[1] |
VENKATACHALAM P, JAYALAKSHMI N, GEETHA N, et al. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress[J]. Chemosphere, 2017, 171: 544-553. doi: 10.1016/j.chemosphere.2016.12.092
|
[2] |
代豫杰, 郭建英, 董智, 等. 不同沙生灌木下土壤颗粒及重金属空间分布特征[J]. 环境科学, 2017, 38(11): 4809-4818.
|
[3] |
LIU G, WANG J, LIU X, et al. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions[J]. Geoderma, 2018, 312: 104-113. doi: 10.1016/j.geoderma.2017.10.013
|
[4] |
HU X, ZHANG Y, DING Z, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China[J]. Atmospheric Environment, 2012, 57: 146-152.
|
[5] |
HU S P, CHEN X C, SHI J Y, et al. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain[J]. Chemosphere, 2008, 71(11): 2091-2097. doi: 10.1016/j.chemosphere.2008.01.024
|
[6] |
CALMANO W, FÖRSTNER U. Chemical extraction of heavy metals in polluted river sediments in central Europe[J]. Science of the Total Environment, 1983, 28(1/2/3): 77-88.
|
[7] |
BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al. Remediation of heavy metal(loid)s contaminated soils: To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266(4): 141-166.
|
[8] |
王济, 李丁, 宣斌, 等. 有机物料对土壤Pb有效态作用机理及影响效果研究进展[J]. 贵州师范大学学报(自然科学版), 2018, 36(2): 107-113.
|
[9] |
王立群, 罗磊, 马义兵, 等. 重金属污染土壤原位钝化修复研究进展[J]. 应用生态学报, 2009, 20(5): 1214-1222.
|
[10] |
HALE B, EVANS L, LAMBERT R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils[J]. Journal of Hazardous Materials, 2012, 199-200: 119-127. doi: 10.1016/j.jhazmat.2011.10.065
|
[11] |
DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188. doi: 10.1016/j.jenvman.2014.07.035
|
[12] |
CÁRDENAS J P, SANTIAGO A, TARQUIS A M, et al. Soil porous system as heterogeneous complex network[J]. Geoderma, 2010, 160(1): 13-21. doi: 10.1016/j.geoderma.2010.04.024
|
[13] |
ZHANG Z Y, HUANG L, LIU F, et al. Characteristics of clay minerals in soil particles of two Alfisols in China[J]. Applied Clay Science, 2016, 120: 51-60. doi: 10.1016/j.clay.2015.11.018
|
[14] |
STEMMER M, GERZABEK M H, KANDELER E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication[J]. Soil Biology and Biochemistry, 1998, 30(1): 9-17. doi: 10.1016/S0038-0717(97)00093-X
|
[15] |
武天云, 李凤民, 钱佩源, 等. 利用离心法进行土壤颗粒分级[J]. 应用生态学报, 2004, 15(3): 477-481. doi: 10.3321/j.issn:1001-9332.2004.03.024
|
[16] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
[17] |
HOUBA V J G, NOVOZAMSKY I, LEXMOND T M, et al. Applicability of 0.01 M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes[J]. Communications in Soil Science and Plant Analysis, 1990, 21(19/20): 2281-2290.
|
[18] |
中华人民共和国国家环境保护局, 中国国家技术监督局. 土壤质量铅、镉的测定: GB/T 17140-1997[S]. 北京: 中国环境科学出版社, 1997.
|
[19] |
中华人民共和国生态环境部. 土壤8种有效态元素的测定: HJ 804-2016[S]. 北京: 中国环境科学出版社, 2016.
|
[20] |
NEMATI K, BAKAR N K A, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410.
|
[21] |
陈杰, 张晶, 王鑫, 等. 不同物料对污染土壤中铅的钝化[J]. 农业环境科学学报, 2015, 34(9): 1674-1678. doi: 10.11654/jaes.2015.09.007
|
[22] |
原梦云, 商和平, 李洋, 等. 畜禽粪便有机肥中Cu, Zn在水稻土中的有效性动态变化和形态归趋[J]. 环境科学学报, 2016, 36(7): 2613-2623.
|
[23] |
周宇杰, 赵文, 罗春岩, 等. 有机肥对铅在土壤中形态分配的影响[J]. 环境化学, 2018, 37(3): 534-543. doi: 10.7524/j.issn.0254-6108.2017070801
|
[24] |
HE Y B, HUANG D Y, ZHU Q H, et al. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar[J]. Ecotoxicology and Environmental Safety, 2017, 136: 135-141. doi: 10.1016/j.ecoenv.2016.11.005
|
[25] |
李学平, 石孝均, 刘萍, 等. 紫色土磷素流失的环境风险评估-土壤磷的" 临界值”[J]. 土壤通报, 2011, 42(5): 1153-1158.
|
[26] |
CHUNG H, PARK M, MADHAIYAN M, et al. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea[J]. Soil Biology and Biochemistry, 2005, 37(10): 1970-1974. doi: 10.1016/j.soilbio.2005.02.025
|
[27] |
廖萍. 石灰和稻草还田对双季水稻产量和土壤性状的互作效应[D]. 南昌: 江西农业大学, 2017.
|
[28] |
刘利花, 杨淑英, 吕家珑. 长期不同施肥土壤中磷淋溶" 阈值”研究[J]. 西北农林科技大学学报(自然科学版), 2003, 31(3): 123-126. doi: 10.3321/j.issn:1671-9387.2003.03.028
|
[29] |
HESKETH N, BROOKES P C. Development of an indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality, 2000, 29(1): 105-110.
|
[30] |
STANISLAWSKA-GLUBIAK E, KORZENIOWSKA J, KOCON A. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils[J]. Environmental Science and Pollution Research, 2015, 22(6): 4706-4714. doi: 10.1007/s11356-014-3706-x
|
[31] |
ZENG G, WAN J, HUANG D, et al. Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils: A review[J]. Journal of Hazardous Materials, 2017, 339: 354-367. doi: 10.1016/j.jhazmat.2017.05.038
|
[32] |
代允超, 吕家珑, 曹莹菲, 等. 石灰和有机质对不同性质镉污染土壤中镉有效性的影响[J]. 农业环境科学学报, 2014, 33(3): 514-519. doi: 10.11654/jaes.2014.03.017
|
[33] |
赵庆圆, 李小明, 杨麒, 等. 磷酸盐、腐殖酸与粉煤灰联合钝化处理模拟铅镉污染土壤[J]. 环境科学, 2018, 39(1): 389-398.
|
[34] |
王力, 杨亚提, 王爽, 等. 陕西省采矿业污染农田土壤中Cd、Pb的释放特征[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 192-200.
|
[35] |
BASTA N T, GRADWOHL R, SNETHEN K L, et al. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate[J]. Journal of Environmental Quality, 2001, 30(4): 1222-1230. doi: 10.2134/jeq2001.3041222x
|
[36] |
李恋卿, 潘根兴, 张平究, 等. 太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J]. 环境科学学报, 2001, 21(5): 607-612. doi: 10.3321/j.issn:0253-2468.2001.05.020
|
[37] |
QIAN J, SHAN X Q, WANG Z J, et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J]. Science of the Total Environment, 1996, 187(2): 131-141. doi: 10.1016/0048-9697(96)05134-0
|
[38] |
刘慧云, 鲜青松, 刘琛, 等. 生物质炭对紫色土耕地土壤中溶解性有机物含量和组成特征的影响[J]. 农业环境科学学报, 2017, 36(4): 718-726. doi: 10.11654/jaes.2016-1538
|
[39] |
崔俊义, 马友华, 陈亮妹, 等. 原位钝化-低积累品种联合修复镉污染农田研究[J]. 环境科学与技术, 2018, 41(7): 77-83.
|
[40] |
鲁秀国, 过依婷. 重金属污染土壤钝化修复技术研究[J]. 应用化工, 2018, 47(7): 1473-1477. doi: 10.3969/j.issn.1671-3206.2018.07.038
|
[41] |
LI H, JI H, SHI C, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health[J]. Chemosphere, 2017, 172: 505-515. doi: 10.1016/j.chemosphere.2017.01.021
|
[42] |
闫家普, 丁效东, 崔良, 等. 不同改良剂及其组合对土壤镉形态和理化性质的影响[J]. 农业环境科学学报, 2018, 37(9): 1842-1849. doi: 10.11654/jaes.2018-0187
|
[43] |
ZHU Y G, CHEN S B, YANG J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China[J]. Environment International, 2004, 30(3): 351-356. doi: 10.1016/j.envint.2003.07.001
|