[1] KOBYA M, CAN O T, BAYRAMOGLU M. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes[J]. Journal of Hazardous Materials, 2003, 100(1/2/3): 163-178.
[2] GRIMM J D, BESSARABOV R, SANDERSON R. Review of electro-assisted methods for water purification[J]. Desalination, 1998, 115: 285-294. doi: 10.1016/S0011-9164(98)00047-2
[3] CHEN G. Electrochemical technologies in wastewater treatment[J]. Separation & Purification Technology, 2004, 38(1): 11-41.
[4] PATEL U D, RUPARELIA J P, PATEL M U. Electrocoagulation treatment of simulated floor-wash containing reactive black 5 using iron sacrificial anode[J]. Journal of Hazardous Materials, 2011, 197(6): 128-136.
[5] BARAN W, ADAMEK E, JAJKO M, et al. Removal of veterinary antibiotics from wastewater by electrocoagulation[J]. Chemosphere, 2017, 194: 381-389.
[6] 张严, 魏桃员, 符文晶, 等. 铁电絮凝产羟基自由基氧化降解地下水中磺胺[J]. 环境工程学报, 2019, 13(4): 871-878. doi: 10.12030/j.cjee.201809139
[7] PIRKANNIEMI K S, METSÄRINNE M, SILLAN P. Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton's reagent[J]. Journal of Hazardous Materials, 2007, 147(1): 556-561.
[8] LEE J, KIM J, CHOI W. Oxidation of aquatic pollutants by ferrous-C2O4 complexes under dark aerobic conditions[J]. Journal of Hazardous Materials, 2014, 274(12): 79-86.
[9] OU X X, QUAN X, CHEN S, et al. Photocatalytic reaction by Fe(III)-citrate complex and its effect on the photodegradation of atrazine in aqueous solution[J]. Journal of Photochemistry and Photobiology B: Biology, 2008, 197(2/3): 382-388.
[10] HU Y, LI Y L, HE J Y, et al. EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green[J]. Journal of Environmental Management, 2018, 226: 256-263.
[11] JOO S H, FEITZ A J, SEDLAK D L, et al. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1263-1268.
[12] STRATHMANN T J, STONE A T. Reduction of oxamyl and related pesticides by FeII: Influence of organic ligands and natural organic matter[J]. Environmental Science & Technology, 2002, 36(23): 5172-5183.
[13] CHEN Y, LIU Z Z, WANG Z P, et al. Photodegradation of propranolol by Fe(III)-citrate complexes: Kinetics, mechanism and effect of environmental media[J]. Journal of Hazardous Materials, 2011, 194: 202-208.
[14] NORADOUN C E, CHENG I F. EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system[J]. Environmental Science & Technology, 2005, 39(18): 7158-7163.
[15] KEENAN C R, SEDLAK D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(14): 5377-5378.
[16] VOINOV M A, PAGAN J O S, MORRISON E, et al. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity[J]. Journal of the American Chemical Society, 2011, 133(1): 35-41. doi: 10.1021/ja104683w
[17] WILCOX G D, GABE D R. Faraday’s laws of electrolysis[J]. Transactions of the IMF, 1992, 70(2): 93-94. doi: 10.1080/00202967.1992.11870951
[18] YUAN S H, LIU X X, LIAO W J, et al. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223: 422-436. doi: 10.1016/j.gca.2017.12.025
[19] CHENG D, YUAN S H, LIAO P, et al. Oxidizing impact induced by mackinawite (FES) nanoparticles at oxic condition due to production of hydroxyl radicals[J]. Environmental Science & Technology, 2016, 50: 11646-11653.
[20] MAO X, CIBLAK A, AMIRI M, et al. Redox control for electrochemical dechlorination of trichloroethylene in bicarbonate aqueous media[J]. Environmental Science & Technology, 2011, 45(15): 6517-6523.
[21] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 2009, 17(2): 513-886.
[22] DWIBEDY P, DEY G R, NAIK D B, et al. Rate constants for the reaction of OH radicals with some amino polycarboxylic acids[J]. International Journal of Chemical Kinetics, 2000, 32(2): 99-104. doi: 10.1002/(SICI)1097-4601(2000)32:2<99::AID-KIN5>3.0.CO;2-#
[23] ZHANG P, YUAN S H, LIAO P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2016, 172: 444-457. doi: 10.1016/j.gca.2015.10.015