-
船舶运输往来推动经济高速发展和人民生活质量的提升,但同时其生活污水排放不可避免地会造成水体污染,若近海及河道的船舶产生的生活污水处理不当,将影响内河、湖泊、水库等与人类生活息息相关的用水水质[1-2]。船舶相对城镇来说,具有人口集中、占地面积小的特点,因而生活污水水质短期波动大、碳氮负荷、TSS高[3]。目前存在的船舶生活污水处理装置多与常规市政污水处理一致[4],处理深度和稳定性存有不足,亦易忽略节能和美观需求[5]。船舶人口集中,污水处理装置须面对短期有机负荷的冲击,同时针对船舶生活污水碳氮磷排放的新标准[6],须迫切寻求高效稳定、节能美观的船舶生活污水处理装置。
考虑治理要求和环保发展前景,可应用反硝化除磷(denitrifying phosphorus removal,DNPR)高效生物脱氮除磷技术的厌氧折流板反应器(ABR)-连续流搅拌槽式反应器(CSTR)连续流组合工艺与生态法耦合联用装置处理船舶污水。ABR-CSTR较序批式工艺在实际应用中更稳定可控,各功能菌能于各自生长适宜条件下成为优势菌种,ABR可生物相分离,生成优质碳源[7],使反硝化聚磷菌(denitrifying phosphorus accumulating organisms,DPAOs)的富集和增殖更易实现;CSTR通过完全混合培养硝化菌,与膜生物反应器(MBR)相比,具有成本低且污染小的特点,更适合船舶生活污水治理。ABR-CSTR组合工艺通过污泥回流和硝化液回流实现DNPR,在厌氧条件下,DPAOs分解多聚磷酸盐产生能量(ATP),同时挥发性脂肪酸(VFA)在质子推动力(PMF)下进入胞内合成聚羟基烷酸(PHA)[8];缺氧时分解PHA生成乙酰辅酶A进行三羧酸(TCA)循环,产生ATP用于过量吸磷合成体内聚磷,同时反硝化
${\rm{NO}}_{x}^ - $ -N,实现碳源同时脱氮除磷[9],大幅降低氧和碳源需求,节约运行成本[10-11]。生物单元出水流经末端由水生植物、鱼类、微生物和基质共同组成的生态单元后排出,从外观看,动植物构成的生态景观较传统处理工艺更具美感;同时,植物本身的吸附作用及其根系附着的微生物可强化降解污染物,对水质波动起缓冲作用,绿色技术的融入可改善装置能源渠道。综合船舶生活污水水质波动的现状,基于1.2 kg·(m3·d)−1ABR进水容积负荷(VLR)、COD值为350 mg·L−1的稳定运行条件,模拟1.5倍和2.0倍VLR的短期冲击。有机负荷冲击会影响处理效能,主要体现在污染物去除率和生物质表面及内部的特征变化[12]。碳源量影响聚磷菌(PAOs)和聚糖菌(GAOs)的生长繁殖,GAOs的增多可抑制除磷效果[13]。有机底物浓度较高时,微生物会分泌更多的胞外聚合物(EPS)来抵御不利条件[14-15],因此,观察污泥特性变化有助于深入探究处理效能。本研究模拟船舶生活污水短期有机冲击负荷,从系统高效去碳脱氮除磷的性能和污泥特性的变化方面,考察了ABR-CSTR-生态单元一体化反应装置的运行情况,同时通过调整运行工况获得了应对波动的稳定策略。结果表明,在不同冲击下,末端生态单元确保系统具有抗波动的稳定性,使装置在高效处理船舶生活污水的同时提供景观价值,可为生活污水治理领域提供新思路和理论支持。
短期有机冲击下船用景观一体化反硝化除磷装置的处理效能
Treatment efficiency of ship-landscape integrated denitrifying phosphorus removal device for under short-term organic shock
-
摘要: 为高效、稳定处理船舶生活污水,研究了船用景观一体化反硝化除磷装置面对短期水质波动的效能变化,采用富集反硝化聚磷菌(DPAOs)的ABR-CSTR连续流组合工艺耦合生态单元处理船舶生活污水,对比了ABR进水容积负荷(VLR)为1.2 kg·(m3·d)−1、COD为350 mg·L−1的基准条件,通过短期内提高进水中有机底物的浓度,来模拟1.5倍和2.0倍进水有机负荷的有机冲击,此外通过控制硝化液回流比及溶解氧获得应对冲击的调控策略。结果表明:在2种短期冲击下,COD去除率分别为94.1%和92.6%,出水BOD和TN可达标,生物单元出水磷平均为0.76 mg·L−1和1.14 mg·L−1,缺氧吸磷量为7.13 mg·L−1和5.82 mg·L−1,生态单元可深度降解氮磷及缓冲波动;在1.5倍VLR下,调整硝化液回流比由200%至300%,反硝化吸磷量由7.10 mg·L−1升至7.41 mg·L−1,在2.0倍冲击下,提高硝化液回流比对系统除磷帮助甚微,将DO从1.5 mg·L−1升至2.0 mg·L−1,吸磷量由5.17 mg·L−1升至6.01 mg·L−1,系统反硝化除磷效果得以提升;污泥特性方面,ABR内MLVSS/MLSS比值和EPS量随有机底物浓度的提高而上升,厌氧段EPS增幅最大,可由154.5 mg·g−1升至164.2 mg·g−1和183.4 mg·g −1。ABR-CSTR-生态单元一体化装置面对短期有机冲击具有稳定处理效果,研究结果可为船舶生活污水的治理提供参考。Abstract: In order to treat the ship domestic sewage efficiently and stably, the efficiency of the ship-landscape integrated denitrifying phosphorus removal device under short-term water quality fluctuation was studied. The ABR-CSTR continuous flow combined process enriching denitrifying phosphorus accumulating bacteria (DPAOs) coupled with ecological unit was used to treat ship domestic sewage. Compared with the benchmark conditions of ABR inlet volume load rate (VLR) of 1.2 kg·(m3·d)−1 and COD of 350 mg·L−1, the increase of organic concentration was used to simulate organic short-term shocks of 1.5 and 2.0 times VLR, at the same time, the nitrification reflux ratio (R2) and dissolved oxygen (DO) were controlled to obtain the regulative strategies for coping with the shocks. The results showed that the COD removal rates were 94.1% and 92.6% under two short-term shocks, the effluent BOD and TN could meet the standard. The average phosphorus concentrations of effluents from biological treatment units were 0.76 mg·L−1and 1.14 mg·L−1, respectively, and the anoxic phosphorus absorption amounts were 7.13 mg·L−1 and 5.82 mg·L−1, respectively. The ecological unit could deeply remove nitrogen and phosphorus and buffer the fluctuations. At 1.5 time VLR, the denitrifying phosphorus absorption amount increased from 7.10 mg·L−1 to 7.41 mg·L−1 when R2 was adjusted from 200% to 300%. Under 2.0 time VLR shock, the increase of R2 did not significantly improve the phosphorus removal efficiency of system. When DO increased from 1.5 mg·L−1 to 2.0 mg·L−1, the phosphorus absorption amount could increased from 5.17 mg·L−1 to 6.01 mg·L−1, the denitrifying phosphorus removal effect of the system was improved. In terms of sludge characteristics, the MLVSS/MLSS ratio and microbial EPS content of ABR increased with the increase of organic substrate concentration, and the largest increase in EPS content occurred in the anaerobic compartment sludge, which increased from an average of 154.5 mg·g−1 to 170.2 mg·g−1 and 183.4 mg·g−1. The ABR-CSTR-ecological unit integrated device has a stable treatment effect in the face of short-term organic shock, and provides a certain theoretical guidance value for the ship domestic sewage treatment.
-
表 1 实验运行方案
Table 1. Test operation plan
运行阶段 运行条件 工况 运行时间/d COD/
(mg·L−1)VLRABR/
(kg·(m3·d)−1)硝化液
回流比/%流量/
(mL·min−1)DO/
(mg·L−1)Ⅰ 稳定运行 1 1~30 350 1.2 200 12.9 1.5 Ⅱ 1.5倍VLR 2 31~35 525 1.8 200 12.9 1.5 Ⅱ 1.5倍VLR 3 36~40 525 1.8 300 12.9 1.5 Ⅲ 恢复基准 4 41~52 350 1.2 200 12.9 1.5 Ⅳ 2.0倍VLR 5 53~57 700 2.4 200 12.9 1.5 Ⅳ 2.0倍VLR 6 58~62 700 2.4 300 12.9 1.5 Ⅳ 2.0倍VLR 7 63~67 700 2.4 300 12.9 2.0 -
[1] 白韬光, 李星仪, 周昊. 船舶与海工生活污水处理技术及其发展趋势[J]. 船舶工程, 2016(11): 82-84. [2] 陈志莉, 易其臻, 熊开生, 等. 生物接触氧化法处理船舶生活污水的中试[J]. 云南农业大学学报(自然科学版), 2009, 24(6): 882-885. [3] 张文涛. MBR法处理模拟船舶生活污水的研究[D]. 大连: 大连海事大学, 2015. [4] 田金平. 探究船舶生活污水处理进展及发展趋势[J]. 科技与企业, 2015(17): 98. doi: 10.3969/j.issn.1004-9207.2015.22.086 [5] 陈忠, 陈薇, 詹佳钧, 等. 新型景观生态污水处理系统研究进展[J]. 市政技术, 2017, 35(6): 139-142. doi: 10.3969/j.issn.1009-7767.2017.06.042 [6] 中华人民共和国环境保护局, 中华人民共和国国家质量监督检验检疫总局. 船舶水污染物排放控制标准: GB 3552-2018[S]. 北京: 中国环境科学出版社, 2018. [7] 韦佳敏, 蒋志云, 程诚, 等. ABR-MBR反硝化除磷工艺的启动及稳定运行[J]. 环境科学, 2019, 40(2): 298-305. [8] SAUNDERS A M, MABBETT A N, MCEWAN A G, et al. Proton motive force generation from stored polymers for the uptake of acetate under anaerobic conditions[J]. FEMS Microbiology Letters, 2007, 274(2): 245-251. doi: 10.1111/j.1574-6968.2007.00839.x [9] 章璋, 朱易春, 王佳琪, 等. 短程反硝化除磷的影响因素分析[J]. 江西理工大学学报, 2019, 40(1): 46-53. [10] 张伟. 不同诱导模式下CAST工艺的亚硝酸盐型反硝化除磷能力研究[D]. 兰州: 兰州交通大学, 2016. [11] KAPAGIANNIDIS A G, ZAFIRIADIS I, AIVASIDIS A. Comparison between UCT type and DPAO biomass phosphorus removal efficiency under aerobic and anoxic conditions[J]. Water Science & Technology, 2009, 60(10): 2695-2703. [12] WU B, YI S, FANE A G. Microbial community developments and biomass characteristics in membrane bioreactors under different organic loadings[J]. Bioresource Technology, 2011, 102(13): 6808-6814. doi: 10.1016/j.biortech.2011.04.012 [13] 韩芸, 许松, 董涛, 等. 碳源类型、温度及电子受体对生物除磷的影响[J]. 环境科学, 2015, 36(2): 590-596. [14] 朱逸舟, 李秀芬, 王新华, 等. 高有机负荷冲击对填料型MBR运行性能的影响[J]. 中国环境科学, 2019, 39(5): 1985-1992. doi: 10.3969/j.issn.1000-6923.2019.05.023 [15] SPONZA D T. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions[J]. Enzyme & Microbial Technology, 2003, 32(3/4): 375-385. [16] 李田, 印雯, 王昕竹, 等. ABR除碳-CANON耦合工艺除碳脱氮特性[J]. 环境科学, 2019, 40(2): 313-318. [17] RYU H D, KIM D, LIM H E, et al. Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system[J]. Process Biochemistry, 2008, 43(7): 729-735. doi: 10.1016/j.procbio.2008.02.018 [18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [19] 刘伶俐. 硝化细菌固定化方法研究[D]. 青岛: 青岛理工大学, 2012. [20] 孙洪伟, 郭英, 尤永军, 等. 不同碳氮比(C/N)条件下驯化微生物的反硝化特性[J]. 环境化学, 2014, 33(5): 770-775. doi: 10.7524/j.issn.0254-6108.2014.05.001 [21] 吴鹏, 程朝阳, 沈耀良, 等. 基于ABR-MBR组合工艺不同进水C/N比对反硝化除磷性能的影响机制[J]. 环境科学, 2017, 38(9): 3781-3786. [22] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响[J]. 化工学报, 2005, 56(9): 1765-1770. doi: 10.3321/j.issn:0438-1157.2005.09.029 [23] CHEN R, NIE Y, HU Y, et al. Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature[J]. Journal of Membrane Science, 2017, 531: 1-9. doi: 10.1016/j.memsci.2017.02.046 [24] LIAO B Q, ALLEN D G, DROPPO I G, et al. Surface properties of sludge and their role in bio-flocculation and settle ability[J]. Water Research, 2001, 35(2): 339-350. doi: 10.1016/S0043-1354(00)00277-3 [25] BADIREDDY A R, CHELLAM S, GASSMAN P L, et al. Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions[J]. Water Research, 2010, 44(15): 4505-4516. doi: 10.1016/j.watres.2010.06.024 [26] 蔡春光, 刘军深, 蔡伟民. 胞外多聚物在好氧颗粒化中的作用机理[J]. 中国环境科学, 2004, 24(5): 623-626. doi: 10.3321/j.issn:1000-6923.2004.05.027 [27] 张心钰, 陈瑶, 董黎明, 等. 柠檬酸废水污泥脱水中蛋白质和多糖变化特征[J]. 环境科学与技术, 2017, 40(S2): 76-80. [28] 高占尧, 仝攀瑞, 徐甜甜. A/O两种工况条件下污泥胞外聚合物的比较研究[J]. 西安工程大学学报, 2014, 28(4): 464-468. doi: 10.3969/j.issn.1674-649X.2014.04.015