-
亚硝化反应是短程脱氮、自养型脱氮的重要氮转化过程之一。自养型脱氮工艺较传统工艺具有显著优势,可节约曝气能耗25%和碳源消耗100%[1-2]。近年来,以厌氧氨氧化工艺为核心的自养型脱氮工艺在低氨氮废水处理方面得到初步研究。实现稳定的亚硝化反应是限制自养型脱氮工艺在低氨氮废水处理中应用的重要因素之一。亚硝化反应首先将氨氮通过氨氧化细菌(ammonia oxidizing bacteria, AOB)在好氧条件氧化为亚硝酸盐氮,为实现亚硝酸盐累积,需要抑制亚硝酸盐氧化细菌(nitrite oxidizing bacteria, NOB),将亚硝酸盐氮进一步氧化为硝酸盐氮。
在低氨氮废水处理方面,尤其城镇生活污水,较难实现亚硝酸盐积累。这是由于较低的氨氮浓度难以形成游离氨或者游离亚硝酸盐等NOB抑制因子,并且在DO较低的条件下,NOB的抑制效果不稳定,同时也抑制了AOB的反应速率[3]。WANG等[4]的研究表明,DO为0.5 mg·L−1并控制SRT为8 d时,可促进亚硝酸盐累积。JARDIN等[5]的研究表明,采用间歇曝气调控,有利于亚硝化反应,这是由于AOB在缺氧-好氧交替环境可快速恢复活性,而NOB活性恢复较慢。
羟胺(NH2OH)和肼(N2H4)分别为氨氧化反应与厌氧氨氧化反应的中间产物[6]。投加NH2OH和N2H4有利于NOB的抑制和亚硝酸盐的累积[7-8],但由于其影响效果不一,缺乏NH2OH和N2H4促进亚硝化的对比研究,且影响机制尚不清晰。因此,本研究首先开展了NH2OH和N2H4对硝化反应影响的平行实验,对比分析了NH2OH和N2H4对氨氧化与亚硝酸盐氧化反应的影响;在此基础上,选择处理效果较好的NH2OH开展污泥驯化实验,明确了低氨氮废水亚硝化的快速启动方法及其潜在微生物学机制,为低氨氮废水亚硝化的快速启动提供参考。
低氨氮废水亚硝化的快速启动
Rapid start-up of nitritation process treating low-ammonia wastewater
-
摘要: 以低氨氮废水为研究对象,研究了亚硝化反应的快速启动,通过对比实验考察了羟胺(NH2OH)和肼(N2H4)投加对氨氧化与亚硝酸盐氧化反应的影响。结果表明:NH2OH的投加更有利低氨氮废水亚硝化反应的实现;在此基础上,通过序批式运行模式,在每周期开始时投加NH2OH(2 mg·L−1),研究了低氨氮废水亚硝化反应的快速启动;通过9 d的驯化,亚硝酸盐积累率可达到100%,AOB与NOB丰度比升高至25,有利于亚硝化启动的实现。研究结果可为低氨氮废水亚硝化反应快速启动提供技术支持。Abstract: In this study, the rapid start-up of nitritation process was studied for low-ammonia wastewater treatment. The comparative experiments were conducted to study the effect of hydroxylamine (NH2OH) and hydrazine (N2H4) addition on the processes of ammonia oxidation and nitrite oxidation. NH2OH addition showed better performances on the nitritation of low-ammonia wastewater. On this basis, 2 mg·L−1 NH2OH dosing in the sequencing batch tests was adopted for the rapid start-up of nitritation process treating low-ammonia wastewater. After 9 days treatment, nitrite accumulation rate reached 100% and the abundance ratio of AOB/NOB increased to 25, which promoted nitritation process start-up. This study provides techniques for rapid startup of nitritation process treating low-ammonia wastewater.
-
表 1 alpha多样性指数与氮氧化功能细菌丰度
Table 1. Indexes of alpha diversity and abundances of nitrogen oxidizing bacteria
样品 alpha多样性指数 功能细菌丰度/% 覆盖率/% Shannon Simpson ACE AOB NOB 驯化前 99.4 4.36 0.036 69 932.33 0.265 0.206 驯化后 99.3 4.55 0.026 02 973.56 4.451 0.178 -
[1] ZHANG T, BO W, LI X, et al. Achieving partial nitrification in a continuous post-denitrification reactor treating low C/N sewage[J]. Chemical Engineering Journal, 2017, 335: 330-337. [2] YANG Y, ZHANG L, CHENG J, et al. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream[J]. Bioresource Technology, 2018, 251: 327-337. doi: 10.1016/j.biortech.2017.12.079 [3] WANG Y, WANG Y, WEI Y, et al. In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up[J]. Biochemical Engineering Journal, 2015, 98: 127-136. doi: 10.1016/j.bej.2015.02.028 [4] WANG H, XU G, QIU Z, et al. NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment[J]. Chemosphere, 2019, 216: 633-639. doi: 10.1016/j.chemosphere.2018.10.187 [5] JARDIN N, HENNERKES J. Full-scale experience with the deammonification process to treat high strength sludge water: A case study[J]. Water Science and Technology, 2012, 65: 447-455. doi: 10.2166/wst.2012.867 [6] QIAN W, PENG Y, LI X, et al. The inhibitory effects of free ammonia on ammonia oxidizing bacteria and nitrite oxidizing bacteria under anaerobic condition[J]. Bioresource Technology, 2017, 243: 1247-1250. doi: 10.1016/j.biortech.2017.07.119 [7] XU G, XU X, YANG F, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213: 338-345. doi: 10.1016/j.cej.2012.10.014 [8] ZEKKER I, KROON K, RIKMANN E, et al. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor[J]. Biodegradation, 2012, 23: 739-749. doi: 10.1007/s10532-012-9549-6 [9] HAO X, MCM V L. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process[J]. Biotechnology & Bioengineering, 2010, 77(3): 266-277. [10] MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074 [11] GILBERT E M, AGRAWAL S, BRUNNER F, et al. Response of different Nitrospira species to anoxic periods depends on operational DO[J]. Environmental Science & Technology, 2014, 48: 2934-2941. [12] SATOSHI O, MAMORU O, YOSHITAKA T, et al. Development of long-term stable partial nitrification and subsequent anammox process[J]. Bioresource Technology, 2011, 102(13): 6801-6807. doi: 10.1016/j.biortech.2011.04.011 [13] HARPER W F, TERADA A, POLY F, et al. The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures[J]. Biotechnology and Bioengineering, 2009, 102: 714-724. doi: 10.1002/bit.22121 [14] XU G J, XU X C, YANG F L, et al. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment[J]. Chemical Engineering Journal, 2012, 213(12): 338-345. [15] LIU W, YANG D, CHEN W, et al. High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J]. Bioresource Technology, 2017, 231: 45-52. doi: 10.1016/j.biortech.2017.01.050 [16] JUBANY I, LAFUENTE J, BAEZA J A, et al. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on oxygen uptake rate measurements[J]. Water Research, 2009, 43: 2761-2772. doi: 10.1016/j.watres.2009.03.022