Processing math: 100%

湿式电除尘器的高压恒流源供电及其能效分析

杨丽萍. 湿式电除尘器的高压恒流源供电及其能效分析[J]. 环境工程学报, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112
引用本文: 杨丽萍. 湿式电除尘器的高压恒流源供电及其能效分析[J]. 环境工程学报, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112
YANG Liping. High pressure constant current power supply and energy efficiency analysis of wet electrostatic precipitator[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112
Citation: YANG Liping. High pressure constant current power supply and energy efficiency analysis of wet electrostatic precipitator[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112

湿式电除尘器的高压恒流源供电及其能效分析

    作者简介: 杨丽萍(1973—),女,学士,高级工程师。研究方向:电气工程及其自动化。E-mail:13769164198@163.com
    通讯作者: 杨丽萍, E-mail: 13769164198@163.com
  • 基金项目:
    云南省应用基础研究计划重点项目(2014FA029)
  • 中图分类号: X505

High pressure constant current power supply and energy efficiency analysis of wet electrostatic precipitator

    Corresponding author: YANG Liping, 13769164198@163.com
  • 摘要: 湿式电除尘器电场的放电状态变化大、干扰因素多,尤其是导电玻璃钢阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。为了深入研究湿式电除尘器的电源供电特性及污染物脱除性能,搭建了湿式电除尘器实验系统,并开展不同类型电源的对比实验。实验结果表明:湿式电除尘器喷淋系统开启,工频恒流源运行相对平稳,出口烟尘浓度变化不大,但恒压源则存在一个电源参数振荡区,出口烟尘浓度增加了约147%,因此,湿式电除尘器应优先考虑抗干扰能力强的恒流源;高频恒流源的运行参数更高,污染物脱除性能更强,与工频相比,高频恒流源不同供电电耗时烟尘、SO3的减排幅度分别为46.30%~78.69%、42.86%~66.67%。通过对实际工程项目的深度测试及节能优化实验,定量分析了湿式电除尘器的比电耗与污染物脱除性能关系。工程实践表明:随机组负荷的降低,湿式电除尘器的污染物脱除性能有所提升,但高压供电比电耗也大幅增加,从满负荷到50%负荷,比电耗从2.41×10−4 kWh·m−3升至4.57×10−4 kWh·m−3,有较大的节能空间;经节能优化,控制湿式电除尘器出口烟尘浓度在4~5 mg·m−3,50%负荷的比电耗下降达84.68%。根据该节能优化思路,对其他3个工程项目实施运行优化,控制烟尘排放浓度在4.5 mg·m−3以内,比电耗下降幅度分别为32.65%、27.15%、41.64%。以上研究结果可为后续湿式电除尘器的性能提升及节能优化提供参考。
  • 随着我国对水环境质量要求的提高,废水的排放标准也日益严格,从一级A到各地方标准、从日均值达标到时时达标,都对污水处理工艺以及运行提出了严格的要求。但随着人们生活水平的不断提高,污水厂进水管控不严格,常常出现进水水质超过设计标准的情况,尤其是有机物浓度,对于污水厂的正常运行和出水造成了恶劣的影响,所以改善污水厂运行工艺,提高其抗冲击性能,对于保障污水厂的正常运行具有重要意义。

    目前,活性污泥法在我国应用较为普遍,其结构简单、形式多样、运行管理方便,但进水水质波动会对处理过程产生冲击,使生化系统C/N/P营养比例失衡,在冲击来临时常面临出水不达标的问题,并且污泥中的硝化菌丰度会伴随冲击过程逐步降低,导致出水氨氮恢复较慢,严重影响出水水质[1]。所以需要通过工艺改善来保障污染物稳定达标。吴成强等[2]采用深度水解/MBR工艺处理高COD、高氨氮废水,工程运行结果表明,该工艺抗冲击负荷能力强,出水氨氮稳定低于1 mg·L−1。移动床生物膜反应器(moving bed biofilm reactor, MBBR)兼具生物接触氧化和生物流化床的优点[3],属于典型的生物膜法。工程实践表明,MBBR工艺具有很强的抗冲击负荷能力。如在北方某污水厂实施Bardenpho-MBBR工艺改造后[4],进水COD波动频繁的情况下,出水水质稳定达标,且系统可稳定运行;李新利等[5]采用MBBR工艺处理皮革废水,常规活性污泥法氨氮硝化负荷为0.21 kg·(m3·d)−1,而采用MBBR工艺后,硝化负荷为0.53 kg·(m3·d)−1,MBBR工艺硝化负荷提升1.5倍,从而保障了氨氮稳定达标。

    本研究通过向活性污泥系统中投加悬浮载体,形成泥膜复合的MBBR工艺,依靠悬浮载体对于微生物的富集筛选作用抵抗进水冲击,以期达到抗水质冲击的效果,保障水厂稳定达标。通过实际工程运行效果,判定宏观上MBBR工艺的抗冲击性能,然后通过硝化小试以及生化段沿程的测定分析活性污泥和悬浮载体的抗冲击性能。通过高通量测序等,从微生物角度,探究了活性污泥和悬浮载体对于硝化细菌的富集能力。整体上,从宏观和微观上分析MBBR工艺抗冲击性能。以期为污水厂的抗冲击提供稳定运行工艺以及理论指导,为类似工程的运行提供数据指导。

    该污水厂生化池采用Bardenpho(A2/O+A/O)-MBBR工艺,总HRT为19.33 h,其中前厌缺氧区HRT为7.06 h、好氧区为8.42 h(MBBR区HRT为4.93 h)、后缺氧区HRT为2.80 h,后好氧区HRT为1.05 h。污泥浓度为4 g·L−1,污泥龄为16 d;内回流比为100%~300%,外回流比为50%~150%。

    MBBR区投加悬浮载体为新型悬浮载体SPR-III,悬浮载体直径为(25±0.5) mm,高为(10±1) mm,挂膜后比重与水接近,有效比表面积大于800 m2·m−3,符合《水处理用高密度聚乙烯悬浮载体》(CJ/T461-2014)行业标准。好氧内回流硝化液全部进入前缺氧区,在强化TN去除的同时也提高了原水碳源的利用率。此外,后缺氧区作为后置反硝化区,可通过碳源外部投加或內源呼吸对硝酸盐氮进一步去除,从而保障TN的去除不受回流比的限制,强化TN去除。生化处理段末端的好氧区保证了有机物去除及生物池出水中一定的溶解氧浓度,防止二沉池污泥上浮。

    为了解生化段对污染物质的去除情况,对生化段各功能区进行了沿程分析,取样点包括生化池进水、缺氧区出水、第1好氧区出水、好氧MBBR区出水、第2好氧区出水、后缺氧区出水和后好氧区出水,具体取样点均位于各功能区出水断面,如图1所示。每间隔2~3 h取样,所有样品先快速沉淀后取上清液,取回后及时进行预处理,将3次样品等量混合均匀后分别进行氨氮、硝氮、TN、COD的测定。

    图 1  沿程取样点分布
    Figure 1.  Sampling points distribution along the process device

    对悬浮载体和活性污泥的硝化性能进行测定,实验用水采用缺氧区出水经沉淀后的上清液。实验温度13 ℃,纯活性污泥实验控制污泥浓度为4.4 g·L−1,纯膜系统控制悬浮载体填充率为33%。

    沿程样及硝化小试的常规指标的测定中,氨氮采用纳氏试剂分光光度法,硝氮采用紫外分光光度法,TN采用过硫酸钾氧化紫外分光光度法,COD的测定采用重铬酸钾法;pH、DO采用WTW Multi-3430i离线测定。

    高通量测序通过试剂盒(E.Z.N.A Mag-Bind Soil DNA Kit,OMEGA)提取微生物基因组DNA,通过1%琼脂糖凝胶电泳检测抽提基因组的完整性,利用Qubit 3.0 DNA试剂盒检测基因组DNA浓度。PCR扩增所用引物为341 F/805R。PCR产物进行琼脂糖电泳,通过DNA胶回收试剂盒(SanPrep)对PCR产物进行回收,利用Qubit3.0 DNA检测试剂盒对回收的DNA精确定量,按照1∶1的等量混合后测序,等量混合时,每个样品DNA量取10 ng,最终上机测序浓度为20 pmol,通过Illumina Miseq测序平台完成对样品高通量测序。

    采用UPARSE 7.1软件根据97%的相似度进行OTU聚类;使用UCHIME软件剔除嵌合体。利用RDPclassifier对每条序列进行物种分类注释,比对Silva数据库(SSU123),设置比对阈值为70%。

    图2图3图4分别为该水厂2018年2月27日至2019年2月26日的BOD、TN和氨氮的运行数据。从图2图3中可以看出,1年中进水存在2次严重超标,主要是TN、BOD,进水C/N(五日生化需氧量/总氮)在5.57±2.61。1年中进水有机负荷超过设计值1.23 kg·(m3·d)−1的时间达到111 d,占30%。虽然进水氨氮不超标,但是TN超标,进水TN超标天数达到137 d,超标率38%。由于TN的去除仍以硝化反硝化为主,故实际硝化的氮高于设计值,TN的超标间歇性的导致了氨氮的超标。

    图 2  进出水BOD变化情况
    Figure 2.  Changes of BOD in inlet and outlet water
    图 3  进出水TN变化情况
    Figure 3.  Changes of TN in inlet and outlet water
    图 4  进出水氨氮变化情况
    Figure 4.  Changes of NH+4-N in inlet and outlet water

    图2图3可知,在进水BOD、TN超标的状态下,出水稳定达标,出水BOD均值为(2.82±0.34) mg·L−1,已经稳定达到了地表Ⅳ类水标准。出水TN均值为(7.75±2.67) mg·L−1,低于10 mg·L−1的天数为262 d,达到72%,低于12 mg·L−1的天数为332 d,达到91%,脱氮效果良好。

    图4可知,一年出水氨氮均值为(2.43±1.04) mg·L−1。正常情况下出水氨氮可以稳定小于1.5 mg·L−1,但是在进水BOD和TN超标冲击的时候,出水氨氮有所提升,但仍小于5 mg·L−1。分析其原因主要归为以下2点:TN超标间接导致氨氮超标,从而导致出水氨氮偏高;进水BOD超标,由于异养菌对于溶解氧的竞争能力强于自养菌,所以一旦有机物浓度过高,在好氧池就会优先发生异养菌好氧脱碳过程,从而导致硝化菌可利用溶解氧不足,致使出水氨氮浓度升高[6-7]。但即使出现了间接的TN和BOD超标,出水氨氮仍可稳定达到一级A标准。

    该污水厂生化段采用Bardenpho镶嵌MBBR工艺进行改造。首先,增设前缺氧和后缺氧区,其中前缺氧区通过内回流过程充分利用原水碳源进行反硝化脱氮,后缺氧通过投加碳源进一步反硝化脱氮,2大缺氧区共同保障了TN的去除效果,生化池出水硝氮最低可达到1 mg·L−1。其次在第1好氧区投加了悬浮载体。悬浮载体生物膜为长泥龄,这就为长泥龄菌尤其是硝化细菌的高效附着提供了场所。此外,由于悬浮载体专性在好氧区,所以即使有冲击来临,也能保障悬浮载体在好氧区内的持留,从而保障硝化效果。综上所述,采用Bardenpho镶嵌MBBR工艺可强化硝化反硝化过程,抗冲击能力强,达到出水稳定达标的目的[8-10]

    为验证MBBR工艺在有机物冲击情况下系统的处理情况,进行悬浮载体及活性污泥硝化小试并对污水厂生化段各功能区进行沿程水样进行检测分析。

    1)悬浮载体及污泥硝化性能对比。根据MBBR区实际情况,分别在有机物冲击前后对好氧池内挂膜成熟的悬浮载体以及活性污泥进行硝化小试实验,测定悬浮载体及活性污泥的硝化速率。硝化小试实验条件以及结果见表1。活性污泥浓度和悬浮载体填充率为实验时生化池内实时值,实验温度为13 ℃。由表1可知,不论是在冲击前还是冲击后,悬浮载体的硝化速率均高于活性污泥。冲击前,悬浮载体的硝化性能是活性污泥的1.4倍,冲击后增大至1.9倍。从有机物冲击对悬浮载体及活性污泥的硝化性能影响上看,虽然冲击后生物池污泥浓度升高,但是污泥的硝化负荷降低,容积负荷由0.076 kg·(m3·d)−1降至0.057 kg·(m3·d)−1,降低了25%,污泥负荷由0.018 kg·(kg·d)−1降至0.010 kg·(kg·d)−1,降低了44%。而对于悬浮载体,冲击前后容积负荷未发生变化,这说明有机物的冲击并没有影响悬浮载体的硝化性能。

    表 1  硝化小试实验参数及实验结果
    Table 1.  Nitrification test parameters and results
    样品活性污泥浓度/(g·L−1)悬浮载体填充率/%活性污泥硝化负荷/(kg·(m3·d)−1)活性污泥硝化负荷/(kg·(kg·d)−1)悬浮载体硝化负荷/(kg·(m3·d)−1)
    冲击前4.2360.0760.0180.108
    冲击后5.7360.0570.0100.109
     | Show Table
    DownLoad: CSV

    进水有机物浓度过高会导致异养菌增值过快,从而引起污泥浓度的升高。此外,由于自养菌对于溶解氧的争夺处于劣势,增值速率降缓,且随着污水厂剩余污泥排放量的增大,最终导致了硝化菌在活性污泥中的占比降低,从而导致污泥的硝化速率下降。而对于悬浮载体,由于硝化菌附着于悬浮载体表面,且悬浮载体专性在好氧区,即使在有机物冲击的条件下,悬浮载体也不会流失,生物膜的高效附着有效的持留了硝化菌,从而保障了悬浮载体的硝化性能不受影响,抗冲击能力强[11-13]

    图 5  有机物冲击对悬浮载体及污泥硝化性能的影响
    Figure 5.  Effect of organic matter impact on suspending carriers and sludge nitrification performance

    2)沿程氮素分析。为分析在有机物冲击情况下生化系统各功能区对氮素的处理情况,对生化段各功能区进行取样检测,生化池氮素浓度沿程变化如图6所示。由图6可知,生化系统进水氨氮接近设计值,TN超标的情况下,出水氨氮为1.42 mg·L−1,出水TN为11.48 mg·L−1,均优于设计标准。对于硝化过程,由于进水有机物超标,故在好氧1区基本无硝化发生,氨氧化率仅为2.66%,硝化容积负荷0.029 kg·(m3·d)−1。而在好氧MBBR区,氨氧化率则达到90%以上,硝化容积负荷达到0.192 kg·(m3·d)−1,硝化速率是好氧1区的6.6倍,从而保障了好氧MBBR区出水氨氮稳定达标。对于反硝化过程,厌氧区和前缺氧区对TN的去除率达到了70.22%,并且前缺氧区出水硝氮基本为零,这说明厌缺氧区脱氮效果良好,充分利用了原水碳源。值得注意的是,在好氧MBBR区也有7%的TN去除,推测发生了同步硝化反硝化(SND)过程。基质(有机物、DO等)在悬浮载体生物膜内部存在传质梯度并且各类微生物的代谢活动及其相互作用所形成的微环境是引起同步硝化反硝化(SND)的主要因素。此外,由于生物膜分层分布的特点,使其存在典型的缺/好氧微环境,进而形成功能菌群分置。生物膜外层形成好氧生物膜,硝化菌群得以附着并氧化氨氮;内层则形成厌缺氧生物膜,具备反硝化功能的菌群能够得以生长并将氨氮的氧化产物还原为氮气实现脱氮[14]。好氧MBBR区出水TN已经降低至15.12 mg·L−1,通过在后缺氧区投加碳源,使出水TN进一步降低,最终达到11.48 mg·L−1

    图 6  沿程氮素分析
    Figure 6.  Nitrogen analysis along the process device

    从沿程氮素去除效果来看,在受进水有机物冲击的情况下,系统仍能保持较好的处理效果,结合硝化小试及沿程数据可知,MBBR工艺为系统抗冲击性能提供了保障。一方面通过悬浮载体的投加,为硝化菌的大量生长提供了附着条件,易受冲击的硝化菌群主要附着在悬浮载体上,在进水存在负荷冲击时,MBBR抗冲击能力强,减轻了系统受冲击负荷的影响;另一方面,采用MBBR工艺进行改造,增大了缺氧区的停留时间,尤其是对于增加后缺氧区,破除了回流比对TN去除的限制,可控性强。当MBBR区出水TN达标时,后缺氧区可不投加碳源,利用原水碳源或者内碳源进行反硝化可去除少量的TN,而一旦进水TN超标,导致MBBR区出水TN偏高时,则可灵活在后缺氧区投加碳源,从而保障生化池出水TN达标[14-15]

    为从微观层面进一步分析系统抗冲击负荷的原因,对该污水厂活性污泥以及悬浮载体进行了基于16s扩增子高通量测序,其中,各样品属水平物种相对丰度如图7所示。MBBR悬浮载体中优势菌群主要包括Nitrospira(硝化螺旋菌属)、Acinetobacter(不动杆菌属)、Nitrosomonas(亚硝化单胞菌属)等;污泥中优势菌群主要包括Nitrosomonas(亚硝化单胞菌属)、Thermomonas(热单胞菌属)、Nitrospira(硝化螺旋菌属)。系统中AOB主要为Nitrosomonas(亚硝化单胞菌属),在悬浮载体生物膜和活性污泥上丰度分别为1.46%和1.08%、占比较少。Nitrospira是主要的NOB菌属,在悬浮载体生物膜和活性污泥上的丰度分别为12.94%和1.01%。研究发现,Nitrospira更容易以附着态形式存在,因此在悬浮载体中丰度较大;Nitrospira在污泥中的丰度也高于传统污水厂,这可能是由于悬浮载体生物膜脱落后,对污泥进行了接种,使之在污泥中也能够维持一定的比例。有研究[16]发现Nitrospira兼具AOB和NOB功能,另外,该菌属适宜生存在低氨氮环境中,可以作为出水水质较好和稳定的指示性微生物。因此,Nitrospira作为硝化菌中优势种属也反映了水厂处理效果较为良好。

    图 7  属水平物种相对丰度
    Figure 7.  Relative abundance distribution of microbes at genus level

    取样时,系统内污泥浓度为4.86 g·L−1,VSS/SS=0.51,悬浮载体上污泥量为9.07 g·m−2,VSS/SS=0.89。则在好氧系统中,结合池容、悬浮载体填充率等进行计算发现,悬浮载体提供83%的硝化菌,是活性污泥的5倍,可见悬浮载体保障了系统硝化的进行。

    值得注意的是,冲击过后同样对活性污泥和悬浮载体的进行了高通量测定,与冲击前相比,两者的硝化菌属均未发生改变,仍是以Nitrospira为主,兼具Nitrosomonas,但冲击过后活性污泥中硝化菌属的丰均明显降低,Nitrospira由1.01%降低至0.84%,Nitrosomonas由1.08%降低至0.61%。相比而言,悬浮载体的硝化菌属丰度未发生明显改变,Nitrosomonas丰度为1.52%,Nitrospira丰度为12.06%。综上所述,从微生物角度上为宏观的现象提供了微观证明。

    1)通过向活性污泥系统中投加悬浮载体形成泥膜复合MBBR工艺,强化了系统的抗冲击能力,在进水TN、BOD超标的情况下,出水TN、BOD、氨氮分别为(7.75±2.67)、(2.82±0.34)、(2.43±1.04) mg·L−1,稳定达到一级A标准。

    2) Bardenpho工艺通过后缺氧的设置,破除了回流比对TN去除的限制,使系统在进水TN超标的情况下同样能够稳定达标,可控性强。

    3)悬浮载体生物膜长泥龄、专性培养的特点使其能够对硝化细菌实现高效的筛选富集以及持留,保障了在有机物冲击前后,悬浮载体的硝化性能不受影响。

    4)悬浮载体和活性污泥的高通量结果显示,悬浮载体上优势硝化菌为硝化螺旋菌,其丰度是活性污泥的5倍,高效的硝化细菌保障了工程中氨氮的稳定达标。

    5)工程实践表明,MBBR工艺抗冲击能力较强,出水各指标稳定达标,适用于污水厂在高排放标准下的应用。

  • 图 1  湿式电除尘器实验系统

    Figure 1.  Experiment system of wet electrostatic precipitator

    图 2  空载升压实验结果

    Figure 2.  Test results of no-load boost

    图 3  SO3采样系统

    Figure 3.  SO3 sampling system

    图 4  负载升压实验结果

    Figure 4.  Test results of load boost

    图 5  湿式电除尘器(WESP)对烟尘、SO3的脱除性能

    Figure 5.  Dust and SO3 removal performance of wet electrostatic precipitator (WESP)

    图 6  喷淋系统开启时二次电压/二次电流

    Figure 6.  Secondary voltage/secondary current curve when the spray system was turned on

    图 7  喷淋系统开启时湿式电除尘器出口烟尘浓度的变化

    Figure 7.  Change of dust concentration at the outlet of wet electrostatic precipitator when the spray system was turned on

    图 8  空载升压实验结果

    Figure 8.  Test results of no-load boost

    图 9  负载升压实验结果

    Figure 9.  Test results of load boost

    图 10  不同电源供电时湿式电除尘器(WESP)对烟尘和SO3的脱除性能

    Figure 10.  Dust and SO3 removal performance of wet electrostatic precipitator (WESP) at different power supply

    图 11  PM2.5测定装置

    Figure 11.  PM2.5 measurement device

    图 12  PM2.5采样系统

    Figure 12.  PM2.5 sampling system

    图 13  烟尘浓度测试结果

    Figure 13.  Test results of smoke concentration

    图 14  SO3浓度测试结果

    Figure 14.  Test results of SO3 concentration

    图 15  PM10/PM2.5浓度测试结果

    Figure 15.  Test results of PM10/PM2.5 concentration

    图 16  湿式电除尘器比电耗

    Figure 16.  Specific power consumption of WESP

    图 17  节能优化后湿式电除尘器比电耗

    Figure 17.  Specific power consumption of WESP after energy saving optimization

    图 18  SO3浓度测试结果

    Figure 18.  Test results of SO3 concentration

    图 19  PM10/PM2.5浓度测试结果

    Figure 19.  Test results of PM10/PM2.5 concentration

    表 1  工程数据汇总

    Table 1.  Project data summary

    序号机组/MW电源配置设计出口烟尘浓度/(mg·m−3)原排放浓度及电耗节能优化后指标比电耗下降幅度/%
    烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)
    130072 kV/1 200 mA高频高压恒流源<51.95.884.23.9632.65
    266072 kV/1 200 mA高频高压恒流源<52.74.314.13.1427.15
    31 00080 kV/1 600 mA高频高压恒流源<51.23.294.01.9241.64
    序号机组/MW电源配置设计出口烟尘浓度/(mg·m−3)原排放浓度及电耗节能优化后指标比电耗下降幅度/%
    烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)烟尘浓度/(mg·m−3)比电耗/(kWh·m−3)
    130072 kV/1 200 mA高频高压恒流源<51.95.884.23.9632.65
    266072 kV/1 200 mA高频高压恒流源<52.74.314.13.1427.15
    31 00080 kV/1 600 mA高频高压恒流源<51.23.294.01.9241.64
    下载: 导出CSV
  • [1] 闫克平, 李树然, 郑钦臻, 等. 电除尘技术发展与应用[J]. 高电压技术, 2017, 43(2): 476-487.
    [2] 中国环境保护产业协会电除尘委员会. 燃煤电厂烟气超低排放技术[M]. 北京: 中国电力出版社, 2015.
    [3] 安连锁, 王金平, 郦建国, 等. 中国燃煤电厂电除尘技术发展及应用综述[J]. 中国电力, 2018, 51(6): 115-123.
    [4] ZHANG X, GUO Z C. On energy consumption and atmospheric pollutants of China’s iron and steel industry[J]. Iron & Steel, 2000, 35(1): 63-68.
    [5] 范晓慧, 甘敏, 季志云, 等. 烧结烟气超细颗粒物排放规律及其物化特性[J]. 烧结球团, 2016(3): 42-45.
    [6] 李海英, 王锦, 郑雅欣. 烧结过程细微颗粒物排放特征与控制方法[J]. 环境工程, 2018, 36(8): 102-106.
    [7] 寿春晖, 祁志福, 谢尉扬, 等. 低低温电除尘器颗粒物脱除特性的工程应用试验研究[J]. 中国电机工程学报, 2016, 36(16): 4326-4332.
    [8] 王树民, 张翼, 刘吉臻. 燃煤电厂细颗粒物控制技术集成应用及“近零排放”特性[J]. 环境科学研究, 2016, 29(9): 1256-1263.
    [9] 熊桂龙, 李水清, 陈晟, 等. 增强PM2.5脱除的新型电除尘技术的发展[J]. 中国电机工程学报, 2015, 35(9): 2217-2223.
    [10] CHANG Q Y, ZHENG C H, YANG Z D, et al. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification[J]. Fuel, 2017, 200: 134-145. doi: 10.1016/j.fuel.2017.03.033
    [11] 闫克平, 李树然, 冯卫强, 等. 高电压环境工程应用研究关键技术问题分析及展望[J]. 高电压技术, 2015, 41(8): 2528-2544.
    [12] 朱法华, 李辉, 王强. 高频电源在我国电除尘器上的应用及节能减排潜力分析[J]. 环境工程技术学报, 2011, 1(1): 26-32. doi: 10.3969/j.issn.1674-991X.2011.01.005
    [13] 李纪, 王福升. 转炉干法除尘三相电源的可行性研究[J]. 世界有色金属, 2018, 31(3): 4-5.
    [14] 汤铭, 宁光富, 乔光尧, 等. 一种低成本高压脉冲静电除尘电源的分析与验证[J]. 中国电机工程学报, 2018, 38(3): 890-898.
    [15] 丁鑫龙, 王琼杰, 郎佳红, 等. 脉冲供电技术去除高阻比粉尘[J]. 环境工程学报, 2018, 12(1): 159-163. doi: 10.12030/j.cjee.201801010
    [16] 张滨渭, 李树然. 电除尘器在超低排放下的系统运行优化[J]. 高电压技术, 2017, 43(2): 493-498.
    [17] 林展翔. 基于高频PWM控制的工频静电除尘电源[D]. 武汉: 华中科技大学, 2013.
    [18] 杨群发, 侯剑雄, 陈灌明. 600 MW级湿式电除尘器工程调试与运行调整研究[J]. 中国电力, 2015, 48(8): 20-26.
    [19] 杨群发, 侯剑雄, 陈灌明. 600 MW机组湿式电除尘器工程调试与运行调整研究[J]. 电力科技与环保, 2016, 2(1): 22-25. doi: 10.3969/j.issn.1674-8069.2016.01.007
    [20] 王红艳. 新型工频恒流型静电除尘电源研究[D]. 武汉: 华中科技大学, 2011.
    [21] 冯彦杰, 金文博, 王欣, 等. 用于静电除尘的新型三相恒流源[J]. 电子器件, 2018, 41(1): 189-194. doi: 10.3969/j.issn.1005-9490.2018.01.035
    [22] 廖文杰, 陈焕其. 调幅高频电源在湿式电除尘器上的应用[J]. 中国环保产业, 2015, 30(6): 33-38. doi: 10.3969/j.issn.1006-5377.2015.06.010
    [23] 杨文霞, 张连永, 杨明印. 恒流源型电源在静电除尘中的特性研究[J]. 兵工自动化, 2013, 32(4): 61-63.
    [24] 刘含笑, 陈招妹, 王少权, 等. 燃煤电厂SO3排放特征及其脱除技术[J]. 环境工程学报, 2019, 13(5): 1128-1138. doi: 10.12030/j.cjee.201812137
    [25] 张雪峰, 杨正大, 李响, 等. SO3对高湿静电场中电晕放电的影响机制研究[J]. 中国环境科学, 2017, 37(9): 3268-3275. doi: 10.3969/j.issn.1000-6923.2017.09.008
    [26] 杨正大. 多场强化湿烟气中PM、SOx协同脱除机理及应用研究[D]. 杭州: 浙江大学, 2018.
    [27] YANG Z D, ZHENG C H, ZHANG X F, et al. Sulfuric acid aerosol formation and collection by corona discharge in a wet electrostatic precipitator[J]. Energy & Fuels, 2017, 31(8): 8400-8406.
    [28] YANG Z D, ZHENG C H, ZHANG X F, et al. Highly efficient removal of sulfuric acid aerosol by a combined wet electrostatic precipitator[J]. RSC Advances, 2018, 8(1): 59-66. doi: 10.1039/C7RA11520B
    [29] 向晓东, 朱青松, 常玉锋, 等. 侧流电除尘增效机理与检验[J]. 环境工程学报, 2018, 12(6): 1720-1724. doi: 10.12030/j.cjee.201711058
    [30] 吕建燚, 徐冰漪, 陆义海, 等. 燃煤颗粒物电除尘器内相互作用模拟[J]. 环境工程学报, 2017, 11(6): 3641-3646.
    [31] 陈叮叮, 沈伯雄, 刘智, 等. 干/湿混法对中温SCR催化剂碱土金属中毒的影响[J]. 环境工程学报, 2019, 13(3): 694-700. doi: 10.12030/j.cjee.201808151
    [32] 杨晓刚, 马强, 牛国平, 等. 快速SCR反应对商用V2O5-WO3/TiO2催化剂脱硝特性的影响[J]. 环境工程学报, 2018, 12(7): 1968-1976. doi: 10.12030/j.cjee.201712189
    [33] 竹涛, 张书庆, 郭娜. 火电行业SO3控制技术研究进展[J]. 环境工程, 2018, 36(2): 109-112.
    [34] 赵磊, 周洪光. 近零排放机组不同湿式电除尘器除尘效果[J]. 动力工程学报, 2016, 36(1): 53-58. doi: 10.3969/j.issn.1674-7607.2016.01.009
    [35] 沈志刚, 刘启贞, 陶雷行, 等. 湿式电除尘器对烟气中颗粒物的去除特性[J]. 环境工程学报, 2016, 10(5): 2557-2561. doi: 10.12030/j.cjee.201412096
    [36] 金侃, 张军, 郑成航, 等. 百万燃煤机组烟气污染物超低排放改造费效评估[J]. 环境工程学报, 2017, 11(2): 1061-1068. doi: 10.12030/j.cjee.201510024
    [37] 陶雷行, 戴苏峰, 艾春美. 湿式电除尘器污染控制性能与应用经验[J]. 环境工程, 2015, 11(9): 96-99.
  • 加载中
图( 19) 表( 1)
计量
  • 文章访问数:  6876
  • HTML全文浏览数:  6876
  • PDF下载数:  43
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-19
  • 录用日期:  2019-09-27
  • 刊出日期:  2020-03-01
杨丽萍. 湿式电除尘器的高压恒流源供电及其能效分析[J]. 环境工程学报, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112
引用本文: 杨丽萍. 湿式电除尘器的高压恒流源供电及其能效分析[J]. 环境工程学报, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112
YANG Liping. High pressure constant current power supply and energy efficiency analysis of wet electrostatic precipitator[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112
Citation: YANG Liping. High pressure constant current power supply and energy efficiency analysis of wet electrostatic precipitator[J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 730-742. doi: 10.12030/j.cjee.201907112

湿式电除尘器的高压恒流源供电及其能效分析

    通讯作者: 杨丽萍, E-mail: 13769164198@163.com
    作者简介: 杨丽萍(1973—),女,学士,高级工程师。研究方向:电气工程及其自动化。E-mail:13769164198@163.com
  • 云南工商学院交通机电学院,昆明 651700
基金项目:
云南省应用基础研究计划重点项目(2014FA029)

摘要: 湿式电除尘器电场的放电状态变化大、干扰因素多,尤其是导电玻璃钢阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。为了深入研究湿式电除尘器的电源供电特性及污染物脱除性能,搭建了湿式电除尘器实验系统,并开展不同类型电源的对比实验。实验结果表明:湿式电除尘器喷淋系统开启,工频恒流源运行相对平稳,出口烟尘浓度变化不大,但恒压源则存在一个电源参数振荡区,出口烟尘浓度增加了约147%,因此,湿式电除尘器应优先考虑抗干扰能力强的恒流源;高频恒流源的运行参数更高,污染物脱除性能更强,与工频相比,高频恒流源不同供电电耗时烟尘、SO3的减排幅度分别为46.30%~78.69%、42.86%~66.67%。通过对实际工程项目的深度测试及节能优化实验,定量分析了湿式电除尘器的比电耗与污染物脱除性能关系。工程实践表明:随机组负荷的降低,湿式电除尘器的污染物脱除性能有所提升,但高压供电比电耗也大幅增加,从满负荷到50%负荷,比电耗从2.41×10−4 kWh·m−3升至4.57×10−4 kWh·m−3,有较大的节能空间;经节能优化,控制湿式电除尘器出口烟尘浓度在4~5 mg·m−3,50%负荷的比电耗下降达84.68%。根据该节能优化思路,对其他3个工程项目实施运行优化,控制烟尘排放浓度在4.5 mg·m−3以内,比电耗下降幅度分别为32.65%、27.15%、41.64%。以上研究结果可为后续湿式电除尘器的性能提升及节能优化提供参考。

English Abstract

  • 电除尘器是工业烟气的主流除尘设备,在燃煤电厂的应用占比约为70% [1-3],烧结机机头的烟尘治理设备几乎全部为电除尘器[4-6]。随着燃煤电厂烟气超低排放的实施,湿式电除尘技术在燃煤电厂得到广泛应用。电除尘器主要分为电控和本体2个部分,近年来,针对燃煤电厂及非电行业的超低排放改造技术频有报道。在本体技术方面,超低排放技术包括低低温电除尘技术、湿式电除尘技术、颗粒团聚技术等[7-11]。在电源技术方面,朱法华等[12]分析了电除尘器高频电源节能减排的机理,介绍了国内外高频电源的研究与应用情况,并基于实际工程案例,介绍了高频电源的节能、减排幅度;李纪等[13]针对我国冶金转炉冶炼周期内工艺波动大、粉尘浓度及比电阻大等情况,提出了三相电源改造思路,提高了除尘器的除尘效率,并优化了电控性能;汤铭等[14]提出了一种低成本高压脉冲静电除尘电源,分析了该高压脉冲电源的稳态工作原理以及电场发生闪络时工作的情况;丁鑫龙等[15]通过实验方法,研究了脉冲电源技术对高比电阻粉尘的脱除特性;张滨渭等[16]研究发现,三相电源适合高粉尘负荷,高频电源在匹配良好条件下可实现较好的提效作用,而脉冲电源更多的研究是针对性地脱除细颗粒物和高比电阻粉尘。

    按输出特性分类,电源可分为电压源和电流源,上述研究多针对干式电除尘器配套的电压源,对于湿式电除尘器配套高压恒流源的供电特性及对电除尘提效及能耗的分析,国内鲜有文献报道。电除尘器供电电源的工作状态直接影响除尘器的运行稳定性及除尘性能,对于湿式电除尘器而言,因其工作在饱和湿烟气状态,且存在喷淋冲洗环节,电场的放电状态变化大、干扰因素多,电源工作的稳定性至关重要。尤其是导电玻璃钢管式湿式电除尘器,鉴于其阳极管内壁材料的特殊性,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。近年来,因火花控制不当等原因,山西、河南、山东等地频有导电玻璃钢管式湿式电除尘器着火事故报道。本研究通过实验室研究及现场实测相结合的手段,定量分析了导电玻璃钢管式湿式电除尘器的高压恒流源供电特性及其对电除尘提效、能耗的影响,为后续湿式电除尘器的性能提升及节能优化提供参考。

  • 湿式电除尘器实验系统如图1所示,通过燃油热风炉产生高温烟气,设计烟气量为1×104 m3·h−1,炉膛出口烟气温度控制在70 ℃左右。通过飞灰料仓、文丘里射流器向实验系统内喷射燃煤飞灰。通过浓硫酸电加热方式产生气态SO3,以恒定流量均匀注入系统,并通过混流装置将其与烟气充分混合。通过向烟道内喷水增湿,使烟气达到湿饱和,并控制湿式电除尘器入口烟气温度在50 ℃左右。湿式电除尘器为导电玻璃钢管式湿式电除尘器,阳极板为正六边形(内切圆直径为φ300 mm),阳极管长度为4.7 m,湿式电除尘器的总集尘面积约为180 m2,阴极线为合金锯齿线,喷淋系统每次冲洗时间为5 min,冲洗水量约为0.2 t。湿式电除尘器的供电电源分别有72 kV/100 mA工频高压恒流源、恒压源和72 kV/200 mA高频高压恒流源,不同电源间可灵活切换。湿式电除尘器出口布置CEMS,用于监测出口烟气中的烟尘浓度,在实验期间,采用手工测试方法对CEMS进行数据校准。

  • 工频电源是目前电除尘器应用最为成熟和应用最多的电源[17-18]。工频恒压源输出电压恒定且可控,电流随负载变化;恒流源输出电流恒定且可控,电压随负载变化[19-21]。首先,参照行业标准《电除尘器设计、调试、运行、维护安全技术规范》(JB/T 6407-2017)的相关规定,分别在72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下对湿式电除尘器进行空载升压实验,对应的一次电压/电流、二次电压/电流分别如图2(a)图2(b)所示。在空载条件下,工频高压恒流源和工频高压恒压源的一次、二次电压/电流信号基本一致。

    控制湿式电除尘器入口烟气温度为50 ℃,烟尘浓度为51.5 mg·m−3,SO3浓度为9 mg·m−3(大约为当前超低排放机组中湿法脱硫出口的SO3平均浓度[21])。烟尘浓度的测定采用ZR-D09A型一体化采样枪和ZR-3260型自动烟尘测试仪,测试方法符合行业标准《固定污染源废气低浓度颗粒物的测定重量法》(HJ 836-2017)的相关规定。SO3测定采用国家标准《燃煤烟气脱硫设备性能测试方法》(GB/T 21508-2008)所规定的控制冷凝法,采样系统如图3所示,水浴温度为65 ℃,多级冷凝装置为两级蛇形盘管,采样枪加热温度>280 ℃,抽气流量为20 L·min−1。采样后,用去离子水清洗蛇形盘管,之后用DR 6000型分光光度计测定溶液中的硫酸根,换算得到SO3浓度值。在上述带负载工况下,再次分别在72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下对湿式电除尘器进行升压实验,对应的一次电压/电流、二次电压/电流分别如图4(a)图4(b)所示。在负载条件下,工频高压恒流源和工频高压恒压源的一次、二次电压/电流信号一致性仍较好,且与空载升压时所示的运行电源参数相比差异不大。经测定,72 kV/100 mA工频高压恒流源和72 kV/100 mA工频高压恒压源供电情况下湿式电除尘器出口烟尘、SO3浓度及其脱除效率如图5所示,两者的污染物脱除性能也大致相当。

    开启湿式电除尘器的喷淋系统,开启后约5 s后电场出现闪络,此时电源的二次电压、二次电流分别如图6(a)图6(b)所示。对于工频恒流源来说,电源检测到火花放电后,自动下调电源运行参数,使得电流/电压稳定运行在相对较低的参数范围。虽然仍会有零星放电发生,但电源运行参数相对平稳,且喷淋系统关闭后,电源可自动回复到原设定参数运行。对于工频恒压源来说,在喷淋开启初期阶段,电场内频繁产生火花放电,电源运行参数不稳定,有一段明显的振荡区,且喷淋系统关闭后,其电源参数的回复过程也较恒流源慢一些。这是因为,恒流源输出特性受负载干扰产生的电流变量的约束,负载特性总能回到原来的平衡点,工作状态都是稳定的;恒压源输出存在不稳定的工作点,抗干扰能力差,喷淋系统开启后会使电除尘器进入负阻区,电流瞬间增大、电压下降,产生火花击穿,然后电源保护,停止供电,电压源既不能约束负载电压的减少又不能约束负载电流的增加,因而失去对负载的控制能力,造成电源运行参数振荡。

    为研究不同电源供电特性对湿式电除尘器性能的影响,分别调取2种电源供电时湿式电除尘器出口CEMS测得烟尘浓度数据,显示喷淋系统开启前后湿式电除尘器出口烟尘浓度变化,结果如图7(a)图7(b)所示。喷淋系统开启后,随着电源运行参数的降低,烟尘排放浓度均有不同程度的增加,其中,工频恒流源供电时,湿式电除尘器出口烟尘浓度最大值为10.3 mg·m−3,较喷淋前平均值(9.2 mg·m−3)增加了约12%;但恒压源存在一个电源参数振荡区,此时,出口烟尘浓度最大值达25.9 mg·m−3,较喷淋前平均值(10.5 mg·m−3)增加了约147%。因此,对于湿式电除尘器而言,应优先考虑采用抗干扰能力强的恒流源,尤其是导电玻璃钢管式湿式电除尘器,由于其阳极管内壁材料的特殊性,因此,必须尽量减少火花放电,防止电极灼伤甚至起火,保证设备安全、稳定运行。

  • 参照JB/T 6407-2017的相关规定,分别对72 kV/200 mA高频高压恒流源进行空载、负载升压实验,对应的一次电压/电流、二次电压/电流曲线及与工频恒流源对比分别如图8图9所示。在负载条件下,高频电源的一次、二次电压/电流信号与空载升压时所示的运行电源参数相比差异不大。值得注意的是,空载实验前实际上也已通过湿烟气,只是空载时临时停掉了风机跟加灰装置,所以湿电场内的烟气仍基本处在湿饱和状态。推测是因湿电场内湿饱和烟气中水分子导电性能好,因此,运行电流较大,是否有烟气流动及飞灰加入,对升压实验的结果影响不大,这与某实际工程项目的通水升压实验/锅炉投运升压实验规律[18-19]一致。与工频恒流源相比,高频电源的功率因数更高,一般情况下,功率周数≥0.92,有效电能的转化率高,同样具有电除尘负载跟踪特性和火花抑制特性的自适应特点。因此,在相同的供电电压条件下,高频电源的运行电流更大,且在额定容量放开运行时,二次电压、二次电流可分别高达60 kV、300 mA,这更有利于湿式电除尘器的污染物脱除性能的提升。

    为进一步分析高频与工频恒流源,对湿式电除尘器的提效特性,分别在相同供电电耗及高频恒流源最大电耗条件下,测定湿式电除尘器对烟尘及SO3的脱除性能。根据国家标准《电除尘器性能测试方法》(GB/T 13931-2017)的规定,采用三相有功电能表测定不同电源配置实验期间湿式电除尘器的电耗,分别记录电能表读数和测量时间,并参照式(1)计算湿式电除尘器电耗。

    式中:W为湿式电除尘器电耗,kW;W2为测量后电能表读数,kWh;W1为测量前电能表读数,kWh;t为测量时间,h。

    分别在工频恒流源电耗3.49 kW,高频恒流源电耗3.54、5.89、9.84和16.26 kW条件下,测定湿式电除尘器出口烟尘及SO3质量浓度,结果如图10所示。在供电电耗相当(工频3.49 kW、高频3.54 kW)的情况下,湿式电除尘器出口的烟尘、SO3浓度变化不大,可以认为两者具有相同的污染物脱除性能。分别将高频电源的电耗提高至5.89、9.84和16.26 kW,湿式电除尘器出口的烟尘、SO3浓度不断降低,与工频相比,烟尘的减排幅度分别为46.30%、70.98%、78.69%,SO3的减排幅度分别为42.86%、57.14%和66.67%。与烟尘的减排幅度相比,SO3减排幅度略小,这主要是因为此时SO3是以硫酸气溶胶颗粒的形式存在,粒径小(纳米级),驱进速度低,且荷电后的气溶胶颗粒还会在放电极周围产生空间电荷效应[20-23],影响电场放电。

    另外,值得注意的是,随着供电电耗的增加,湿式电除尘器出口的烟尘、SO3浓度虽然不断降低,但减排幅度与电耗的增加并非呈线性关系,高频电源的供电电耗从3.54 kW增加至5.89 kW,仅增加了2.35 kW电耗,烟尘、SO3的减排幅度分别为46.30%、42.86%;但从9.84 kW增加至16.26 kW,电耗增加了6.42 kW,烟尘的减排幅度仅从70.98%增加至78.69%,增加了不足8个百分点,SO3的减排幅度仅从57.14%增加至66.67,增加了约9个百分点。因此,从节能角度来说,在满足5 mg·m−3超低排放要求的前提下,可适当减少湿式电除尘器的电能消耗,尤其是针对湿式电除尘器运行在2.5 mg·m−3甚至1 mg·m−3以下的工况,节能空间较大。该发现可为实际工程项目的节能优化运行提供有效的数据支撑。

  • 某660 MW机组锅炉为亚临界压力中间再热式直流炉,原配套双室四电场电除尘器出口烟尘浓度为35.7 mg·m−3,经石灰石-石膏湿法脱硫的协同除尘后仍无法满足超低排放要求,因此,在脱硫吸收塔出口烟气烟道上增设导电玻璃钢管式湿式电除尘器,分体(独立)布置,共布置4个电室,阳极采用正六边形导电玻璃钢,阴极线采用锯齿线型,喷淋系统采用间断冲洗方式,冲洗后的水进入吸收塔集水坑,作为脱硫部分用水。配套80 kV/1 600 mA高频高压恒流源。烟气量为2 127 660 m3·h−1,入口烟气温度为49~53 ℃,煤的水分、灰分、硫分含量分别为7.79%、16.59%、1.2%,低位发热量为21.4 kJ·g−1

    采用ZR-D09A型一体化采样枪、ZR-3260型自动烟尘测试仪、DEKATI PM2.5测定装置、DR 6000型分光光度计、ZR-D03A型高温采样枪等测试仪器分别测定湿式电除尘器进、出口的烟尘浓度、PM2.5浓度和SO3浓度等,并将三相有功电能表安装在湿式电除尘器除尘变出口母线处,用于读取并计算湿式电除尘器的电耗。

    PM2.5测试采用DEKATI公司的PM2.5测试装置,测试方法参照行业标准《火电厂烟气中细颗粒物(PM2.5)测试技术规范重量法》(DL/T 1520-2016)中的规定,采样枪温度宜控制在(160 ±5)℃,PM2.5测定装置如图11所示。装置由三级撞击器组成,每级撞击器上布置滤膜,并涂上耐高温松脂,分别用于收集大于10、2.5、1 μm的颗粒,在最末级布置石英滤膜,石英滤膜对0.3 μm颗粒的拦截效率达99.9%,最末级撞击器和滤膜收集的颗粒累计为PM2.5,后二级撞击器和滤膜收集的颗粒累计为PM10。为防止液滴对颗粒分级及铝箔集尘的影响,对撞击器进行加热保温,温度为120 ℃。PM2.5的采样系统如图12所示。根据烟道流速、温度、压力等参数,选择合适的采样嘴及抽气流量,以保证各级撞击器收集的颗粒粒径在规定范围内。

    分别在满负荷、90%负荷、75%负荷、50%负荷条件下,测定湿式电除尘器对各污染物的脱除性能。烟尘测试结果如图13所示,随着机组负荷的降低,湿式电除尘器入口烟尘浓度有所降低,从19.6 mg·m-3降至16.8 mg·m−3,推测是因为负荷降低,烟气流速下降,前端电除尘器的除尘性能提升[24-25]所致。机组负荷降低,烟气流速下降,湿式电除尘器的除尘性能也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器的除尘效率分别为81.12%、82.72%、86.49%、89.88%。SO3测试结果如图14所示,随着负荷降低,湿式电除尘器入口的SO3浓度也有所下降,这主要是因为负荷降低后SCR脱硝的烟气温度降低,此处的SO2/SO3转化率减小[26-28]。同烟尘类似,烟气流速下降,湿式电除尘器对SO3气溶胶颗粒的脱除性能也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器对SO3的脱除效率分别为68.79%、70.59%、74.47%、76.64%,较烟尘的脱除效率要低一些。PM10/PM2.5测试结果如图15所示,随着负荷的降低,前端电除尘器对PM10/PM2.5的脱除性能提升,湿式电除尘器入口浓度均有所下降,同时,烟气流速下降,湿式电除尘器除尘也得到提升,满负荷、90%负荷、75%负荷、50%负荷条件下湿式电除尘器对PM10的脱除效率分别为77.04%、77.86%、79.44%、83.15%,对PM2.5的脱除效率分别为72.28%、72.63%、75.31%、80.14%。

    为科学评价电除尘器的电耗水平,《高效能大气污染物控制装备评价技术要求第2部分:电除尘器》(GB/T 33017.2-2016)中给出了比电耗的概念,即处理单位工况烟气量所消耗的电量,计算方法如式(2)所示。

    式中:C为湿式电除尘器比电耗,kWh·m−3W为湿式电除尘器的电耗,kW;Q为进入湿式电除尘器入口的工况烟气量,m3·h−1

    为对比不同负荷条件下湿式电除尘器的高压电耗,式(2)忽略了低压电耗、引风机阻力电耗等对比电耗的影响,湿式电除尘器的高压供电电耗采用三相有功电能表测定,经计算,不同负荷条件下,湿式电除尘器的高压供电比电耗如图16所示。随着负荷的降低,湿式电除尘器的高压供电比电耗大幅增加,从满负荷到50%负荷,比电耗从2.41×10−4 kWh·m−3升至4.57×10−4 kWh·m−3,有较大的节能空间。通过调整电源参数,控制湿式电除尘器出口烟尘浓度在4~5 mg·m−3,在满足5 mg·m-3超低排放要求的前提下,最大幅度地降低比电耗,实现节能最优化。节能优化后的比电耗结果如图17所示,湿式电除尘器的高压供电比电耗降幅显著,以50%负荷为例,节能优化后,比电耗从4.57×10−4 kWh·m−3降至0.7×10−4 kWh·m−3,节能优化后的比电耗下降达84.68%,即便是对于满负荷工况,烟尘浓度从3.7 mg·m−3增到4.5 mg·m−3,比电耗也下降了12.86%。该节能优化思路同样适用于其他工程项目及满负荷时烟尘排放远低于超低排放限值要求的工况。

  • 对其他3个导电玻璃钢湿式电除尘项目实施上述节能优化实验,相关数据如表1所示。在满负荷条件下,3个项目原烟尘排放浓度分别为1.9、2.7、1.2 mg·m−3,经节能优化,控制烟尘排放浓度在4.5 mg·m−3以内,此时比电耗下降幅度分别为32.65%、27.15%、41.64%。对应节能优化前后的SO3、PM10/PM2.5浓度测试结果分别如图18图19所示。节能优化后,污染物排放浓度略有升高,但均在可承受范围内,如SO3浓度未超过5 mg·m−3,不会出现烟囱蓝烟拖尾的风险。值得注意的是,目前实际上有许多电厂的烟尘排放在2.5 mg·m−3甚至1 mg·m−3以下[29-37],此时的高压供电比电耗值较高,具有较大的节能优化空间,建议这类电厂在满足烟尘超低排放要求的前提下,适当降低电源运行参数,以达到节能的目的。

  • 1)在正常工况下,工频高压恒流源和恒压源的空载/负载伏安特性曲线差别不大,两者的污染物脱除性能也大致相当。一旦喷淋系统开启,恒流源检测到火花放电后,自动下调电源运行参数,使电流/电压稳定运行在相对较低的参数范围,且运行相对平稳。恒压源则有一段明显的振荡区,抗干扰能力差。湿式电除尘器出口CEMS数据显示,喷淋系统开启后,工频恒流源供电的湿式电除尘器出口烟尘浓度最大值较喷淋前平均值增加了约12%;但恒压源因存在一个电源参数振荡区,出口烟尘浓度增加了约147%。因此,对于湿式电除尘器而言,应优先考虑抗干扰能力强的恒流源。

    2)在供电电耗相当(工频3.49 kW、高频3.54 kW)的情况下,工频恒流源和高频恒流源供电的湿式电除尘器污染物脱除性能差异不大。但额定容量放开运行时,高频电源的运行电压/电流参数变大,其供电电耗分别提高至5.89、9.84、16.26 kW时,与工频相比,烟尘的减排幅度分别为46.30%、70.98%、78.69%,SO3的减排幅度分别为42.86%、57.14%、66.67%。

    3)某660 MW机组典型工程的深度测试表明,随负荷的降低,湿式电除尘器的污染物脱除性能有所提升,在满负荷、90%负荷、75%负荷、50%负荷条件下,湿式电除尘器的除尘效率分别为81.12%、82.72%、86.49%、89.88%,SO3脱除效率分别为68.79%、70.59%、74.47%、76.64%,PM10脱除效率分别为77.04%、77.86%、79.44%、83.15%,PM2.5脱除效率分别为72.28%、72.63%、75.31%、80.14%。但随负荷的降低,湿式电除尘器高压供电比电耗大幅增加,从满负荷到50%负荷,比电耗从2.41×10-4 kWh·m-3升至4.57×10-4 kWh·m-3,有较大的节能空间。通过调整电源参数,控制湿式电除尘器出口烟尘浓度在4~5 mg·m-3,比电耗显著降低,满负荷的比电耗也下降了12.86%,50%负荷的比电耗下降达84.68%,实现了湿式电除尘器的节能优化运行。

    4)根据本研究得到的节能优化思路,对其他3个工程项目实施运行优化,优化前烟尘排放浓度分别为1.9、2.7、1.2 mg·m−3,经节能优化,控制烟尘排放浓度在4.5 mg·m−3以内,比电耗下降幅度分别为32.65%、27.15%、41.64%。该思路同样适用于其他除尘项目及满负荷时烟尘排放远低于超低排放限值(5 mg·m−3)要求的工况,尤其是部分烟尘排放长期在2.5 mg·m−3甚至1 mg·m−3以下项目,建议这类电厂在满足烟尘超低排放要求的前提下,适当降低电源运行参数,以达到节能的目的。

参考文献 (37)

返回顶部

目录

/

返回文章
返回