-
近年来,很多废水逐渐呈现出低C/N比的水质特征,譬如化肥废水以及废水经过厌氧发酵后的生化出水。传统生物脱氮技术难以很好地适应该类废水,处理过程中需要额外增加碳源及补充碱度等,处理效果不好且经济效益不高。基于传统生物脱氮理论的深入研究和工程实践,一系列新型生物脱氮工艺应运而生,如同步硝化反硝化工艺(SND)、短程硝化反硝化工艺(SHARON)、厌氧氨氧化工艺(ANAMMOX)、全程自养脱氮的CANON工艺和OLAND工艺[1-2]。其中,CANON工艺是SLIEKERS等[3]在厌氧氨氧化工艺基础上提出来的一体化全程自养脱氮工艺(completely autotrophic ammonium removal over nitrite),该工艺在1个反应器中由氨氧化菌(AOB)和厌氧氨氧化菌(ANAMMOX)同时完成氨氧化和厌氧氨氧化2个反应。与传统生物脱氮工艺相比,CANON工艺在取得较高生物脱氮效果的同时对曝气、有机碳源等能耗的需求显著降低,优势明显,近年来备受中外学者青睐[4-5]。但CANON工艺因其一体化的系统易受温度、pH、碱度、溶解氧(DO)等运行条件变化的影响[6-8],启动周期很长。付昆明等[9]在接种普通活性污泥中,耗时210 d以启动CANON工艺;而奥地利Strass污水处理厂[10]经历了2.5 a才能够完成启动,实现了0.7 kg·(m3·d)−1的氨氮去除率,从启动到应用,较传统成熟工艺滞后了1 a。因此,从工程应用角度分析,突破CANON工艺启动时间长的瓶颈是目前的研究重点。
从微生物角度分析,实现CANON工艺的快速启动和稳定运行亟需解决的难题是AOB和ANAMMOX的快速培养和富集[11]。近年来,CANON工艺快速启动的研究主要集中在垃圾渗滤液、污泥消化液、养殖场废水等高氨氮(>500 mg·L−1)、低C/N比废水的处理[12-14],其中实现快速启动的方法大多是培养AOB和ANAMMOX共存的复合颗粒污泥[15-16]。对于中低浓度的氨氮废水(<500 mg·L−1),ANAMMOX富集极易受DO等条件变化的影响[17-18],颗粒污泥的形成十分缓慢。因此,在低基质浓度下如何控制系统DO和氮负荷等条件以实现CANON的快速启动是目前研究的难点和重点。李思敏等[19]和付昆明等[20]研究发现,填料挂膜可以促进厌氧氨氧化微生物的富集生长,增加AOB和ANAMMOX对水质水量变化的耐受程度;同时,在低基质浓度下,通过缩短水力停留时间(HRT)以实现较高的氮素去除负荷的方式也有利于CANON反应器的快速启动。
本研究采用升流式生物膜反应器,在实验室条件下,以模拟氨氮废水为基质(200 mg·L−1),采用逐步缩短HRT协同提高DO、回流比满足微生物阶段性生长需求的方式,对恒温(35 ℃)条件下的CANON工艺启动进行了研究,旨在解决中低浓度氨氮废水处理中所存在的ANAMMOX富集困难、CANON工艺启动时间长的问题。
升流式生物膜反应器中CANON工艺处理中低浓度氨氮废水的快速启动
Fast start of CANON process to treat medium and low concentration ammonia nitrogen wastewater in upflow biofilm reactor
-
摘要: 为了实现中低浓度氨氮废水情况下CANON工艺的快速启动和稳定运行,在升流式生物膜反应器中,通过调控水力停留时间、溶解氧和回流比,研究进水氨氮浓度为200 mg·L−1时CANON工艺的快速启动过程。结果表明:1~17 d,污泥处于驯化阶段,HRT为12 h,DO控制在0.1~0.2 mg·L−1,50%的回流比满足污泥上升流态;18~60 d,HRT逐步缩短至8 h,DO控制在0.3~0.5 mg·L−1,回流比增大至150%,AOB和 ANAMMOX在该阶段成功富集,填料上初步形成生物膜;61 d时,HRT缩短至6 h,加大回流比至200%,溶解氧控制在0.3~1.0 mg·L−1,系统启动加速,此时,进水氨氮负荷增加至0.795 kg·(m3·d)−1;运行至第93天,氨氮和总氮平均去除率分别达到95%和82%,ANAMMOX完成挂膜,CANON工艺成功启动。高通量测序结果显示,在整个启动过程中,优势菌群AOB和ANAMMOX的丰度呈增长趋势,启动完成时,生物膜中AOB占比19.46%,ANAMMOX占比22.49%,分别属于Brocadiaceae和Nitrosmonadaceae。CANON系统集成絮体、颗粒和填料挂膜3种污泥形态为一体,实现了在中低浓度氨氮废水中的高效稳定运行。Abstract: In order to achieve the fast start-up and stable operation of the CANON process under the conditions of medium and low concentration ammonia nitrogen wastewater, the volumetric nitrogen load in the start-up phase was optimized by adjusting the hydraulic retention time, dissolved oxygen and reflux ratio in the up-flow biofilm reactor, and the rapid start-up of the CANON process was studied when the influent ammonia nitrogen concentration was 200 mg·L−1. The results showed that during 1~17 d, the sludge was at the domestication stage, HRT was 12 h, DO was controlled between 0.1 mg·L−1 and 0.2 mg·L−1, and 50% reflux ratio satisfied the upflow state of sludge. During 18~60 d, HRT was gradually shortened to 8 h, DO was controlled between 0.3 mg·L−1 and 0.5 mg·L−1, and the reflux ratio increased to 150%, AOB and ANAMMOX were successfully enriched at this stage, and biofilm was preliminarily formed on the filler. On the 61st day, HRT was shortened to 6 h, the reflux ratio increased to 200%, the dissolved oxygen was controlled between 0.3 mg·L−1 and 1.0 mg·L−1, and the system start-up accelerated. At the same time, the influent nitrogen load increased to 0.795 kg· (m3·d)−1. After running to the 93 d, the average removal rates of ammonia nitrogen and total nitrogen reached 95% and 82%, respectively. The membrane forming of ANAMMOX and the start-up of CANON process successfully completed. The results of high-throughput sequencing showed that the abundance of dominant bacteria AOB and ANAMMOX increased during the whole start-up process. After completion of start-up, AOB and ANAMMOX accounted for 19.46% and 22.49% in biofilm, respectively, and belonged to Brocadiaceae and Nitrosomonadaceae, respectively. The CANON system integrated three kinds of sludge forms, such as flocs, granules and packing membranes, achieved efficient and stable operation in treating medium and low concentration ammonia nitrogen wastewater.
-
Key words:
- CANON process /
- upflow biofilm reactor /
- fast start-up /
- HRT /
- dissolved oxygen /
- reflux ratio
-
表 1 运行参数
Table 1. Operating parameters
启动阶段 运行时间/d 水力停留时间/h 进水氮负荷/(kg·(m3·d)−1) 溶解氧/(mg·L−1) 回流比/% 污泥驯化阶段 1~7 12 0.398 — 50 污泥驯化阶段 8~17 12 0.398 0.1~0.2 50 AOB和ANAMMOX富集阶段 18~40 8 0.597 0.3~0.4 100 AOB和ANAMMOX富集阶段 41~60 8 0.597 0.35~0.5 150 系统强化阶段 61~93 6 0.795 0.3~1.0 200 -
[1] ASLAN S, MILLER L, DAHAB M. Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors[J]. Bioresource Technology, 2009, 100(2): 659-664. doi: 10.1016/j.biortech.2008.07.033 [2] PELLICER N C, SUN S P, ACKNER S, et al. Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen remova: experimental demonstration[J]. Environmental Science & Technology, 2010, 44(19): 7628-7634. [3] SLIEKERS A O, DERWORT N, CAMPOS-GOMEZ J L, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36(10): 2475-2482. doi: 10.1016/S0043-1354(01)00476-6 [4] TOMMASO L, ROBBERT K, CHARLOTTE E T K. Anammox growth on pretreated municipal wastewater[J]. Environmental Science & Technology, 2014, 48(14): 7874-7880. [5] 马智明. 生物脱氮除磷理论与技术进展[J]. 化工管理, 2018, 21(12): 179-180. doi: 10.3969/j.issn.1008-4800.2018.21.137 [6] 周鹏. SBMBR-CANON工艺启动及其影响因素研究[D]. 西安: 长安大学, 2017. [7] YUE X, LIU J, LIU Z, et al. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity[J]. Bioresource Technology, 2018, 254(14): 157-165. doi: 10.1016/j.biortech.2018.01.019 [8] LIU T, LI D, ZHANG J, et al. Effect of temperature on functional bacterial abundance and community structure in CANON process[J]. Biochemical Engineering Journal, 2016, 105: 306-313. doi: 10.1016/j.bej.2015.10.001 [9] 付昆明, 张杰, 曹相生, 等. 好氧条件下CANON工艺的启动研究[J]. 环境科学, 2009, 30(6): 690-694. [10] PARK H, ROSENTHAL A, JEZEK R, et al. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities[J]. Water Research, 2010, 44(17): 5005-5013. doi: 10.1016/j.watres.2010.07.022 [11] CHU Z R, WANG K, LI X K, et al. Microbial characterization of aggregates within a one-stage nitritation-anammox system using high-throughput amplicon sequencing[J]. Chemical Engineering Journal, 2015, 262(26): 41-48. doi: 10.1016/j.cej.2014.09.067 [12] VAZQUEZ-PADIN J R, POZO M J, JARPA M, et al. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR[J]. Journal of Hazardous Materials, 2009, 166(1): 336-341. doi: 10.1016/j.jhazmat.2008.11.055 [13] 鲁航. 连续流SNAD工艺处理实际猪场沼液脱氮性能研究[D]. 成都: 成都信息工程大学, 2017. [14] 胡石, 甘一萍, 张树军. 一段式全程自养脱氮(CANON)工艺及其研究进展[J]. 水处理技术, 2013, 39(7): 1-5. doi: 10.3969/j.issn.1000-3770.2013.07.001 [15] 刘浩. 厌氧氨氧化与全程自养脱氮工艺处理金霉素废水的实验研究[D]. 北京: 北京交通大学, 2013. [16] 唐林平, 廖德祥, 李小明, 等. 全程自养脱氮污泥颗粒化及其脱氮性能的研究[J]. 环境科学, 2009, 30(2): 411-415. doi: 10.3321/j.issn:0250-3301.2009.02.016 [17] 陶美霞, 陈明, 胡兰文, 等. 生物技术在处理氨氮废水中的研究进展[J]. 现代化工, 2018, 38(12): 24-28. [18] 姜黎安, 隋倩雯, 徐东耀, 等. 部分亚硝化-厌氧氨氧化工艺处理低氨氮废水研究进展[J]. 环境工程, 2019, 37(1): 61-66. [19] 李思敏, 左富民, 吴坤茹. 石英砂-海绵填料CANON反应器的快速启动研究[J]. 中国给水排水, 2018, 34(3): 100-104. [20] 付昆明, 张杰, 曹相生, 等. 改性聚乙烯填料CANON反应器的启动与运行[J]. 化工学报, 2014, 65(11): 4406-4412. doi: 10.3969/j.issn.0438-1157.2014.11.027 [21] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [22] PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Biochemical Engineering Journal, 2009, 23(44): 631-640. [23] YANG J C, FURUKAWA K J, ZHANG L. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox[J]. Journal of Bioscience and Bioengineering, 2010, 110(4): 441-448. doi: 10.1016/j.jbiosc.2010.05.008 [24] HUANG X W, URATQ K, WEI Q Y, et al. Fast start-up of partial nitritation as pre-treatment for anammox in membrane bioreactor[J]. Biochemical Engineering Journal, 2016, 105: 371-378. doi: 10.1016/j.bej.2015.10.018 [25] 韩志勇, 殷文翔, 刘新德. MBR-CANON工艺快速启动实验研究[J]. 工业催化, 2017, 25(5): 76-80. doi: 10.3969/j.issn.1008-1143.2017.05.017 [26] GE S, WANG S J, YANG S Y, et al. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 2015, 140(12): 85-98. [27] 黄京, 徐亚慧, 张亮, 等. CANON工艺快速启动和运行过程中anammox群落变化研究[J]. 环境工程, 2014, 32(12): 36-41. [28] 杨瑞丽, 王晓君, 吴俊斌, 等. 厌氧氨氧化工艺快速启动策略及其微生物特性[J]. 环境工程学报, 2018, 12(12): 3341-3350. [29] 洪义国, 李益本, 吴佳鹏, 等. 高通量测序分析多种典型生境中厌氧氨氧化细菌的多样性分布特征[J]. 微生物学通报, 2019, 7(2): 1-18. [30] 刘竹寒, 岳秀, 于广平, 等. CANON在SBAF中的快速启动及其微生物特征[J]. 环境科学, 2017, 38(1): 253-259. [31] 刘思彤, 姜博. Anammox反应器启动过程中菌群群体感应现象[J]. 北京工业大学学报, 2015, 41(10): 1455-1461. [32] 陶文鑫. 海绵铁对厌氧氨氧化与反硝化耦合的影响研究[D]. 吉林: 东北电力大学, 2018. [33] NIU Z, ZHANG Z T, LIU S T, et al. Discrepant membrane fouling of partial nitrification and anammox membrane bioreactor operated at the same nitrogen loading rate[J]. Bioresource Technology, 2016, 214: 729-736. doi: 10.1016/j.biortech.2016.05.022