-
铁电絮凝(Fe-EC)是在电场作用下,使金属铁阳极溶解产生铁离子,并在水中发生一系列物理化学反应,从而使水得到净化的技术。目前,铁电絮凝已被用于生活污水、工业废水以及饮用水等的净化和再生,对水中悬浮物、部分溶解性有机物以及重金属离子有较好的去除效果[1]。但铁电絮凝中污染物去除过程复杂,净化机理尚不明晰。以有机废水为例,铁电絮凝技术的主要作用被认为是吸附、沉淀和气浮作用[2]。除此之外,在铁电絮凝过程中,部分有机污染物可被氧化降解,其作用机制被认为有2种:其一,在含氯电解质中,Cl−在铁阳极表面氧化,形成活性氯(Cl2,HClO/ClO−),导致有机污染物氧化[3];其二,有机污染物在阳极表面直接失电子氧化[4-5]。但这2种氧化机制都是在电荷效率降低时阳极表面发生的副反应导致的。本课题组前期研究发现,铁电絮凝中存在Fe(Ⅱ)活化氧气产生羟基自由基而导致的有机污染物氧化机制[6],但这一过程的氧化效果较弱。
在工业生产中,许多有机配体(如草酸,柠檬酸和EDTA)被广泛用作金属螯合剂、食品添加剂等,最后这些物质通过各种途径进入污水处理厂或自然水体[7]。在天然水体及大气液相中,溶解态铁多以络合配体的形式存在,是水体净化中重要的氧化剂和还原剂[8]。近几年,铁-有机络合物在水处理中的应用也越来越多,Fe(Ⅱ)-有机络合物(如草酸盐,柠檬酸盐和丙酮酸盐)可以在有氧条件下还原氧气来产生活性氧物质(ROS),如·OH、H2O2和
${\rm{O}}_2^ - $ ,且产生的ROS对多种有机物(如阿特拉津、4-氯苯酚和普萘洛尔)的氧化作用已经得到了证实[9]。YI等[10]也通过电子顺磁共振实验证明,EDTA有助于Fe(Ⅲ)/H2O2体系中产生·OH。因此,在使用铁电絮凝处理含有有机配体的有机污染废水或自然水体时,有机配体的存在可能会促进体系中·OH的产生,从而影响目标污染物的降解或转化。苯胺是化工生产中的原料和中间产物,在污废水中广泛存在。本研究采用苯胺作为目标污染物,在有机配体存在的铁电絮凝体系中证明这一作用机制的存在,继而以苯甲酸与·OH反应,生成对羟基苯甲酸为体系中·OH的定量手段[11],研究了有机配体对体系产·OH效率的影响以及不同有机配体含量时铁电絮凝体系中目标污染物的降解规律,研究结果为人们进一步了解铁电絮凝中污染物去除机制提供参考。
有机配体对铁电絮凝体系中羟基自由基氧化降解苯胺的影响
Effects of organic ligands on aniline oxidation and degradation by produced hydroxyl radical in iron electrocoagulation
-
摘要: 铁电絮凝(Fe-EC)是一种高效的水处理方法,但其中有机污染物的去除机制尚不明晰。为研究有机废水中常见的有机配体对铁电絮凝过程中羟基自由基(·OH)产生以及有机污染物降解的影响,采用了对照实验、淬灭实验和电子自旋共振(ESR)等测试方法。结果表明:草酸(H2C2O4)和乙二胺四乙酸(EDTA)能有效促进铁电絮凝对苯胺(AN)的氧化降解,而·OH是起主要作用的活性氧化物;草酸和EDTA体系中主要存在的Fe(Ⅱ)络合物浓度与羟基自由基产率成正相关关系,1 mol的Fe(Ⅱ)-EDTA2−会产生235 mmol的·OH,是草酸的9倍;EDTA会与污染物竞争羟基自由基。进一步分析可知,在铁电絮凝体系中,EDTA的浓度为0.05 mmol·L−1时,对苯胺氧化降解的促进效果最佳。以上研究结果可为认识铁电絮凝中污染物的去除机制提供参考。Abstract: Iron electrocoagulation (Fe-EC) is an effective water treatment method, but the removal mechanism of organic pollutants is still unclear. In order to study the effects of common organic ligands in organic wastewater on the production of hydroxyl radicals (·OH) generation and degradation of organic pollutants were investigated during Fe-EC, control experiments, quenching experiments, and electron spin resonance (ESR) tests were used. Experiment results showed that oxalate(H2C2O4) and ethylenediaminetetraacetic acid (EDTA) could effectively promote the oxidative degradation of aniline, and hydroxyl radical the main oxidant in Fe-EC. The production of hydroxyl radical was positively correlated to the concentrations of Fe(Ⅱ) ligands in oxalate and EDTA systems. The production of hydroxyl radicals was estimated to be 235 mmol by per molar of EDTA, which was 9 times more than that of oxalate. However, EDTA competes with pollutants for hydroxyl radicals. The optimal concentration of EDTA was 0.05 mmol·L−1 for promoting the oxidative degradation of aniline in the Fe-EC system. The above research results can provide a reference for understanding the mechanism of pollutant removal during Fe-EC.
-
Key words:
- iron electrocoagulation /
- oxalate /
- EDTA /
- hydroxyl radical /
- aniline degradation
-
表 1 Visual MINTEQ 3.1模拟在5 mmol·L−1 NaHCO3中不同草酸浓度下Fe(Ⅱ)-C2O4络合物含量
Table 1. Calculated concentrations of aqueous Fe(Ⅱ)-C2O4 species in 5 mmol·L−1 of NaHCO3 using Visual MINTEQ 3.1
草酸/
(mmol·L− 1)Fe(Ⅱ)- $\left( { { {\rm{C} }_2}{ {\rm{O} }_4} } \right)_2^{2 - }$ /
(μmol·L− 1)Fe(Ⅱ)-(C2O4)0/
(μmol·L− 1)总Fe(Ⅱ)-C2O4/
(μmol·L− 1)10 2.04 2.45 4.49 20 3.39 2.02 5.42 30 4.13 1.63 5.75 40 4.86 1.14 6.00 表 2 Visual MINTEQ V3.1模拟在5 mmol·L−1 NaHCO3中不同EDTA浓度下Fe(Ⅱ)-EDTA络合物含量
Table 2. Calculated concentration of aqueous Fe(Ⅱ)-EDTA species in 5 mmol·L−1 of NaHCO3 using Visual MINTEQ 3.1
EDTA/
(mmol·L−1)Fe(Ⅱ)-EDTA2−/
(μmol·L−1)Fe(Ⅱ)-HEDTA−/
(μmol·L−1)Fe(Ⅱ)-OHEDTA3−/
(μmol·L−1)0.01 8.85 2.58×10−5 1.15 0.1 88.43 2.57×10−4 11.57 0.2 176.82 5.14×10−4 23.18 0.5 441.69 1.28×10−3 58.26 -
[1] KOBYA M, CAN O T, BAYRAMOGLU M. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes[J]. Journal of Hazardous Materials, 2003, 100(1/2/3): 163-178. [2] GRIMM J D, BESSARABOV R, SANDERSON R. Review of electro-assisted methods for water purification[J]. Desalination, 1998, 115: 285-294. doi: 10.1016/S0011-9164(98)00047-2 [3] CHEN G. Electrochemical technologies in wastewater treatment[J]. Separation & Purification Technology, 2004, 38(1): 11-41. [4] PATEL U D, RUPARELIA J P, PATEL M U. Electrocoagulation treatment of simulated floor-wash containing reactive black 5 using iron sacrificial anode[J]. Journal of Hazardous Materials, 2011, 197(6): 128-136. [5] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere, 2017, 194: 381-389. [6] 张严, 魏桃员, 符文晶, 等. 铁电絮凝产羟基自由基氧化降解地下水中磺胺[J]. 环境工程学报, 2019, 13(4): 871-878. doi: 10.12030/j.cjee.201809139 [7] PIRKANNIEMI K S, METSÄRINNE M, SILLAN P. Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton's reagent[J]. Journal of Hazardous Materials, 2007, 147(1): 556-561. [8] LEE J, KIM J, CHOI W. Oxidation of aquatic pollutants by ferrous-C2O4 complexes under dark aerobic conditions[J]. Journal of Hazardous Materials, 2014, 274(12): 79-86. [9] OU X X, QUAN X, CHEN S, et al. Photocatalytic reaction by Fe(III)-citrate complex and its effect on the photodegradation of atrazine in aqueous solution[J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 197(2/3): 382-388. [10] HU Y, LI Y L, HE J Y, et al. EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green[J]. Journal of Environmental Management, 2018, 226: 256-263. [11] JOO S H, FEITZ A J, SEDLAK D L, et al. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1263-1268. [12] STRATHMANN T J, STONE A T. Reduction of oxamyl and related pesticides by FeII: Influence of organic ligands and natural organic matter[J]. Environmental Science & Technology, 2002, 36(23): 5172-5183. [13] CHEN Y, LIU Z Z, WANG Z P, et al. Photodegradation of propranolol by Fe(III)-citrate complexes: Kinetics, mechanism and effect of environmental media[J]. Journal of Hazardous Materials, 2011, 194: 202-208. [14] NORADOUN C E, CHENG I F. EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system[J]. Environmental Science & Technology, 2005, 39(18): 7158-7163. [15] KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(14): 5377-5378. [16] VOINOV M A, PAGAN J O S, MORRISON E, et al. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity[J]. Journal of the American Chemical Society, 2011, 133(1): 35-41. doi: 10.1021/ja104683w [17] WILCOX G D, GABE D R. Faraday’s laws of electrolysis[J]. Transactions of the IMF, 1992, 70(2): 93-94. doi: 10.1080/00202967.1992.11870951 [18] YUAN S H, LIU X X, LIAO W J, et al. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223: 422-436. doi: 10.1016/j.gca.2017.12.025 [19] CHENG D, YUAN S H, LIAO P, et al. Oxidizing impact induced by mackinawite (FES) nanoparticles at oxic condition due to production of hydroxyl radicals[J]. Environmental Science & Technology, 2016, 50: 11646-11653. [20] MAO X, CIBLAK A, AMIRI M, et al. Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media[J]. Environmental Science & Technology, 2011, 45(15): 6517-6523. [21] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 2009, 17(2): 513-886. [22] DWIBEDY P, DEY G R, NAIK D B, et al. Rate constants for the reaction of OH radicals with some amino polycarboxylic acids[J]. International Journal of Chemical Kinetics, 2000, 32(2): 99-104. doi: 10.1002/(SICI)1097-4601(2000)32:2<99::AID-KIN5>3.0.CO;2-# [23] ZHANG P, YUAN S H, LIAO P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2016, 172: 444-457. doi: 10.1016/j.gca.2015.10.015