介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果

白文文, 秦彩虹, 郑洋, 党小庆. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果[J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
引用本文: 白文文, 秦彩虹, 郑洋, 党小庆. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果[J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
BAI Wenwen, QIN Caihong, ZHENG Yang, DANG Xiaoqing. Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
Citation: BAI Wenwen, QIN Caihong, ZHENG Yang, DANG Xiaoqing. Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089

介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果

    作者简介: 白文文(1995—),女,硕士研究生。研究方向:大气污染控制工程。E-mail:1980024934@qq.com
    通讯作者: 秦彩虹(1987—),女,博士,讲师。研究方向:大气污染控制工程。E-mail:chqin@outlook.com
  • 基金项目:
    陕西省教育厅2019年度专向研究计划(19JK0479);中国博士后科学基金第61批面上项目(2017M613289XB)
  • 中图分类号: X701

Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst

    Corresponding author: QIN Caihong, chqin@outlook.com
  • 摘要: 采用等体积浸渍法制备锰基催化剂MnOx/13X和MnOx/γ-Al2O3,并在吸附-间歇放电模式下研究了其联合介质阻挡放电(DBD)等离子体对乙酸乙酯的氧化性能;对催化剂进行BET、SEM和XPS表征,以分析不同载体的Mn基催化剂氧化效果存在差异的原因。DBD氧化实验结果表明:与13X和γ-Al2O3相比,负载活性组分MnOx后,COx产率分别提高了36.3%(MnOx/13X)和29%(MnOx/γ-Al2O3),CO2选择性均提高至98%以上,副产物臭氧明显减少。表征结果显示,MnOx/13X上的Mn4+和晶格氧含量更高,更有利于乙酸乙酯的降解。结合吸附态乙酸乙酯的等离子体降解机理和不同填充材料的实验数据,建立了相应的动力学模型,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。
  • 随着我国城镇化进程和新农村建设的不断推进,村镇生活污水排放量也在逐渐增长。考虑到农村地区对优美生态环境的客观需要,有针对性地对农村污水进行治理是社会发展的必然趋势。目前,我国农村污水处理方式主要包括两类:一是靠近城镇排水管道的,纳入排水管道处理,通过管网将农户污水收集并统一处理;二是采用小型污水处理设备,以及自然生态处理等形式将单户或几户的污水就近处理利用[1]。相对于城镇污水而言,农村污水具有以下特点:污水来源复杂,不同地区的排放强度及规律各有差异;农村污水水量波动较为明显;村镇规模相对较小,且分布极为分散,不利于将污水集中处理;污水排放量不稳定,夜间排放量可以忽略[2]。这些不利因素对农村污水的高效治理构成了巨大挑战。

    2018年9月29日,住建部和生态环境部联合发布了《关于加快制定地方农村生活污水处理排放标准的通知》[3]。通知提到,农村生活污水500 m3·d−1以上规模(含500 m·d−1)的农村生活污水处理设施可参照执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)[4]执行;而处理规模在500 m3·d−1以下的农村生活污水处理设施,由各地可根据实际情况进一步确定具体处理规模标准。在此政策基础上,各省市纷纷制定了各自地方的排放标准。有些地方标准相对宽松,但有些却比较严格,对氮磷要求很高,例如北京市、天津市等。

    根据《室外排水设计规范》[5],为了达到良好的脱氮效果,要求进水的BOD5/TKN宜大于4,而农村污水常常不满足这一要求。农村污水浓度往往较低,低浓度生活污水对生物脱氮影响的后果往往是出水总氮(TN)不达标[6]。其原因主要包括:雨污水合流的稀释作用、地下水渗入稀释作用、化粪池的不合理设置等[7-8]。为了满足日益严格的TN出水标准,尽管外加碳源一定程度上加重了污水厂的经济负担。但是,在缺氧区投加碳源是一条最为稳妥的方法,也是目前不同运营单位最常采用的一种方法。不同污水厂(站)在外加碳源时,采用的外加碳源不尽相同。选择合适的碳源,确定适合的碳源投加量是保证村镇低浓度污水处理达标排放的一条重要途径。

    对于农村污水而言,虽然处理工艺具有一定的差异,但主要脱氮原理基本上仍为传统的硝化-反硝化过程。其中,COD与磷酸盐浓度可分别通过曝气以及投加沉淀剂的方式达到排放标准,而脱氮过程则难以通过投加药剂这种立竿见影的形式迅速达标。因此,在农村污水处理的过程中,面临的主要困境往往是出水TN无法达标,为此需要进行深入研究,探究适宜的碳源类型。反硝化菌对不同类型有机物的代谢方式具有差异,其代谢速率各不相同;且不同反硝化菌属最适利用的碳源种类同样具有差异,投加不同种类的碳源可富集不同的反硝化菌属。为摸清不同碳源作为补充碳源对反硝化过程脱氮效果的影响,本研究采用乙酸钠、乙醇、葡萄糖和蔗糖作为碳源,对不同的反硝化过程的脱氮效果进行了探究。本研究可为农村污水处理过程中选用外加碳源的种类提供参考依据。

    实验装置采用4组SBR,用以驯化和培养反硝化污泥。其有效容积均为4.8 L,装置结构如图1所示。 SBR通过自控装置每天运行6个周期,每个周期包括:进水(10 min)→缺氧反应(160 min)→曝气(10 min)→沉淀(30 min)→排水/闲置(15 min)→搅拌(15 min)。缺氧段采用电动搅拌器搅拌,转速为96 r·min−1。曝气段采用曝气头曝气,控制DO在1.5~2 mg·L−1。设置曝气段的目的为,反硝化细菌体内某些酶只有在有氧条件下才能合成[9];同时,曝气可以吹脱缺氧阶段产生的氮气,提高反硝化污泥的沉降性能。在下一个周期之前15 min开始搅拌以恢复反硝化细菌活性,使反硝化细菌保持最佳状态。每个周期排出1.6 L处理过的废水,并用蠕动泵泵入1.6 L人工配水,水力停留时间(HRT)=12 h。每天定时在搅拌结束后曝气开始前排一次泥,保证SRT为10 d左右。反应装置由定时装置控制周期循环运行。

    图 1  SBR实验装置
    Figure 1.  Equipment of SBR

    以乙酸钠、乙醇和葡萄糖为碳源的反硝化污泥接种北京某污水厂二沉池回流污泥;以蔗糖为碳源的反硝化污泥接种于已经驯化成功的以乙酸钠为碳源的反硝化污泥。将种泥按比例稀释,使得MLSS为1500 mg·L−1左右。

    SBR采用人工配水,分别以乙酸钠、乙醇、蔗糖和葡萄糖作为碳源,分别维持乙酸钠、乙醇、葡萄糖、蔗糖4种碳源的碳氮比为4.5、5、6.5、6.5,以获得活性污泥的最佳驯化效果。硝酸钠为氮源。磷酸二氢钠为磷源。由于自来水里含有微生物生长所需的微量元素,故不再另外投加。进水水质主要指标如表1所示。

    表 1  不同水质条件下的COD与NO3-N浓度
    Table 1.  COD and NO3-N concentration under different water quality
    碳源类型COD/(mg·L−1)-N /(mg·L−1)COD∶N
    乙酸钠4501004.5
    乙醇5001005
    葡萄糖6501006.5
    蔗糖6501006.5
     | Show Table
    DownLoad: CSV

    批次实验的反硝化污泥混合液分别取于稳定运行的SBR曝气之后,取出的污泥经沉淀、离心去除上清液,加入清水后再次进行沉淀、离心、去除上清液,重复上述步骤至少3次,以确保污泥中不再残留化学物质。将去除上清液后的污泥置于500 mL广口瓶中,加入不含NO3-N和COD的配水液,摇晃均匀以配成悬浮液。

    用HCl或NaOH稀溶液调节pH为6.5,并向瓶中持续通入5 min氮气以去除混合液中氧气,之后将插有两根橡胶管的瓶塞将瓶口密封。2根橡胶管只有在取气样、水样时打开,其他时候均用夹子夹住。将NO3-N和COD按SBR配水浓度分别配成50 mL浓缩液,在反应开始时,立即注射入广口瓶中,并将广口瓶置于磁力搅拌器上进行搅拌,转速为150 r·min−1。按原SBR的典型周期进行批次实验,温度为22 ℃,反硝化污泥在缺氧条件下运行,时间为160 min。 其中,反硝化速率按照式(1)计算。

    V=C0C1CMLVSS·t (1)

    式中:V为反硝化速率,g·(g·h)−1C0为起始NO3-N或NO2-N浓度,g·L−1C1为终点NO3-N或NO2-N浓度,g·L−1CMLVSS为混合液体挥发性悬浮固体浓度,g·L−1t为反应时间,h。

    活性污泥驯化阶段,每天定时在曝气前取1次水样,检测其NO3-N、COD、pH;并在曝气前和曝气中分别检测DO,以确保反硝化系统正常运行。

    MLSS,MLVSS采用重量法;NH+4-N采用纳氏试剂分光光度法;NO3-N采用紫外分光光度法;NO2-N采用N-(1萘基)-乙二胺光度法;COD采用重铬酸钾法[10]。温度采用水银温度计测定;pH采用pHTestr 30型pH计测定;溶解氧采用Multi 3620 WTW型溶解氧仪测定。

    以乙酸钠、乙醇、葡萄糖和蔗糖为有机碳源时,认定单周期过程结束后,若反应器出水中不包含NO3-N以及NO2-N时,则反硝化菌驯化完全。反应器的反硝化脱氮效果达到稳定的时间如表2所示。由表2可知,乙酸钠的驯化时间最短,蔗糖的驯化时间最长,驯化时间大约为乙酸钠的2倍。有研究[11]表明,相对于乙醇、葡萄糖和蔗糖而言,反硝化细菌对乙酸的降解要更为容易,故反硝化细菌对于乙酸钠的适应性更强,所需的驯化时间则相对较短。

    表 2  反硝化细菌的驯化时间
    Table 2.  Period for domestication of denitrifying bacteria
    碳源类型驯化时间/dMLSS/(g·L−1)MLVSS/(g·L−1)MLVSS∶MLSS
    乙酸钠172.651.980.746
    乙醇243.282.560.78
    葡萄糖262.752.230.812
    蔗糖304.43.50.795
     | Show Table
    DownLoad: CSV

    以乙酸钠为碳源时, NH+4-N、NO3-N、NO2-N和N2O的变化情况如图2所示。以乙酸钠为碳源时,NO3-N迅速得到降解,在60 min内全部被反硝化完毕。这说明,硝酸盐的还原呈现零级反应[12]。平均比反硝化速率为0.050 g·(g·h)−1

    图 2  乙酸钠为碳源条件下反应器内各指标的变化
    Figure 2.  Variations of indices in reactor with sodium acetate as carbon source
    图 3  乙醇为碳源条件下反应器内各指标的变化
    Figure 3.  Variations of indices in reactor with ethanol as the carbon source
    图 4  葡萄糖为碳源条件下反应器内各指标的变化
    Figure 4.  Variations of indices in reactor with glucose as carbon source

    NO2-N浓度先增加后减少。在反应开始50 min内,NO2-N浓度逐渐增加;待反应器内NO3-N几乎被耗尽后,积累值达到最大23.2 mg·L−1;此后,NO2-N浓度逐渐下降为0。这表明,在反硝化时,硝酸盐还原速率大于亚硝酸盐的还原速率,导致亚硝酸盐的积累,最高亚硝酸盐积累率23.2%,因为碳源充足,反应器出水中NO2-N累积将会消失。

    反应周期内,气态的N2O总量为0.002 8 mg·L−1,溶解态N2O积累量出现2个峰值,分别出现在10 min和50 min,其值为1.23 mg·L−1和1.60 mg·L−1,N2O的产生源于亚硝酸盐的还原。后期N2O没有继续升高,亚硝酸盐还原速率与N2O还原速率基本稳定,而少量的N2O是因为溶液中没有溢出所致。

    反应中,NH+4-N浓度几乎保持稳定,说明NH+4-N浓度变化可以忽略。

    以乙醇为碳源时,各个指标的变化情况如图3所示。以乙醇为碳源时,与乙酸钠为碳源时相似,NO3-N在70 min内迅速被反硝化完毕,平均比反硝化速率为0.031 g·(g·h)−1NO2-N浓度在70 min内达到最大值19.5 mg·L−1,即最高亚硝酸盐积累率19.5%;此后,NO2-N浓度逐渐下降为0。

    NH+4-N浓度几乎保持稳定。气态的N2O总量为0.001 mg·L−1。溶解态N2O积累量在20 min内迅速升高到0.63 mg·L−1;之后缓慢升高到极大值1.25 mg·L−1;此后开始缓慢下降,至反应结束,浓度为0.67 mg·L−1

    以葡萄糖为碳源时,各个指标的变化情况如图4所示。以葡萄糖为碳源时,NO3-N迅速得到降解,在80 min内全部被反硝化完毕,平均比反硝化速率为0.034 g·(g·h)−1。在0~140 min内,NO2-N浓度先增加后减少。在70 min内,NO2-N积累值达到42.5 mg·L−1,最高亚硝酸盐积累率42.5%;此后,NO2-N浓度逐渐下降为0。NH+4-N浓度在反应期间维持稳定。反应周期内气态N2O总量为0.023 mg·L−1。溶解态N2O首先缓慢增加后开始下降。0~110 min内,N2O浓度逐渐积累至5.43 mg·L−1,之后开始下降。

    以蔗糖为碳源时,各个指标变化情况如图5所示。以蔗糖为碳源时,NO3-N在70 min内全部被反硝化完毕,平均比反硝化速率为0.026 g·(g·h)−1NO2-N的最大积累值为7 mg·L−1,最高亚硝酸盐积累率7.0%,最终NO2-N也逐渐变为0。

    图 5  蔗糖为碳源条件下反应器内各指标的变化
    Figure 5.  Variations of indices in reactor with sucrose as the carbon source

    NH+4-N浓度在反应期间浓度保持稳定。气态N2O总量为0.002 5 μg·L−1。与乙醇为碳源时相似,溶解态N2O积累量在10 min内迅速升高到0.44 mg·L−1,之后缓慢升高到极大值0.66 mg·L−1,此后保持稳定。

    在传统的城市污水处理过程中,往往采用硝化-反硝化工艺,其中氮磷的有效去除依赖于进水有机物的充分供给。农村污水的进水有机物浓度普遍较低,在处理低浓度污水的农村污水处理设施当中,进水COD浓度往往低于250 mg·L−1,BOD5则通常低于100 mg·L−1;此时,污水厂的同步脱氮除磷效果会由于反硝化菌与聚磷菌对于有机物的竞争过程而恶化,尤其不利于出水TN去除,甚至NH+4-N也无法满足排放标准[13]。因此,农村污水的脱氮过程更依赖于外加碳源的投加,选择合适的外加碳源有利于反硝化过程顺利进行,保证农村污水处理设施出水氮素的达标排放。

    硝酸盐还原包括同化反硝化和异化反硝化两大类。其中,同化反硝化最终形成有机氮化合物;异化反硝化中,包括常规反硝化和异化反硝化为氨两种路径(dissimilatory nitrate reduction to ammonium,DNRA)[14]。常规反硝化过程中,硝酸盐按照式(1)的路径[15-16]还原为氮气,依次由硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶、氧化亚氮还原酶完成。

    NO3NO2NON2ON2 (1)

    本实验中,在不同碳源条件下,NH+4-N浓度变化情况基本相似,即反应期间保持稳定。有研究[17]表明,在反硝化过程中,NH+4-N和NO2-N浓度都会发生显著变化。这是因为,在某些特定环境(氧化还原电位小于-200 mV、低DO、氮源受限而碳源丰富等)下,反硝化过程除了由NO3-N向氮气转化的异化性硝酸盐还原路径之外,还会发生由DNRA作用[15],同时某些特定反硝化菌群只具备DNRA能力[18]。YANG等[19]从反硝化污泥中分离出Pseudomonas stutzeri D6菌株,通过控制C/N比、DO、碳源种类(乙酸、葡萄糖、柠檬酸钠)等条件探究了其DNRA作用。而在本实验中,NH+4-N浓度并未发生明显变化。由此可知,本实验中反硝化过程只涉及常规反硝化过程(式(1))。

    以乙酸钠、乙醇、葡萄糖和蔗糖为碳源的各典型周期运行过程中,NO3-N的比降解速率分别为0.05、0.03、0.03和0.02 g·(g·h)−1。其中,乙酸钠为碳源时,反硝化速率最快,乙醇和葡萄糖次之,蔗糖最慢。这是因为,乙酸能够与辅酶A结合形成乙酰辅酶A,直接进入三羧酸循环被微生物降解,而乙醇在为微生物利用的过程中需要先转化为乙酸才能进而被降解。葡萄糖作为较复杂的有机物,同样需要经过两个氧化过程才能得以降解:第1步,反硝化细菌将其氧化得到丙酮酸和ATP;第2步,丙酮酸进入三羧酸循环时被丙酮酸脱氢酶复合物转化为乙酰辅酶A[20]。因此,有机物结构越复杂,意味着代谢过程越复杂,反硝化速率也就越慢。由此可知,由1个葡萄糖分子和1个果糖分子组成的蔗糖,有机物结构最复杂,导致其反硝化速率最慢。

    图2~图5可以看出,各碳源的典型周期内,反应器中均出现NO2-N积累。以NO3-N为氮源的反硝化过程中,NO2-N来源于常规反硝化。在反应周期内,NO2-N均出现短暂积累情况,浓度均先升高后降低,并逐渐趋于0。葡萄糖为碳源时,最大NO2-N积累率最大,为42.5%,乙酸钠和乙醇次之,分别为23.2%和19.5%,蔗糖最小,仅为7.0%。

    值得注意的是,从图2~图5中还可以发现,在4种碳源条件下,对应的NO2-N浓度均是在NO3-N即将耗尽时达到最大值的。计算各最大积累值时刻点对应的NO3-N浓度之前和之后的实测降解速率,分别以NO3-NNO3-N表示,然后用NO3-N减去NO2-N实测积累速率,即得到NO2-N的真实降解速率(即Nir酶的降解速率),如图6所示。在SBR乙酸钠中,当NO2-N最大积累时,NO3-N的降解速率由0.041 g·(g·h)−1骤降为0.016 g·(g·h)−1,由NO3-N降解速率减去NO2-N积累速率得到的NO2-N降解速率为0.036 g·(g·h)−1;若要使得NO2-N继进行积累,NO3-N的降解速率至少应为0.036 g·(g·h)−1,而此时NO3-N的降解速率显然并不能满足,故而NO2-N浓度开始下降。这表明,NO2-N的降解是滞后于NO3-N的。

    图 6  NO2-N最大积累时刻点的参数动力学分析
    Figure 6.  Analysis of kinetic parameters at maximum accumulation of NO2-N

    从电子传递角度而言,NO2-N作为电子受体所需的电子需要从细胞质膜的周质获得,这使得其获得电子滞后于NO3-N [21]。此外,如果细胞内氧化代谢产生的还原黄素达到饱和,NO3-N和NO2-N在底物电子的获取上将形成竞争,而Nar酶对电子的亲和力强于Nir[22]。同时,有些反硝化细菌种群细胞内只含有Nar酶,而没有Nir酶,也就是其不具备将NO3-N向NO2-N转化的能力,如Comamonadaceae[21]。这些都将使得NO2-N的降解落后于NO3-N,从而导致以NO3-N为氮源的反硝化脱氮过程中出现NO2-N短暂积累的现象。GE等[20]在研究以乙酸、甲醇、葡萄糖等为碳源的反硝化过程中也发现了相同的现象。

    由碳源种类导致的NO2-N最大积累值存在差异的情况同样也出现在很多研究[20, 23]中,乙酸、丙酸、乙醇等为碳源时出现较多NO2-N积累;但丁酸、戊酸、己酸等却仅出现少量甚至并未出现积累。在本实验中,葡萄糖为碳源时,反硝化过程中NO2-N的最大积累值是4种碳源之首,乙醇和乙酸钠次之,蔗糖最少。有研究[24]指出,有机物本身作为电子供体,对Nar酶和Nir酶的亲和力不同使得NO3-N和NO2-N降解速率的差值不同,将导致NO2-N积累值不同。而碳源种类作为营养物质,若长期对反硝化细菌进行培养,将改变菌群结构,使得微生物群落中所含的Nar酶和Nir酶的数量发生改变,从而导致NO2-N积累值发生显著变化。LU等[25]发现,在以乙酸和乙醇为碳源的反硝化细菌中,Thauera属占主导,而ThaueraNar酶的数量要比Nir酶多;而GLASS等[26]发现,以葡萄糖为碳源的反硝化细菌中Comamonadaceae属则占主导,而Comamonadaceae属中的一些菌株,如Acidovorax facilis株,并不具备Nir酶系统,这将导致以葡萄糖为碳源时,NO2-N积累现象更显著。但是,在阎宁等[27]的实验中,葡萄糖为碳源时并未出现或只出现少量NO2-N积累的现象。这表示,NO2-N积累除了与微生物结构和碳源种类有关,还与其他环境控制条件有关,如温度、pH、碳源适应时间等。

    1)农村污水处理过程中普遍存在碳源不足的问题,通过外加碳源的投加是保证污水处理过程中稳定的TN去除率的有效措施。

    2)采用乙酸钠,乙醇,葡萄糖,蔗糖时作为外加碳源时,反硝化脱氮实现稳定的时间分别为17、24、26、30 d,其平均反硝化速率分别为0.050、0.031、0.034和0.026 g·(g·h)−1,即硝酸盐还原速率依次降低。

    3)在反硝化过程中,外加碳源均出现了显著的亚硝酸盐积累,在硝酸盐耗尽时,出现亚硝酸盐的最大值。

    4)以葡萄糖为碳源时,最大亚硝酸盐积累率为42.5%;而以乙酸钠和乙醇为碳源时,最大亚硝酸盐积累率次之,分别为23.2%和19.5%;以蔗糖为碳源时,最大亚硝酸盐积累率最小,仅为7.0%。

  • 图 1  实验系统流程图

    Figure 1.  Schematic diagram of experimental set-up

    图 2  电压-电流波形

    Figure 2.  Voltage-current waveform

    图 3  催化剂的COx浓度和CO2选择性

    Figure 3.  COx concentration and CO2 selectivity of catalysts

    图 4  催化剂的N2吸附-脱附等温线

    Figure 4.  N2 adsorption-desorption isotherms of catalysts

    图 5  催化剂的SEM扫描电镜图

    Figure 5.  SEM images of catalysts

    图 6  催化剂的XPS谱图

    Figure 6.  XPS spectra of catalysts

    图 7  O3和N2O浓度随放电时间的变化

    Figure 7.  Change of O3 and N2O concentration with discharge time

    图 8  乙酸乙酯的反应路径

    Figure 8.  Reaction pathway of ethyl acetate

    图 9  催化剂的二级动力学模型

    Figure 9.  Pseudo-second-order model of catalysts

    表 1  催化剂的物理化学性质

    Table 1.  Physicochemical properties of catalysts

    催化剂BET比表面积/(m2·g−1)孔容/(cm3·g−1)平均孔径/nmMn4+/ Mn3+Olatt/Oads
    13X6100.392.55
    MnOx/13X3030.212.791.001.07
    γ-Al2O33200.506.18
    MnOx/γ-Al2O31840.398.430.820.56
    催化剂BET比表面积/(m2·g−1)孔容/(cm3·g−1)平均孔径/nmMn4+/ Mn3+Olatt/Oads
    13X6100.392.55
    MnOx/13X3030.212.791.001.07
    γ-Al2O33200.506.18
    MnOx/γ-Al2O31840.398.430.820.56
    下载: 导出CSV

    表 2  催化剂的二级动力学参数

    Table 2.  Pseudo-second-order kinetic model parameters of catalysts

    催化剂kR2
    13X0.007 610.994
    γ-Al2O30.014 540.992
    MnOx/13X0.036 80.997
    MnOx/γ-Al2O30.032 80.991
    催化剂kR2
    13X0.007 610.994
    γ-Al2O30.014 540.992
    MnOx/13X0.036 80.997
    MnOx/γ-Al2O30.032 80.991
    下载: 导出CSV
  • [1] CHARBOTEL B, FERVERS B. Occupational exposures in rare cancers: A critical review of the literature[J]. Critical Reviews in Oncology/Hematology, 2014, 90: 99-134. doi: 10.1016/j.critrevonc.2013.12.004
    [2] MACLEOD J S, HARRIS M A, TJEPKEMA M, et al. Cancer risks among welders and occasional welders in a national population-based cohort study: Canadian census health and environmental cohort[J]. Safety and Health at Work, 2017, 8: 258-266. doi: 10.1016/j.shaw.2016.12.001
    [3] 魏周好胜, 陈明功, 张涛, 等. 易挥发有机物净化研究进展[J]. 广东化工, 2016, 43(23): 69-70. doi: 10.3969/j.issn.1007-1865.2016.23.029
    [4] 赵芯. 低温等离子体处理VOCs技术研究进展[J]. 四川化工, 2016, 19(2): 36-38. doi: 10.3969/j.issn.1672-4887.2016.02.010
    [5] 潘孝庆, 丁红蕾, 潘卫国, 等. 低温等离子体及协同催化降解VOCs研究进展[J]. 应用化工, 2017, 46(1): 176-179.
    [6] YE Z L, ZHANG Y N, LI P, et al. Feasibility of destruction of gaseous benzene with dielectric barrier discharge[J]. Journal of Hazardous Materials, 2008, 156: 356-364. doi: 10.1016/j.jhazmat.2007.12.048
    [7] SCHMID S, JECKLIN M C, ZENOBI R. Degradation of volatile organic compounds in a non-thermal plasma air purifier[J]. Chemosphere, 2010, 79: 124-130. doi: 10.1016/j.chemosphere.2010.01.049
    [8] KIM H H, OGATA A, FUTAMURA S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental, 2008, 79: 356-367. doi: 10.1016/j.apcatb.2007.10.038
    [9] SIVACHANDIRAN L, THEVENET F, ROUSSEAU A. Isopropanol removal using MnxOy packed bed non-thermal plasma reactor: Comparison between continuous treatment and sequential sorption/regeneration[J]. Chemical Engineering Journal, 2015, 270: 327-335. doi: 10.1016/j.cej.2015.01.055
    [10] MOK Y S, KIM D H. Treatment of toluene by using adsorption and nonthermal plasma oxidation process[J]. Current Applied Physics, 2011, 11: 58-62.
    [11] XU X X, WANG P T, XU W C, et al. Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system[J]. Chemical Engineering Journal, 2016, 283: 276-284. doi: 10.1016/j.cej.2015.07.050
    [12] 郝瀚. 垂直取向石墨烯负载锰氧化物催化剂耦合介质阻挡放电降解甲苯基础研究[D]. 杭州: 浙江大学, 2018.
    [13] LYULYUKIN M N, BESOV A S, VORONTSOV A V. Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts[J]. Applied Catalysis B: Environmental, 2016, 183: 18-27. doi: 10.1016/j.apcatb.2015.10.025
    [14] ODA T, KURAMOCHI H, ONO R. Non-thermal plasma processing for dilute VOCs decomposition combined with the catalyst[EB/OL]. [2019-07-01].11th International Conference on Electrostatic Precipitation. Hangzhou: Springer Berlin Heidelberg, 2009: 638-643. https://link.springer.com/chapter/10.1007/978-3-540-89251-9_132.
    [15] 向东, 陈颖, 赵国涛, 等. 等离子体协同MnOx/SBA-15催化降解正己醛的研究[J]. 环境工程学报, 2010, 4(8): 1851-1856.
    [16] 王海林, 聂磊, 李靖, 等. 重点行业挥发性有机物排放特征与评估分析[J]. 科学通报, 2012, 57(19): 1739-1746.
    [17] 王海林, 王俊慧, 祝春蕾, 等. 包装印刷行业挥发性有机物控制技术评估与筛选[J]. 环境科学, 2014, 35(7): 2503-2507.
    [18] SHOMA H, HAJIME H, HISAHIRO E. Effect of catalyst composition and reactor configuration on benzene oxidation with a nonthermal plasma-catalyst combined reactor[J]. Catalysis Today, 2019, 332: 144-152. doi: 10.1016/j.cattod.2018.07.055
    [19] 王爱华, 樊星, 梁文俊, 等. 低温等离子体协同锰银催化剂降解甲苯[J]. 工业催化, 2015, 23(1): 63-68. doi: 10.3969/j.issn.1008-1143.2015.01.013
    [20] 陈春雨, 刘彤, 王卉, 等. 低温等离子体与MnOx/γ-Al2O3协同催化降解正己醛[J]. 催化学报, 2012, 33(6): 941-951.
    [21] KIM H H, TERAMOTO Y, NEGISHI N, et al. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review[J]. Catalysis Today, 2015, 256: 13-22. doi: 10.1016/j.cattod.2015.04.009
    [22] PATIL B S, CHERKASOV N, LANG J, et al. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides[J]. Applied Catalysis B: Environmental, 2016, 194: 123-133. doi: 10.1016/j.apcatb.2016.04.055
    [23] 秦彩虹, 党小庆, 黄家玉, 等. 混合吸附剂对吸附-间歇低温等离子体氧化甲苯的影响[J]. 环境科学学报, 2017, 37(2): 119-126.
    [24] PAN K L, HE C B, CHANG M B. Oxidation of TCE by combining perovskite-type catalyst with DBD[J]. IEEE Transactions on Plasma Science, 2018, 99: 1-12.
    [25] YAO X, ZHANG J, LIANG X, et al. Niobium doping enhanced catalytic performance of Mn/MCM-41 for toluene degradation in the NTP-catalysis system[J]. Chemosphere, 2019, 230: 479-487. doi: 10.1016/j.chemosphere.2019.05.075
    [26] FAN X, ZHU T L, WAN Y J, et al. Effects of humidity on the plasma-catalytic removal of low-concentration BTX in air[J]. Journal of Hazardous Materials, 2010, 180: 616-621. doi: 10.1016/j.jhazmat.2010.04.078
    [27] XI Y, REED C, LEE Y K, et al. Acetone oxidation using ozone on manganese oxide catalysts[J]. Journal of Physical Chemistry B, 2005, 109: 17587-17596. doi: 10.1021/jp052930g
    [28] COREY R, LEE Y K, OYAMA S T. Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone[J]. Journal of Physical Chemistry B, 2006, 110(9): 4207-4216. doi: 10.1021/jp054288w
    [29] 陈扬达, 王旎, 陈建东, 等. 不同孔径HZSM-5协同低温等离子体催化降解甲苯性能研究[J]. 环境科学学报, 2017, 37(2): 503-511.
    [30] ZHENG C H, ZHU X B, GAO X, et al. Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor[J]. Journal of Industrial & Engineering Chemistry, 2014, 20: 2761-2768.
    [31] WANG H C, CHEN S, WANG Z, et al. A novel hybrid Bi2MoO6-MnO2 catalysts with the superior plasma induced pseudo photocatalytic-catalytic performance for ethyl acetate degradation[J]. Applied Catalysis B: Environmental, 2019, 254: 339-350. doi: 10.1016/j.apcatb.2019.05.018
    [32] PERILLO R, FFERRACIN E, GIARDINA A, et al. Efficiency, products and mechanisms of ethyl acetate oxidative degradation in air non-thermal plasma[J]. Journal of Physics D: Applied Physics, 2019, 52: 295206. doi: 10.1088/1361-6463/ab1aff
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.7 %DOWNLOAD: 6.7 %HTML全文: 86.5 %HTML全文: 86.5 %摘要: 6.9 %摘要: 6.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.6 %其他: 97.6 %XX: 1.3 %XX: 1.3 %保定: 0.0 %保定: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.4 %北京: 0.4 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.0 %天津: 0.0 %太原: 0.0 %太原: 0.0 %平凉: 0.0 %平凉: 0.0 %广州: 0.1 %广州: 0.1 %日照: 0.0 %日照: 0.0 %武汉: 0.0 %武汉: 0.0 %衡阳: 0.0 %衡阳: 0.0 %重庆: 0.0 %重庆: 0.0 %阳泉: 0.0 %阳泉: 0.0 %其他XX保定内网IP北京南宁南昌大连天津太原平凉广州日照武汉衡阳重庆阳泉Highcharts.com
图( 9) 表( 2)
计量
  • 文章访问数:  5092
  • HTML全文浏览数:  5092
  • PDF下载数:  45
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-07-16
  • 录用日期:  2019-09-12
  • 刊出日期:  2020-05-01
白文文, 秦彩虹, 郑洋, 党小庆. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果[J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
引用本文: 白文文, 秦彩虹, 郑洋, 党小庆. 介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果[J]. 环境工程学报, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
BAI Wenwen, QIN Caihong, ZHENG Yang, DANG Xiaoqing. Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089
Citation: BAI Wenwen, QIN Caihong, ZHENG Yang, DANG Xiaoqing. Degradation of ethyl acetate by dielectric barrier discharge combined with manganese-based catalyst[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1294-1303. doi: 10.12030/j.cjee.201907089

介质阻挡放电联合锰基催化剂对乙酸乙酯的降解效果

    通讯作者: 秦彩虹(1987—),女,博士,讲师。研究方向:大气污染控制工程。E-mail:chqin@outlook.com
    作者简介: 白文文(1995—),女,硕士研究生。研究方向:大气污染控制工程。E-mail:1980024934@qq.com
  • 1. 西安建筑科技大学环境与市政工程学院,西安 710055
  • 2. 西北水资源与环境生态教育部重点实验室,西安 710055
基金项目:
陕西省教育厅2019年度专向研究计划(19JK0479);中国博士后科学基金第61批面上项目(2017M613289XB)

摘要: 采用等体积浸渍法制备锰基催化剂MnOx/13X和MnOx/γ-Al2O3,并在吸附-间歇放电模式下研究了其联合介质阻挡放电(DBD)等离子体对乙酸乙酯的氧化性能;对催化剂进行BET、SEM和XPS表征,以分析不同载体的Mn基催化剂氧化效果存在差异的原因。DBD氧化实验结果表明:与13X和γ-Al2O3相比,负载活性组分MnOx后,COx产率分别提高了36.3%(MnOx/13X)和29%(MnOx/γ-Al2O3),CO2选择性均提高至98%以上,副产物臭氧明显减少。表征结果显示,MnOx/13X上的Mn4+和晶格氧含量更高,更有利于乙酸乙酯的降解。结合吸附态乙酸乙酯的等离子体降解机理和不同填充材料的实验数据,建立了相应的动力学模型,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。

English Abstract

  • 挥发性有机污染物(VOCs)来源广泛、组分复杂,对环境和人体均有一定危害[1-2],因此,近年来,对VOCs的减排与控制备受关注,相关标准逐渐明确、严格,已有许多针对VOCs处理技术的研究。现有的VOCs处理技术包括吸附法、吸收法、燃烧法、膜分离处理法、生物法、光催化降解和等离子体法[3]。但针对实际中产生的低浓度VOCs废气,前6种技术存在运行费用高、设备性能要求高、涉及产物复杂等劣势。而作为近几年新兴的低温等离子体技术(NTP)在净化低浓度VOCs时,具有反应迅速、启停便捷、设备简单[4-5]等优势,极具应用潜力。但是单一的NTP技术依然存在能耗较高、副产物难以避免等问题[6-7]。因此,研究者将吸附、等离子体氧化和催化耦合于一体,从而产生了吸附-等离子体催化氧化技术。填充的介质阻挡放电反应器可以实现3种技术的有效结合,已有研究表明,间歇的吸附存储-等离子体催化技术不仅可以提高能量效率[8-9],而且还可以有效降低副产物的排放[10-11]

    在吸附-等离子体催化氧化技术中,催化剂的作用至关重要,不仅要有较好的吸附性能,还要有较好的等离子体催化氧化性能。锰基催化剂在协同低温等离子体降解不同挥发性有机物时表现出较优的氧化性能。郝翰[12]在石墨烯上通过电化学沉积法负载Mn3O4耦合介质阻挡放电来氧化降解甲苯,获得了较好的甲苯降解率以及CO2选择性,并有效控制了O3和NOx等副产物的产生;LYULYUKIN等[13]利用电晕放电联合TiO2来氧化丙酮和乙醇,发现负载MnOx的催化剂不仅可以抑制副产物的生成,还促进了丙酮和乙醇的深度氧化,提高了CO2选择性;ODA等[14]的研究结果显示,MnO2负载在氧化铝小球上,在低温等离子体氧化降解TCE时起到了积极的作用;向东等[15]的研究表明,介质阻挡放电与MnOx/SBA-15催化剂对正己醛氧化降解表现出了良好的协同效应,去除率最高可达99%。但目前针对等离子体联合催化技术用于氧化降解乙酸乙酯的研究还不深入,而乙酸乙酯是汽车制造、制药、电子制造等行业的代表性污染物[16],更是包装印刷行业VOC排放最为显著的复合膜干复工艺的主要污染物[17]。因此,针对低温等离子体联合锰基催化剂净化乙酸乙酯的研究有待于进一步深入。

    本研究以13X和γ-Al2O3为载体,负载MnOx并联合低温等离子体,氧化降解吸附态乙酸乙酯,以COx产率、CO2选择性以及副产物的生成量为评价指标,探究了不同载体或催化剂对乙酸乙酯的氧化性能及反应动力学的影响,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。

  • 实验以13X和γ-Al2O3(直径为3~5 mm,上海有新催化剂厂)为载体,Mn(NO3)2溶液为前驱体,采用等体积浸渍法制备MnOx/13X和MnOx/γ-Al2O3 2种锰基催化剂。制备条件:缓慢滴加一定量的前驱体溶液于载体上,然后静置过夜,干燥箱烘6 h(105 ℃),于马弗炉中焙烧3 h(500 ℃)。

    催化剂的比表面积采用比表面积及孔径分析仪(BET)(Micromeritics ASAP 2460, USA)分析。样品在250 ℃下进行脱气预处理4 h,在−196 ℃下,进行N2吸附-脱附实验。样品形貌利用日本电子JSM-6510LV型扫描电子显微镜分析。测定样品前,在20 mA 工作电流下喷金100 s,对样品进行预处理,扫描工作电压为15 kV。采用美国热电K-Alpha X射线光电子能谱仪(XPS)对催化剂表面的元素组成、含量进行测定,光源为Al Kα(1 486.6 eV)射线,能谱采用C1s的标准结合能284.5 eV进行校正,采用XPS peak4.1软件对谱图进行分峰拟合。

  • 实验系统主要由配气装置、等离子体反应器和测试系统组成,实验系统流程如图1所示。配气系统包含模拟空气(79%N2、21%O2)、质量流量计、注射泵、恒温水浴锅和缓冲混合瓶,用于产生1 L·min−1、1 571 mg·m−3的乙酸乙酯。反应装置为自制的线管式反应器,材质为石英玻璃(内径=21.5 mm),内电极为不锈钢丝(直径=0.8 mm),外电极为100 mm长的铜皮,缠绕在反应器外壁,接地。采用50 Hz交流高压电源(GJTK-0.01/30K,上海南罡电除尘器有限公司),电压为22 kV,电压-电流波形见图2。实验产生的CO2、CO、N2O和乙酸乙酯浓度均采用傅里叶变换红外光谱仪(Nicolet Antaris IGS,Thermo Scientific Company)分析,O3浓度由臭氧检测仪(2B Technologies Model 106-M)测得。

    本实验分为吸附和放电2个阶段:1)在吸附阶段,乙酸乙酯吸附存储在填充的催化剂表面,此过程不放电;2)在放电阶段,以1 L·min−1的空气为放电背景气,利用放电产生的活性粒子,将吸附态乙酸乙酯氧化降解。

  • 实验中乙酸乙酯氧化的评价指标为COx产率和CO2选择性,计算方法见式(1)和式(2)。

    式中:R为COx产率;S为CO2选择性;nC4H8O2为乙酸乙酯的初始吸附量,mmol;nCO2nCO分别为等离子体氧化降解阶段反应器出口的CO2和CO的量,mmol。

  • 图3反映了催化剂的 COx浓度和CO2选择性。由图3(a)可以看出,COx浓度随放电时间的延长先是急剧上升,然后缓慢降低,这是由于在放电初始时,催化剂表面乙酸乙酯的吸附量最多,大部分乙酸乙酯很快被氧化降解,产生了高浓度COx;但随着放电的进行,催化剂表面吸附的乙酸乙酯越来越少,所以反应器出口的COx也随之降低。不论是13X还是γ-Al2O3,负载MnOx之后,COx浓度明显升高。放电120 min后,MnOx/13X和MnOx/γ-Al2O3对乙酸乙酯的COx产率分别为61.5%和59%,比13X和γ-Al2O3相应高出36.3%和29%。图3(b)表明,负载MnOx之后,CO2选择性也提高了1.8%和1.5%,因为MnOx对O3有着极强的分解能力,O3分解生成的O活性物种进一步将CO氧化为CO2[18]。以上结果表明,MnOx的负载有效促进了乙酸乙酯的深度降解,为探究其原因,采用BET和SEM对催化剂进行表征。图4为催化剂的N2吸附-解吸等温线,可以看出,13X的吸附等温线属于典型的I型等温线,说明其主要以微孔吸附为主,在较低压力下,吸附量急剧增加,发生微孔填充。而γ-Al2O3属于Ⅳ型吸附曲线,在较高压力下,吸附质发生毛细管凝聚,可观察到滞后现象,这种现象与孔的形状及大小有关。催化剂的物理化学性质如表1所示。负载MnOx后,一方面使催化剂的孔容减少、平均孔径增大,导致比表面积减小[19-20],不利于乙酸乙酯的等离子体氧化;另一方面,MnOx的负载增加了催化反应活性中心,可大大提高乙酸乙酯氧化。由于促进作用远大于比表面积减少带来的不利影响,负载MnOx后,乙酸乙酯的降解效果显著提高。图5为不同催化剂的SEM扫描电镜图。可以看出,13X表面粗糙,孔隙多,而γ-Al2O3表面呈块状结构,孔隙少。负载MnOx后,催化剂表面变得平整,还会出现少量裂缝和大孔,说明MnOx的负载造成了一定的刻蚀,扩充了孔径,这与BET所测的负载后平均孔径变大的结果相吻合。

    填充γ-Al2O3的COx产率比13X高出13%左右(图3(a)),这可能是由于γ-Al2O3介电常数比13X高[21-22],在相同的外加电压条件下,增强了电场强度,相应提高了电场中高能电子的数量,产生更多的活性粒子[23],将吸附态乙酸乙酯氧化降解成为CO2和CO。但值得注意的是,尽管MnOx/γ-Al2O3的介电常数比MnOx/13X的高,MnOx/13X的COx产率却比MnOx/γ-Al2O3高,这说明除了材料的介电常数,还有其他重要因素影响着低温等离子体催化降解吸附态乙酸乙酯。由表1可以看出,MnOx/13X的比表面积大于MnOx/γ-Al2O3的比表面积,有更多的活性位点,同时污染物的停留时间更长,有利于乙酸乙酯的氧化降解,这可能是MnOx/13X的COx产率比MnOx/γ-Al2O3高的原因之一。另外,在图6(a)图6(b)中,Mn2p的XPS谱图显示,MnOx/13X上的Mn4+(结合能在(642.7±0.5) eV的拟合峰)含量比MnOx/γ-Al2O3高(表1),而较高的Mn4+含量有利于有机物的氧化。MnOx/13X和MnOx/γ-Al2O3的O1s(图6(c)图6(d))的XPS谱图显示,MnOx/13X上的晶格氧Olatt(结合能在(530.5±0.5) eV)含量也远高于MnOx/γ-Al2O3(表1),而晶格氧含量越高,越有利于有机物的催化氧化[24-25]。以上结果表明,填充材料的介电性质、比表面积、Mn4+的含量以及晶格氧的含量均对吸附态乙酸乙酯的氧化起着非常重要的作用。

  • 图7反映了 副产物O3和N2O浓度随放电时间的变化情况。由图7(a)可以看出,O3浓度随放电时间的延长在不断上升,这是因为随着放电时间的推移,有机中间产物的累积覆盖了活性位点,抑制了O3在催化剂表面的分解[26]。填充负载型催化剂MnOx/13X和MnOx/γ-Al2O3的反应器出口的O3浓度大大降低,这是由于MnOx的负载有助于对O3的分解[27-28],如式(3)~式(5)所示,减少副产物的同时形成了高活性O·,从而促进了污染物的降解。

    此外,MnOx的负载略微增加了催化剂的平均孔径(表1),使得O3的扩散阻力减弱,臭氧更容易迁移到催化剂孔道内参与反应[29]图7(b)显示,无论负载MnOx与否,γ-Al2O3作为催化剂时产生的N2O浓度均高于13X,这是由于γ-Al2O3的介电常数大,填充后反应器内放电场强增加,产生更多高能电子,与N2碰撞,使其处于不稳定的激发态N2(A),进一步被氧化为N2O[30],反应见式(6)和式(7)。

    MnOx的负载对N2O的产生影响不大,说明MnOx的负载对材料的介电形式和放电影响不大,对产生的N2O几乎没有分解能力。

  • 在实验中,吸附态乙酸乙酯的降解路径主要分为2个部分:1)等离子体在空气气氛下的放电过程中会产生羟基自由基、O·、O2、电子和N2(A)等多种活性粒子,直接与乙酸乙酯发生碰撞;2)催化剂表面的活性组分MnOx分解O3,形成的活性基团或MnOx直接与乙酸乙酯生成CH3·、CH3CO·、CH3COO·、CH3CH2COO·[31],从而进一步氧化成乙酸、乙醛等中间产物[32],然后再矿化为COx和H2O。反应过程如图8所示。总反应方程式可简化为式(8)的形式。

    假设在一定运行条件下,活性粒子的浓度视为恒定,则吸附态乙酸乙酯的瞬时矿化速率方程见式(9)。

    式中:t为反应时间,min;k为总反应速率常数;b为反应级数;n为乙酸乙酯的吸附量,mmol。由于n在放电过程中无法直接测定,故采用矿化产物COx(CO2和CO)的量来间接计算,计算方法如式(10)所示。

    拟合结果如图9所示,不同催化剂(13X、γ-Al2O3、MnOx/13X、MnOx/γ-Al2O3)矿化吸附态乙酸乙酯的过程均符合二级动力学模型(b=2,可决系数都在0.99以上,如表2所示),说明矿化速率与乙酸乙酯吸附量的平方成正比。不同催化剂的反应速率常数k不同,由表2可知,MnOx/13X的总反应速率最大。另外,值得注意的是,催化剂总反应速率常数k的大小顺序(表2)与COx产率的大小顺序一致(图3(a))。

  • 1)相比于13X和γ-Al2O3,MnOx/13X、MnOx/γ-Al2O3将COx产率分别提高了36.3%和29%,同时CO2选择性相应上升到98.9%和98.1%。从表征结果看出,COx产率和CO2选择性的提高主要是由于MnOx的负载增加了等离子体催化反应的活性中心数量。

    2) MnOx与13X协同后效果更佳,XPS的表征显示,MnOx/13X上的Mn4+和晶格氧含量更高,更有利于乙酸乙酯的降解。

    3) MnOx的负载可以有效降低O3,但对N2O的产生并无显著影响。

    4) DBD降解吸附态乙酸乙酯符合二级反应动力学模型,不同催化剂的总反应速率常数k与COx产率大小顺序一致,产率大小顺序为MnOx/13X>MnOx/γ-Al2O3>γ-Al2O3>13X。

参考文献 (32)

返回顶部

目录

/

返回文章
返回