-
土壤是人类赖以生存的物质基础和不可或缺的自然资源,随着工业化、城镇化的加快推进,土壤重金属污染问题也日益突出。铅(Pb)作为土壤累积率最高的重金属元素,来源广泛且生态危害大,“三废”的排放、农药化肥的不合理施用、矿山开采及冶炼活动等都会造成土壤Pb污染,其中尤以铅锌矿的开采及冶炼过程最为严重[1]。进入土壤中的Pb在各粒级颗粒中的分布具有不均一性,其会优先依附于小颗粒土壤[2],粒径越细,对重金属的富集能力越强[3]。同时,细小的土壤颗粒在胶体共迁移的作用下更容易发生迁移,造成其他环境介质的污染[4-5]。另外,受土壤理化性质的影响,进入土壤中Pb的化学活性分布也具有高度不均一性,进而导致生物对Pb的吸收效率存在较大差异,因此,对生物体的影响程度也明显不同[6]。
重金属污染土壤的修复技术类型多样,不同修复方法的适用范围和修复效果也各不相同。其中,原位化学钝化法在修复时间和经济成本上能更好地满足重金属污染土壤的修复要求,其钝化效果及机理得到广泛研究。有机物料、石灰和磷酸盐来源广泛、价格低廉,且对重金属有着良好的钝化效果[7-8]。但上述3种钝化剂的钝化修复机理有很大差异,有机物料修复机理较复杂,其本身可以通过吸附、络合/螯合、氧化还原等方式降低重金属有效性,又可以通过影响土壤理化性质及土壤微生物的丰度与活性以间接减轻重金属的毒害性[9]。石灰与磷酸盐的钝化机理较单一,石灰主要通过提高土壤pH以促进Pb2+形成氢氧化铅及碳酸铅沉淀而降低其有效性[10];磷酸盐可以与Pb形成磷酸盐沉淀,并且当土壤中存有Cl−、F−等卤素离子时,可以形成非常稳定的磷铅矿类物质[11]。但土壤不是一个均质体,不同成分在土壤中的分布并不均匀[12]。土壤颗粒作为土壤最基本的组成部分,积极参与生态系统的地球化学过程,不同粒级土壤组分上存在不同的土壤固相组成,导致很多特定的反应或现象只出现在特定的粒径范围之内[13],因此,在研究钝化剂修复效果的同时,也应考虑重金属在土壤中不同粒级间的转化富集。虽然关于Pb污染土壤的化学钝化修复已有大量报道,但绝大多数研究均把土壤作为均质体,而钝化剂添加后对不同粒级土壤中Pb的迁移转化的相关研究较少,钝化剂修复Pb污染土壤的内在微观机制仍不明晰,钝化处理后的土壤对其他环境介质的影响尚未探究。
本研究以外源Pb污染的贵州黄壤为研究对象,以羊厩肥、石灰、磷酸盐为钝化材料,通过室内钝化培养实验,比较了不同钝化剂对外源Pb污染土壤的钝化修复效果,分析了不同钝化剂在不同添加量下在各个粒级土壤中对Pb的富集状况和形态分布的影响,探讨了不同钝化剂对Pb在不同粒级土壤中迁移转化规律的影响,以期为羊厩肥、石灰、磷酸盐在Pb污染土壤修复中的高效利用及修复后土壤的潜在生态风险管控提供参考。
不同钝化剂对外源铅在土壤中的钝化效果及粒径分布的影响
Effects of different passivators on the immobilization effect and particle-size distribution of exogenous lead in soil
-
摘要: 通过室内钝化培养实验比较了羊厩肥、石灰和磷酸盐对土壤外源Pb的钝化效果和钝化修复后Pb的粒径分布特征。结果表明:3种钝化剂均能显著降低土壤中DTPA-Pb的含量,且钝化效果与钝化剂添加量成正比;磷酸盐对外源Pb钝化效果最好,P10处理下土壤中DTPA-Pb的含量降幅达80.53%,羊厩肥钝化效果最差,GM1对DTPA-Pb含量的降幅为6.51%;羊厩肥与磷酸盐将弱酸提取态Pb和可还原态Pb转变为活性更低的可氧化态Pb和残渣态Pb,以降低其活性,石灰将可还原态Pb转化为可氧化态Pb,以降低其活性;3种钝化剂添加均会提升土壤Olsen-P的含量。土壤磷淋溶临界值模型显示,当土壤Olsen-P含量>124.25 mg·kg−1时,会发生磷素淋溶现象;Pb在土壤粗砂粒、细沙粒、粉粒和黏粒中的含量差别很大,但赋存形态无明显差异,钝化剂添加会影响外源Pb在各粒级颗粒中的富集及形态分布。相关性分析结果表明,钝化剂主要通过将细沙粒、粉粒和黏粒中的可还原态Pb转化为粉粒和黏粒中的可氧化态Pb来降低土壤Pb的毒害性。研究结果可为3种钝化剂在Pb污染土壤修复中的高效利用及修复后土壤的潜在生态风险管控提供参考。Abstract: In order to compare the differences of immobilization effects of goat manure, lime and phosphate, and the characteristic of exogenous Pb distributions in soil particle-size fractions after remediation, exogenous Pb-contaminated soil incubation experiments were conducted. The results showed that three types of amendments could significantly reduce the DTPA-Pb contents in soil, and the immobilization effect was proportional to the dosages of amendments. Among three amendments, phosphate has the best immobilization performance on exogenous Pb, and the contents of DTPA-Pb in P10 treated soil decreased by 80.53%; while the immobilization effect of goat manure was the worst, and the DTPA-Pb contents in GM1 treated soil decreased by 6.51%. Goat manure and phosphate could convert the weak acid extractable fraction and reducible fraction of Pb into the oxidizable and residual fractions so as to reduce the soil available Pb, while lime could convert the reducible fraction into oxidizable fraction. The Olsen-P content of soil increased with the addition of these three amendments. The soil phosphorus leaching critical value model showed that when the Olsen-P contents were over 124.25 mg·kg−1, phosphorus leaching into the groundwater occurred. There was a large difference of Pb contents in coarse sand, fine sand, silt and clay, yet there was no significant difference regarding Pb speciation distribution. The addition of amendments affected the enrichment and speciation distribution of exogenous Pb in each soil particle-size fractions. The correlation analysis showed that toxicity of soil Pb was reduced by amendments mainly through converting the reducible fraction of Pb in the fine sand, the silt and the clay into the oxidizable fraction in the silt and the clay. This work provides theoretical support for the efficient use of three amendments on Pb contaminated soil and the potential ecological risk control afterwards.
-
表 1 土壤与各粒级颗粒中Pb形态含量间的相关系数(n=13)
Table 1. Correlation coefficients between Pb speciation concentrations in soil and in soil particle-size fractions(n=13)
粒级 Pb形态 DTPA-Pb 弱酸提取态 可还原态 可氧化态 残渣态 粗砂粒 弱酸提取态 0.564* 0.890** 0.263 −0.473 −0.581* 可还原态 0.525 0.935** 0.234 −0.368 −0.498 可氧化态 −0.061 −0.369 0.238 0.013 0.354 残渣态 0.065 −0.305 0.475 −0.137 0.460 易利用态 0.537 0.935** 0.241 −0.390 −0.517 难利用态 0.017 −0.391 0.447 −0.090 0.492 细沙粒 弱酸提取态 0.642* 0.876** 0.318 −0.500 −0.438 可还原态 0.842** 0.702** 0.727** −0.751** −0.148 可氧化态 −0.524 −0.241 −0.206 0.309 −0.147 残渣态 −0.182 −0.575* 0.312 0.035 0.425 易利用态 0.828** 0.751** 0.673* −0.725** −0.203 难利用态 −0.360 −0.500 0.120 0.115 0.223 粉粒 弱酸提取态 0.723** 0.790** 0.428 −0.631* −0.335 可还原态 0.766** 0.222 0.765** −0.700** 0.316 可氧化态 −0.581* −0.470 −0.590* 0.485 −0.118 残渣态 −0.250 −0.649* 0.240 0.099 0.454 易利用态 0.817** 0.378 0.745** −0.740** 0.84 难利用态 −0.427 −0.774** 0.041 0.251 0.398 粘粒 弱酸提取态 0.720** 0.765** 0.317 −0.434 −0.216 可还原态 0.882** 0.354 0.692** −0.495 0.309 可氧化态 −0.671* 0.171 −0.606* 0.504 −0.738** 残渣态 −0.701** −0.396 −0.435 0.429 −0.047 易利用态 0.882** 0.522 0.604* −0.506 0.143 难利用态 −0.826** −0.172 −0.614* 0.555* −0.426 注:*为P<0.05,显著;**为P<0.01,显著。 -
[1] VENKATACHALAM P, JAYALAKSHMI N, GEETHA N, et al. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress[J]. Chemosphere, 2017, 171: 544-553. doi: 10.1016/j.chemosphere.2016.12.092 [2] 代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818. [3] LIU G, WANG J, LIU X, et al. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions[J]. Geoderma, 2018, 312: 104-113. doi: 10.1016/j.geoderma.2017.10.013 [4] HU X, ZHANG Y, DING Z, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China[J]. Atmospheric Environment, 2012, 57: 146-152. [5] HU S P, CHEN X C, SHI J Y, et al. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain[J]. Chemosphere, 2008, 71(11): 2091-2097. doi: 10.1016/j.chemosphere.2008.01.024 [6] CALMANO W, FÖRSTNER U. Chemical extraction of heavy metals in polluted river sediments in central Europe[J]. Science of the Total Environment, 1983, 28(1/2/3): 77-88. [7] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils: To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266(4): 141-166. [8] 王济, 李丁, 宣斌, 等. 有机物料对土壤Pb有效态作用机理及影响效果研究进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(2): 107-113. [9] 王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5): 1214-1222. [10] HALE B, EVANS L, LAMBERT R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils[J]. Journal of Hazardous Materials, 2012, 199-200: 119-127. doi: 10.1016/j.jhazmat.2011.10.065 [11] DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188. doi: 10.1016/j.jenvman.2014.07.035 [12] CÁRDENAS J P, SANTIAGO A, TARQUIS A M, et al. Soil porous system as heterogeneous complex network[J]. Geoderma, 2010, 160(1): 13-21. doi: 10.1016/j.geoderma.2010.04.024 [13] ZHANG Z Y, HUANG L, LIU F, et al. Characteristics of clay minerals in soil particles of two Alfisols in China[J]. Applied Clay Science, 2016, 120: 51-60. doi: 10.1016/j.clay.2015.11.018 [14] STEMMER M, GERZABEK M H, KANDELER E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication[J]. Soil Biology and Biochemistry, 1998, 30(1): 9-17. doi: 10.1016/S0038-0717(97)00093-X [15] 武天云, 李凤民, 钱佩源, 等. 利用离心法进行土壤颗粒分级[J]. 应用生态学报, 2004, 15(3): 477-481. doi: 10.3321/j.issn:1001-9332.2004.03.024 [16] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. [17] HOUBA V J G, NOVOZAMSKY I, LEXMOND T M, et al. Applicability of 0.01 M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes[J]. Communications in Soil Science and Plant Analysis, 1990, 21(19/20): 2281-2290. [18] 中华人民共和国国家环境保护局, 中国国家技术监督局. 土壤质量铅、镉的测定: GB/T 17140-1997[S]. 北京: 中国环境科学出版社, 1997. [19] 中华人民共和国生态环境部. 土壤8种有效态元素的测定: HJ 804-2016[S]. 北京: 中国环境科学出版社, 2016. [20] NEMATI K, BAKAR N K A, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410. [21] 陈杰, 张晶, 王鑫, 等. 不同物料对污染土壤中铅的钝化[J]. 农业环境科学学报, 2015, 34(9): 1674-1678. doi: 10.11654/jaes.2015.09.007 [22] 原梦云, 商和平, 李洋, 等. 畜禽粪便有机肥中Cu, Zn在水稻土中的有效性动态变化和形态归趋[J]. 环境科学学报, 2016, 36(7): 2613-2623. [23] 周宇杰, 赵文, 罗春岩, 等. 有机肥对铅在土壤中形态分配的影响[J]. 环境化学, 2018, 37(3): 534-543. doi: 10.7524/j.issn.0254-6108.2017070801 [24] HE Y B, HUANG D Y, ZHU Q H, et al. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar[J]. Ecotoxicology and Environmental Safety, 2017, 136: 135-141. doi: 10.1016/j.ecoenv.2016.11.005 [25] 李学平, 石孝均, 刘萍, 等. 紫色土磷素流失的环境风险评估-土壤磷的" 临界值”[J]. 土壤通报, 2011, 42(5): 1153-1158. [26] CHUNG H, PARK M, MADHAIYAN M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J]. Soil Biology and Biochemistry, 2005, 37(10): 1970-1974. doi: 10.1016/j.soilbio.2005.02.025 [27] 廖萍. 石灰和稻草还田对双季水稻产量和土壤性状的互作效应[D]. 南昌: 江西农业大学, 2017. [28] 刘利花, 杨淑英, 吕家珑. 长期不同施肥土壤中磷淋溶" 阈值”研究[J]. 西北农林科技大学学报(自然科学版), 2003, 31(3): 123-126. doi: 10.3321/j.issn:1671-9387.2003.03.028 [29] HESKETH N, BROOKES P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110. [30] STANISLAWSKA-GLUBIAK E, KORZENIOWSKA J, KOCON A. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils[J]. Environmental Science and Pollution Research, 2015, 22(6): 4706-4714. doi: 10.1007/s11356-014-3706-x [31] ZENG G, WAN J, HUANG D, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils: A review[J]. Journal of Hazardous Materials, 2017, 339: 354-367. doi: 10.1016/j.jhazmat.2017.05.038 [32] 代允超, 吕家珑, 曹莹菲, 等. 石灰和有机质对不同性质镉污染土壤中镉有效性的影响[J]. 农业环境科学学报, 2014, 33(3): 514-519. doi: 10.11654/jaes.2014.03.017 [33] 赵庆圆, 李小明, 杨麒, 等. 磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J]. 环境科学, 2018, 39(1): 389-398. [34] 王力, 杨亚提, 王爽, 等. 陕西省采矿业污染农田土壤中Cd、Pb的释放特征[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 192-200. [35] BASTA N T, GRADWOHL R, SNETHEN K L, et al. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate[J]. Journal of Environmental Quality, 2001, 30(4): 1222-1230. doi: 10.2134/jeq2001.3041222x [36] 李恋卿, 潘根兴, 张平究, 等. 太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J]. 环境科学学报, 2001, 21(5): 607-612. doi: 10.3321/j.issn:0253-2468.2001.05.020 [37] QIAN J, SHAN X Q, WANG Z J, et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J]. Science of the Total Environment, 1996, 187(2): 131-141. doi: 10.1016/0048-9697(96)05134-0 [38] 刘慧云, 鲜青松, 刘琛, 等. 生物质炭对紫色土耕地土壤中溶解性有机物含量和组成特征的影响[J]. 农业环境科学学报, 2017, 36(4): 718-726. doi: 10.11654/jaes.2016-1538 [39] 崔俊义, 马友华, 陈亮妹, 等. 原位钝化-低积累品种联合修复镉污染农田研究[J]. 环境科学与技术, 2018, 41(7): 77-83. [40] 鲁秀国, 过依婷. 重金属污染土壤钝化修复技术研究[J]. 应用化工, 2018, 47(7): 1473-1477. doi: 10.3969/j.issn.1671-3206.2018.07.038 [41] LI H, JI H, SHI C, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health[J]. Chemosphere, 2017, 172: 505-515. doi: 10.1016/j.chemosphere.2017.01.021 [42] 闫家普, 丁效东, 崔良, 等. 不同改良剂及其组合对土壤镉形态和理化性质的影响[J]. 农业环境科学学报, 2018, 37(9): 1842-1849. doi: 10.11654/jaes.2018-0187 [43] ZHU Y G, CHEN S B, YANG J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China[J]. Environment International, 2004, 30(3): 351-356. doi: 10.1016/j.envint.2003.07.001