-
电除尘器是工业烟气的主流除尘设备,在燃煤电厂的应用占比约为70% [1-3],烧结机机头的烟尘治理设备几乎全部为电除尘器[4-6]。随着燃煤电厂烟气超低排放的实施,湿式电除尘技术在燃煤电厂得到广泛应用。电除尘器主要分为电控和本体2个部分,近年来,针对燃煤电厂及非电行业的超低排放改造技术频有报道。在本体技术方面,超低排放技术包括低低温电除尘技术、湿式电除尘技术、颗粒团聚技术等[7-11]。在电源技术方面,朱法华等[12]分析了电除尘器高频电源节能减排的机理,介绍了国内外高频电源的研究与应用情况,并基于实际工程案例,介绍了高频电源的节能、减排幅度;李纪等[13]针对我国冶金转炉冶炼周期内工艺波动大、粉尘浓度及比电阻大等情况,提出了三相电源改造思路,提高了除尘器的除尘效率,并优化了电控性能;汤铭等[14]提出了一种低成本高压脉冲静电除尘电源,分析了该高压脉冲电源的稳态工作原理以及电场发生闪络时工作的情况;丁鑫龙等[15]通过实验方法,研究了脉冲电源技术对高比电阻粉尘的脱除特性;张滨渭等[16]研究发现,三相电源适合高粉尘负荷,高频电源在匹配良好条件下可实现较好的提效作用,而脉冲电源更多的研究是针对性地脱除细颗粒物和高比电阻粉尘。
按输出特性分类,电源可分为电压源和电流源,上述研究多针对干式电除尘器配套的电压源,对于湿式电除尘器配套高压恒流源的供电特性及对电除尘提效及能耗的分析,国内鲜有文献报道。电除尘器供电电源的工作状态直接影响除尘器的运行稳定性及除尘性能,对于湿式电除尘器而言,因其工作在饱和湿烟气状态,且存在喷淋冲洗环节,电场的放电状态变化大、干扰因素多,电源工作的稳定性至关重要。尤其是导电玻璃钢管式湿式电除尘器,鉴于其阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。近年来,因火花控制不当等原因,山西、河南、山东等地频有导电玻璃钢管式湿式电除尘器着火事故报道。本研究通过实验室研究及现场实测相结合的手段,定量分析了导电玻璃钢管式湿式电除尘器的高压恒流源供电特性及其对电除尘提效、能耗的影响,为后续湿式电除尘器的性能提升及节能优化提供参考。
湿式电除尘器的高压恒流源供电及其能效分析
High pressure constant current power supply and energy efficiency analysis of wet electrostatic precipitator
-
摘要: 湿式电除尘器电场的放电状态变化大、干扰因素多,尤其是导电玻璃钢阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。为了深入研究湿式电除尘器的电源供电特性及污染物脱除性能,搭建了湿式电除尘器实验系统,并开展不同类型电源的对比实验。实验结果表明:湿式电除尘器喷淋系统开启,工频恒流源运行相对平稳,出口烟尘浓度变化不大,但恒压源则存在一个电源参数振荡区,出口烟尘浓度增加了约147%,因此,湿式电除尘器应优先考虑抗干扰能力强的恒流源;高频恒流源的运行参数更高,污染物脱除性能更强,与工频相比,高频恒流源不同供电电耗时烟尘、SO3的减排幅度分别为46.30%~78.69%、42.86%~66.67%。通过对实际工程项目的深度测试及节能优化实验,定量分析了湿式电除尘器的比电耗与污染物脱除性能关系。工程实践表明:随机组负荷的降低,湿式电除尘器的污染物脱除性能有所提升,但高压供电比电耗也大幅增加,从满负荷到50%负荷,比电耗从2.41×10−4 kWh·m−3升至4.57×10−4 kWh·m−3,有较大的节能空间;经节能优化,控制湿式电除尘器出口烟尘浓度在4~5 mg·m−3,50%负荷的比电耗下降达84.68%。根据该节能优化思路,对其他3个工程项目实施运行优化,控制烟尘排放浓度在4.5 mg·m−3以内,比电耗下降幅度分别为32.65%、27.15%、41.64%。以上研究结果可为后续湿式电除尘器的性能提升及节能优化提供参考。Abstract: The discharge state of the electric field in wet electrostatic precipitator presents large changes and has many interfering factors. Particularly due to the special materials of the inner wall of conductive FRP anode tube, it was necessary to reduce the spark discharge as much as possible and prevent the electrode burn or even catching fire, then ensure the safe and stable operation of the equipment. In order to further study the power supply characteristics of high voltage constant current source and pollutant removal performance of wet electrostatic precipitator, an experimental system of wet electrostatic precipitator was established, and the comparative experiments of different types of power supply were conducted. The results showed that when the spray system of wet electrostatic precipitator was turned on, fundamental frequency constant current source run relatively smoothly, and the smoke concentration at outlet presented slight change. However, there was an oscillation zone for supply parameters for constant voltage source, and the smoke concentration at outlet increased by about 147%. Therefore, wet electrostatic precipitator preferred to use constant current source with strong anti-interference ability. For the high frequency constant current source, it had higher operation parameters and stronger pollutant removal performance. Compared with the fundamental frequency, the emission reduction ranges of dust and SO3 at different power supply consumptions of high frequency constant current source were 46.30%~78.69% and 42.86%~66.67%, respectively. Moreover, the relationship between specific power consumption and pollutant removal performance of the wet electrostatic precipitator was quantitatively analyzed through in-depth testing of practical engineering projects and energy-saving optimization experiments. Engineering measurement showed that the pollutant removal performance of the wet electrostatic precipitator was improved with the reduction of unit load, but the specific power consumption of high voltage power supply increased significantly, from full load to 50% load, the specific power consumption increased from 2.41×10−4 kWh·m−3to 4.57×10−4 kWh·m−3, which showed a large energy saving space. Through energy saving optimization, the specific power consumption of 50% load decreased by 84.68% when the smoke concentration at the outlet of wet electrostatic precipitator was kept at 4~5 mg·m−3. According to this energy saving optimization idea, the operation optimization was carried out for the other three engineering projects, and the smoke emission concentration was controlled within 4.5 mg·m−3, and the specific power consumptions decreased by 32.65%, 27.15% and 41.64%, respectively. The research can provide reference for the performance improvement and energy saving optimization of wet electrostatic precipitator.
-
表 1 工程数据汇总
Table 1. Project data summary
序号 机组/MW 电源配置 设计出口烟尘
浓度/(mg·m−3)原排放浓度及电耗 节能优化后指标 比电耗下降
幅度/%烟尘浓度/
(mg·m−3)比电耗/
(kWh·m−3)烟尘浓度/
(mg·m−3)比电耗/
(kWh·m−3)1 300 72 kV/1 200 mA
高频高压恒流源<5 1.9 5.88 4.2 3.96 32.65 2 660 72 kV/1 200 mA
高频高压恒流源<5 2.7 4.31 4.1 3.14 27.15 3 1 000 80 kV/1 600 mA
高频高压恒流源<5 1.2 3.29 4.0 1.92 41.64 -
[1] 闫克平, 李树然, 郑钦臻, 等. 电除尘技术发展与应用[J]. 高电压技术, 2017, 43(2): 476-487. [2] 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015. [3] 安连锁, 王金平, 郦建国, 等. 中国燃煤电厂电除尘技术发展及应用综述[J]. 中国电力, 2018, 51(6): 115-123. [4] ZHANG X, GUO Z C. On energy consumption and atmospheric pollutants of China’s iron and steel industry[J]. Iron & Steel, 2000, 35(1): 63-68. [5] 范晓慧, 甘敏, 季志云, 等. 烧结烟气超细颗粒物排放规律及其物化特性[J]. 烧结球团, 2016(3): 42-45. [6] 李海英, 王锦, 郑雅欣. 烧结过程细微颗粒物排放特征与控制方法[J]. 环境工程, 2018, 36(8): 102-106. [7] 寿春晖, 祁志福, 谢尉扬, 等. 低低温电除尘器颗粒物脱除特性的工程应用试验研究[J]. 中国电机工程学报, 2016, 36(16): 4326-4332. [8] 王树民, 张翼, 刘吉臻. 燃煤电厂细颗粒物控制技术集成应用及“近零排放”特性[J]. 环境科学研究, 2016, 29(9): 1256-1263. [9] 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223. [10] CHANG Q Y, ZHENG C H, YANG Z D, et al. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification[J]. Fuel, 2017, 200: 134-145. doi: 10.1016/j.fuel.2017.03.033 [11] 闫克平, 李树然, 冯卫强, 等. 高电压环境工程应用研究关键技术问题分析及展望[J]. 高电压技术, 2015, 41(8): 2528-2544. [12] 朱法华, 李辉, 王强. 高频电源在我国电除尘器上的应用及节能减排潜力分析[J]. 环境工程技术学报, 2011, 1(1): 26-32. doi: 10.3969/j.issn.1674-991X.2011.01.005 [13] 李纪, 王福升. 转炉干法除尘三相电源的可行性研究[J]. 世界有色金属, 2018, 31(3): 4-5. [14] 汤铭, 宁光富, 乔光尧, 等. 一种低成本高压脉冲静电除尘电源的分析与验证[J]. 中国电机工程学报, 2018, 38(3): 890-898. [15] 丁鑫龙, 王琼杰, 郎佳红, 等. 脉冲供电技术去除高阻比粉尘[J]. 环境工程学报, 2018, 12(1): 159-163. doi: 10.12030/j.cjee.201801010 [16] 张滨渭, 李树然. 电除尘器在超低排放下的系统运行优化[J]. 高电压技术, 2017, 43(2): 493-498. [17] 林展翔. 基于高频PWM控制的工频静电除尘电源[D]. 武汉: 华中科技大学, 2013. [18] 杨群发, 侯剑雄, 陈灌明. 600 MW级湿式电除尘器工程调试与运行调整研究[J]. 中国电力, 2015, 48(8): 20-26. [19] 杨群发, 侯剑雄, 陈灌明. 600 MW机组湿式电除尘器工程调试与运行调整研究[J]. 电力科技与环保, 2016, 2(1): 22-25. doi: 10.3969/j.issn.1674-8069.2016.01.007 [20] 王红艳. 新型工频恒流型静电除尘电源研究[D]. 武汉: 华中科技大学, 2011. [21] 冯彦杰, 金文博, 王欣, 等. 用于静电除尘的新型三相恒流源[J]. 电子器件, 2018, 41(1): 189-194. doi: 10.3969/j.issn.1005-9490.2018.01.035 [22] 廖文杰, 陈焕其. 调幅高频电源在湿式电除尘器上的应用[J]. 中国环保产业, 2015, 30(6): 33-38. doi: 10.3969/j.issn.1006-5377.2015.06.010 [23] 杨文霞, 张连永, 杨明印. 恒流源型电源在静电除尘中的特性研究[J]. 兵工自动化, 2013, 32(4): 61-63. [24] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137 [25] 张雪峰, 杨正大, 李响, 等. SO3对高湿静电场中电晕放电的影响机制研究[J]. 中国环境科学, 2017, 37(9): 3268-3275. doi: 10.3969/j.issn.1000-6923.2017.09.008 [26] 杨正大. 多场强化湿烟气中PM、SOx协同脱除机理及应用研究[D]. 杭州: 浙江大学, 2018. [27] YANG Z D, ZHENG C H, ZHANG X F, et al. Sulfuric acid aerosol formation and collection by corona discharge in a wet electrostatic precipitator[J]. Energy & Fuels, 2017, 31(8): 8400-8406. [28] YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. doi: 10.1039/C7RA11520B [29] 向晓东, 朱青松, 常玉锋, 等. 侧流电除尘增效机理与检验[J]. 环境工程学报, 2018, 12(6): 1720-1724. doi: 10.12030/j.cjee.201711058 [30] 吕建燚, 徐冰漪, 陆义海, 等. 燃煤颗粒物电除尘器内相互作用模拟[J]. 环境工程学报, 2017, 11(6): 3641-3646. [31] 陈叮叮, 沈伯雄, 刘智, 等. 干/湿混法对中温SCR催化剂碱土金属中毒的影响[J]. 环境工程学报, 2019, 13(3): 694-700. doi: 10.12030/j.cjee.201808151 [32] 杨晓刚, 马强, 牛国平, 等. 快速SCR反应对商用V2O5-WO3/TiO2催化剂脱硝特性的影响[J]. 环境工程学报, 2018, 12(7): 1968-1976. doi: 10.12030/j.cjee.201712189 [33] 竹涛, 张书庆, 郭娜. 火电行业SO3控制技术研究进展[J]. 环境工程, 2018, 36(2): 109-112. [34] 赵磊, 周洪光. 近零排放机组不同湿式电除尘器除尘效果[J]. 动力工程学报, 2016, 36(1): 53-58. doi: 10.3969/j.issn.1674-7607.2016.01.009 [35] 沈志刚, 刘启贞, 陶雷行, 等. 湿式电除尘器对烟气中颗粒物的去除特性[J]. 环境工程学报, 2016, 10(5): 2557-2561. doi: 10.12030/j.cjee.201412096 [36] 金侃, 张军, 郑成航, 等. 百万燃煤机组烟气污染物超低排放改造费效评估[J]. 环境工程学报, 2017, 11(2): 1061-1068. doi: 10.12030/j.cjee.201510024 [37] 陶雷行, 戴苏峰, 艾春美. 湿式电除尘器污染控制性能与应用经验[J]. 环境工程, 2015, 11(9): 96-99.