件及其降解中间产物的研究[J]. 微生物学通报, 2015, 42(3): 497-503. [30] 程珂珂, 刘雯, 卫亚红, 等. 邻苯二酚降解菌筛选及其降解特性[J]. 中国农学通报, 2014, 30(26): 165-169. doi: 10.11924/j.issn.1000-6850.2013-3061 [31] 颜立敏, 杨春艳, 除炎华, 等. 菌株M降解硝基苯的特性及动力学研究[J]. 中国农学通报, 2011, 27(24): 277-281. [32] HO K L, LIN B, CHEN Y Y, et al. Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules[J]. Bioresource Technology, 2009, 100(21): 5051-5055. doi: 10.1016/j.biortech.2009.05.050 [33] 张玉秀, 蒙小俊, 柴团耀. 苯酚降解菌红球菌(Rhodococcus sp.)P1的鉴定及其在焦化废水中的应用[J]. 微生物学报, 2013, 53(10): 1117-1124.