-
挥发性有机污染物(VOCs)来源广泛、组分复杂,对环境和人体均有一定危害[1-2],因此,近年来,对VOCs的减排与控制备受关注,相关标准逐渐明确、严格,已有许多针对VOCs处理技术的研究。现有的VOCs处理技术包括吸附法、吸收法、燃烧法、膜分离处理法、生物法、光催化降解和等离子体法[3]。但针对实际中产生的低浓度VOCs废气,前6种技术存在运行费用高、设备性能要求高、涉及产物复杂等劣势。而作为近几年新兴的低温等离子体技术(NTP)在净化低浓度VOCs时,具有反应迅速、启停便捷、设备简单[4-5]等优势,极具应用潜力。但是单一的NTP技术依然存在能耗较高、副产物难以避免等问题[6-7]。因此,研究者将吸附、等离子体氧化和催化耦合于一体,从而产生了吸附-等离子体催化氧化技术。填充的介质阻挡放电反应器可以实现3种技术的有效结合,已有研究表明,间歇的吸附存储-等离子体催化技术不仅可以提高能量效率[8-9],而且还可以有效降低副产物的排放[10-11]。
在吸附-等离子体催化氧化技术中,催化剂的作用至关重要,不仅要有较好的吸附性能,还要有较好的等离子体催化氧化性能。锰基催化剂在协同低温等离子体降解不同挥发性有机物时表现出较优的氧化性能。郝翰[12]在石墨烯上通过电化学沉积法负载Mn3O4耦合介质阻挡放电来氧化降解甲苯,获得了较好的甲苯降解率以及CO2选择性,并有效控制了O3和NOx等副产物的产生;LYULYUKIN等[13]利用电晕放电联合TiO2来氧化丙酮和乙醇,发现负载MnOx的催化剂不仅可以抑制副产物的生成,还促进了丙酮和乙醇的深度氧化,提高了CO2选择性;ODA等[14]的研究结果显示,MnO2负载在氧化铝小球上,在低温等离子体氧化降解TCE时起到了积极的作用;向东等[15]的研究表明,介质阻挡放电与MnOx/SBA-15催化剂对正己醛氧化降解表现出了良好的协同效应,去除率最高可达99%。但目前针对等离子体联合催化技术用于氧化降解乙酸乙酯的研究还不深入,而乙酸乙酯是汽车制造、制药、电子制造等行业的代表性污染物[16],更是包装印刷行业VOC排放最为显著的复合膜干复工艺的主要污染物[17]。因此,针对低温等离子体联合锰基催化剂净化乙酸乙酯的研究有待于进一步深入。
本研究以13X和γ-Al2O3为载体,负载MnOx并联合低温等离子体,氧化降解吸附态乙酸乙酯,以COx产率、CO2选择性以及副产物的生成量为评价指标,探究了不同载体或催化剂对乙酸乙酯的氧化性能及反应动力学的影响,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。
介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果
Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst
-
摘要: 采用等体积浸渍法制备锰基催化剂MnOx/13X和MnOx/γ-Al2O3,并在吸附-间歇放电模式下研究了其联合介质阻挡放电(DBD)等离子体对乙酸乙酯的氧化性能;对催化剂进行BET、SEM和XPS表征,以分析不同载体的Mn基催化剂氧化效果存在差异的原因。DBD氧化实验结果表明:与13X和γ-Al2O3相比,负载活性组分MnOx后,COx产率分别提高了36.3%(MnOx/13X)和29%(MnOx/γ-Al2O3),CO2选择性均提高至98%以上,副产物臭氧明显减少。表征结果显示,MnOx/13X上的Mn4+和晶格氧含量更高,更有利于乙酸乙酯的降解。结合吸附态乙酸乙酯的等离子体降解机理和不同填充材料的实验数据,建立了相应的动力学模型,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。
-
关键词:
- 介质阻挡放电(DBD) /
- 乙酸乙酯 /
- 锰基催化剂 /
- 动力学
Abstract: In this study, the manganese-based catalysts of MnOx/13X and MnOx/γ-Al2O3 were prepared by an equal volume wet impregnation method, and the oxidation performance on ethyl acetate degradation by these manganese-based catalysts combined with dielectric barrier discharge (DBD) plasma was evaluated under the adsorption-intermittent discharge mode. The BET, SEM and XPS characterization was performed to analyze the reasons for the different oxidation performance between MnOx/13X and MnOx/γ-Al2O3. The result of the DBD oxidation experiment showed that compared with 13X and γ-Al2O3, loading the active component of MnOx could lead to the increase of COx yield rate by 36.3% (MnOx/13X) and 29% (MnOx/γ-Al2O3), respectively, the increase of CO2 selectivity up to over 98%, and significant decrease of the by-product of ozone. The result of characterization demonstrated that the contents of Mn4+ and lattice oxygen on MnOx/13X were higher than those of MnOx/γ-Al2O3, which were beneficial to the degradation of ethyl acetate. Finally, the kinetics model was established based on the plasma degradation mechanism of adsorbed ethyl acetate and the experimental results of different packing materials. This study paves the way for the optimization and application of catalysts in the system of DBD degradation of VOCs.-
Key words:
- dielectric barrier discharge (DBD) /
- ethyl acetate /
- manganese-based catalyst /
- kinetic
-
表 1 催化剂的物理化学性质
Table 1. Physicochemical properties of catalysts
催化剂 BET比表面积/(m2·g−1) 孔容/(cm3·g−1) 平均孔径/nm Mn4+/ Mn3+ Olatt/Oads 13X 610 0.39 2.55 — — MnOx/13X 303 0.21 2.79 1.00 1.07 γ-Al2O3 320 0.50 6.18 — — MnOx/γ-Al2O3 184 0.39 8.43 0.82 0.56 表 2 催化剂的二级动力学参数
Table 2. Pseudo-second-order kinetic model parameters of catalysts
催化剂 k R2 13X 0.007 61 0.994 γ-Al2O3 0.014 54 0.992 MnOx/13X 0.036 8 0.997 MnOx/γ-Al2O3 0.032 8 0.991 -
[1] CHARBOTEL B, FERVERS B. Occupational exposures in rare cancers: A critical review of the literature[J]. Critical Reviews in Oncology/Hematology, 2014, 90: 99-134. doi: 10.1016/j.critrevonc.2013.12.004 [2] MACLEOD J S, HARRIS M A, TJEPKEMA M, et al. Cancer risks among welders and occasional welders in a national population-based cohort study: Canadian census health and environmental cohort[J]. Safety and Health at Work, 2017, 8: 258-266. doi: 10.1016/j.shaw.2016.12.001 [3] 魏周好胜, 陈明功, 张涛, 等. 易挥发有机物净化研究进展[J]. 广东化工, 2016, 43(23): 69-70. doi: 10.3969/j.issn.1007-1865.2016.23.029 [4] 赵芯. 低温等离子体处理VOCs技术研究进展[J]. 四川化工, 2016, 19(2): 36-38. doi: 10.3969/j.issn.1672-4887.2016.02.010 [5] 潘孝庆, 丁红蕾, 潘卫国, 等. 低温等离子体及协同催化降解VOCs研究进展[J]. 应用化工, 2017, 46(1): 176-179. [6] YE Z L, ZHANG Y N, LI P, et al. Feasibility of destruction of gaseous benzene with dielectric barrier discharge[J]. Journal of Hazardous Materials, 2008, 156: 356-364. doi: 10.1016/j.jhazmat.2007.12.048 [7] SCHMID S, JECKLIN M C, ZENOBI R. Degradation of volatile organic compounds in a non-thermal plasma air purifier[J]. Chemosphere, 2010, 79: 124-130. doi: 10.1016/j.chemosphere.2010.01.049 [8] KIM H H, OGATA A, FUTAMURA S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental, 2008, 79: 356-367. doi: 10.1016/j.apcatb.2007.10.038 [9] SIVACHANDIRAN L, THEVENET F, ROUSSEAU A. Isopropanol removal using MnxOy packed bed non-thermal plasma reactor: Comparison between continuous treatment and sequential sorption/regeneration[J]. Chemical Engineering Journal, 2015, 270: 327-335. doi: 10.1016/j.cej.2015.01.055 [10] MOK Y S, KIM D H. Treatment of toluene by using adsorption and nonthermal plasma oxidation process[J]. Current Applied Physics, 2011, 11: 58-62. [11] XU X X, WANG P T, XU W C, et al. Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system[J]. Chemical Engineering Journal, 2016, 283: 276-284. doi: 10.1016/j.cej.2015.07.050 [12] 郝瀚. 垂直取向石墨烯负载锰氧化物催化剂耦合介质阻挡放电降解甲苯基础研究[D]. 杭州: 浙江大学, 2018. [13] LYULYUKIN M N, BESOV A S, VORONTSOV A V. Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts[J]. Applied Catalysis B: Environmental, 2016, 183: 18-27. doi: 10.1016/j.apcatb.2015.10.025 [14] ODA T, KURAMOCHI H, ONO R. Non-thermal plasma processing for dilute VOCs decomposition combined with the catalyst[EB/OL]. [2019-07-01].11th International Conference on Electrostatic Precipitation. Hangzhou: Springer Berlin Heidelberg, 2009: 638-643. https://link.springer.com/chapter/10.1007/978-3-540-89251-9_132. [15] 向东, 陈颖, 赵国涛, 等. 等离子体协同MnOx/SBA-15催化降解正己醛的研究[J]. 环境工程学报, 2010, 4(8): 1851-1856. [16] 王海林, 聂磊, 李靖, 等. 重点行业挥发性有机物排放特征与评估分析[J]. 科学通报, 2012, 57(19): 1739-1746. [17] 王海林, 王俊慧, 祝春蕾, 等. 包装印刷行业挥发性有机物控制技术评估与筛选[J]. 环境科学, 2014, 35(7): 2503-2507. [18] SHOMA H, HAJIME H, HISAHIRO E. Effect of catalyst composition and reactor configuration on benzene oxidation with a nonthermal plasma-catalyst combined reactor[J]. Catalysis Today, 2019, 332: 144-152. doi: 10.1016/j.cattod.2018.07.055 [19] 王爱华, 樊星, 梁文俊, 等. 低温等离子体协同锰银催化剂降解甲苯[J]. 工业催化, 2015, 23(1): 63-68. doi: 10.3969/j.issn.1008-1143.2015.01.013 [20] 陈春雨, 刘彤, 王卉, 等. 低温等离子体与MnOx/γ-Al2O3协同催化降解正己醛[J]. 催化学报, 2012, 33(6): 941-951. [21] KIM H H, TERAMOTO Y, NEGISHI N, et al. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review[J]. Catalysis Today, 2015, 256: 13-22. doi: 10.1016/j.cattod.2015.04.009 [22] PATIL B S, CHERKASOV N, LANG J, et al. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides[J]. Applied Catalysis B: Environmental, 2016, 194: 123-133. doi: 10.1016/j.apcatb.2016.04.055 [23] 秦彩虹, 党小庆, 黄家玉, 等. 混合吸附剂对吸附-间歇低温等离子体氧化甲苯的影响[J]. 环境科学学报, 2017, 37(2): 119-126. [24] PAN K L, HE C B, CHANG M B. Oxidation of TCE by combining perovskite-type catalyst with DBD[J]. IEEE Transactions on Plasma Science, 2018, 99: 1-12. [25] YAO X, ZHANG J, LIANG X, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system[J]. Chemosphere, 2019, 230: 479-487. doi: 10.1016/j.chemosphere.2019.05.075 [26] FAN X, ZHU T L, WAN Y J, et al. Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air[J]. Journal of Hazardous Materials, 2010, 180: 616-621. doi: 10.1016/j.jhazmat.2010.04.078 [27] XI Y, REED C, LEE Y K, et al. Acetone oxidation using ozone on manganese oxide catalysts[J]. Journal of Physical Chemistry B, 2005, 109: 17587-17596. doi: 10.1021/jp052930g [28] COREY R, LEE Y K, OYAMA S T. Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone[J]. Journal of Physical Chemistry B, 2006, 110(9): 4207-4216. doi: 10.1021/jp054288w [29] 陈扬达, 王旎, 陈建东, 等. 不同孔径HZSM-5协同低温等离子体催化降解甲苯性能研究[J]. 环境科学学报, 2017, 37(2): 503-511. [30] ZHENG C H, ZHU X B, GAO X, et al. Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor[J]. Journal of Industrial & Engineering Chemistry, 2014, 20: 2761-2768. [31] WANG H C, CHEN S, WANG Z, et al. A novel hybrid Bi2MoO6-MnO2 catalysts with the superior plasma induced pseudo photocatalytic-catalytic performance for ethyl acetate degradation[J]. Applied Catalysis B: Environmental, 2019, 254: 339-350. doi: 10.1016/j.apcatb.2019.05.018 [32] PERILLO R, FFERRACIN E, GIARDINA A, et al. Efficiency, products and mechanisms of ethyl acetate oxidative degradation in air non-thermal plasma[J]. Journal of Physics D: Applied Physics, 2019, 52: 295206. doi: 10.1088/1361-6463/ab1aff