-
印染废水性质多变且排放量大、色度高、含大量难降解有机物,是较难处理的工业废水之一[1]。我国生产的染料多达550种[2],按性质分为直接染料、活性染料、酸性染料、分散染料等,其中分散染料应用范围较广[3-4],主要用于涤纶纤维的染色和印花,是近年来染料发展的重点之一[5]。我国分散染料的产量位居世界第一,约占我国染料总产量的50%[6]。分散染料溶解度低[7],按分子结构主要分为偶氮类、蒽醌类和杂环类,其中偶氮类产量占分散染料的70%以上[8],分散染料颜色主要为红、黄、蓝3种。
印染废水的处理工艺主要有混凝、光催化、电化学氧化、膜分离等[9],其中混凝因具有投资运行成本低和操作管理便捷等优点,已被广泛应用于实际印染废水的处理中[10]。由于染料种类庞大,目前,针对所有种类染料的混凝去除机理还没有被一一揭示,即使是相对容易去除的分散染料,对其机理的研究认识也还未完全明确和统一。
有研究[11-12]认为,分散染料易被混凝去除的主要原因和机理是其溶解度较低所致。也有研究[13-14]表明,分散染料被去除的主要机理是通过混凝剂吸附作用完成的,由于分散染料是非离子型染料,在溶液中难电离出离子,带电较少,表现为憎水性,因此,易通过被颗粒物或混凝剂吸附形成絮体从而沉淀去除。然而有研究[15-16]通过测定溶液中分散染料的Zeta电位发现,尽管分散染料难电离出离子,但在溶液中,其颗粒表面仍带较多的负电荷,因此,易被电中和能力强的混凝剂去除,同时,混凝剂的吸附架桥作用也可以进一步提高染料的去除率。还有部分研究[17-18]通过在染料中投加高分子混凝剂,利用混凝剂的吸附架桥能力去除分散染料。
综上可知,目前,对于分散染料的混凝去除机理认识仍不统一。因此,本研究以应用较为广泛、较有代表性的典型分散染料—分散红玉、分散黄棕、分散蓝作为去除对象,以常见无机盐(即阳离子电解质)AlCl3、FeCl3以及特殊无机盐CaCl2作为混凝剂,通过研究典型无机混凝剂与分散染料的直接作用,深入揭示分散染料与无机混凝剂的内在反应机理和作用本质,以丰富和完善混凝去除分散染料的作用机理,为相关复合混凝药剂或专效型混凝药剂的开发提供参考。
水溶液中典型混凝剂与分散染料的直接反应机理
Direct reaction mechanism between typical coagulants and disperse dyes in aqueous solution
-
摘要: 为了深入揭示分散染料的混凝去除机理,选择AlCl3、FeCl3、CaCl2作为混凝剂,分散红玉S-2GFL、分散黄棕S-2RFL、分散蓝BBLS作为去除对象,在不投加其他任何颗粒物的条件下,通过测定染料粒径、Zeta电位和改变混凝剂投加顺序等方式,探究了分散染料与混凝剂的直接反应机理。结果表明:3种混凝剂均可使染料颗粒表面电位接近0 mV,此时AlCl3和FeCl3对染料的去除率超过60%,但 CaCl2对染料去除率仅为15%左右,说明此体系下电中和不是染料被直接混凝沉淀去除的单一主导内因;投加3种混凝剂后染料粒径均明显增大,说明混凝剂水解产物与分散染料结合是导致染料被去除的重要前提之一;通过改变混凝剂投加顺序发现,对于同种染料,先投加混凝剂的去除率远低于后投加混凝剂的去除率,说明混凝剂水解终产物的物理吸附不应是染料与混凝剂结合的主因;沉淀物的傅里叶红外图谱显示,在580 cm−1和475 cm−1处分别检测到Al—O和Fe—O的特征峰,且XRD结果进一步显示AlCl3、FeCl3与染料结合形成了新的共聚物,这表明选用的无机混凝剂去除这3种分散染料的主导机理应是特定的化学结合作用。以上研究结果对丰富混凝去除相关染料的作用机理和开发相关复合药剂具有一定的理论指导意义。Abstract: In order to reveal the removal mechanism of disperse dyes by coagulation, AlCl3, FeCl3 and CaCl2 were selected as coagulants, and disperse red S-2GFL (disperse red dye, DR), disperse orange S-2RFL (disperse orange, DO), disperse blue BBLS (disperse blue, DB) were selected as model compounds. Without adding any other particulate matter system, the direct reaction mechanism between disperse dyes and coagulants was investigated by measuring the particle size of the dye, Zeta potential and changing the order of coagulant addition. The results showed that the three coagulants could lead to the surface potential of the dye flocs approaching 0 mV, the dye removal rates by AlCl3 and FeCl3 coagulation were higher than 60%, but the removal rate by CaCl2 coagulation was only about 15%, this indicated that charge neutralization was not the single dominant internal factor for dyes removal. The dye floc size increased significantly after adding three coagulants, indicating that the combination of coagulant hydrolysate and disperse dye was one of the important prerequisites for dye removal. By changing the order of coagulant addition, for the same kind of dye, its removal rate when dye added to the coagulant was much lower than that when the coagulant added to the dye, which indicated that physical adsorption of final coagulant hydrolysis products was not be the main mechanism for the combination of dye and coagulant. The FT-IR results of precipitated polymer showed that the characteristic peaks of Al—O and Fe—O were detected at 580 cm−1 and 475 cm−1, respectively, and the XRD results further showed that a new copolymer formed through the combination of AlCl3, FeCl3 and dye, which indicated that the dominant mechanism for the removal of these three disperse dyes by inorganic coagulation should be a specific chemical bond. This study has certain theoretical guiding significance for enriching the mechanism of coagulation in removing related dyes and developing related composite coagulants.
-
Key words:
- coagulation /
- disperse dye /
- chemistry combination /
- reaction mechanism
-
表 1 混凝实验程序
Table 1. Parameters for the coagulation experiment
程序 转速/(r·min−1) 时间/min 1 150 1 2 300 1 3 50 15 4 0 30 表 2 混凝前后pH的变化
Table 2. Changes of pH before and after coagulation
染料 混凝剂 投药前pH 投药混凝后pH 分散红玉 — 6.35±0.05 6.37±0.02 AlCl3 6.35±0.02 4.35±0.01 FeCl3 6.35±0.01 3.56±0.01 CaCl2 6.35±0.02 8.98±0.04 分散黄棕 — 6.32±0.03 6.32±0.05 AlCl3 6.33±0.04 4.60±0.03 FeCl3 6.34±0.01 3.56±0.03 CaCl2 6.33±0.04 9.18±0.04 分散蓝 — 6.34±0.03 6.35±0.05 AlCl3 6.36±0.01 4.33±0.03 FeCl3 6.33±0.04 3.49±0.02 CaCl2 6.35±0.02 9.05±0.04 注:—表示无混凝剂。 -
[1] 刘威, 杭晓风, 万印华. 混凝-纳滤组合工艺处理印染整理废水[J]. 水处理技术, 2018, 44(11): 84-87. [2] 林小红. 磁性壳聚糖/粉煤灰复合材料的制备及其对染料吸附性能的研究[D]. 呼和浩特: 内蒙古师范大学, 2019. [3] 杨波, 丁凤友, 徐辉, 等. 分散染料neocron black (NB) 的生物降解特性[J]. 环境科学, 2017, 38(4): 1520-1528. [4] 莫林祥, 陈丰. 分散/活性染料涤棉混纺织物的一浴一步法染色探讨[J]. 山东纺织经济, 2018(11): 36-38. doi: 10.3969/j.issn.1673-0968.2018.11.012 [5] 高媛媛. 分散染料在硅基非水介质中的染色性能研究[D]. 杭州: 浙江理工大学, 2019. [6] 马捷, 伍桂松. 染料工业现状及产业结构调整[J]. 化学工业, 2016, 34(5): 21-24. doi: 10.3969/j.issn.1673-9647.2016.05.004 [7] 陈荣圻. 现代活性染料与分散染料的发展[J]. 染料与染色, 2007, 44(1): 5-18. [8] 陈荣圻. 分散染料六十年发展概述(一)[J]. 染料与染色, 2014, 51(6): 1-12. [9] 景江, 肖秀婵, 周筝, 等. 印染废水深度处理技术研究进展[J]. 印染助剂, 2018, 35(6): 8-12. doi: 10.3969/j.issn.1004-0439.2018.06.002 [10] DOTTO J, FAGUNDES-KLEN M R, VEIT M T, et al. Performance of different coagulants in the coagulation/flocculation process of textile wastewater[J]. Journal of Cleaner Production, 2019, 208: 656-665. doi: 10.1016/j.jclepro.2018.10.112 [11] 卢建杭, 刘维屏, 张刚, 等. 印染废水混凝脱色与染料结构及混凝剂种类间的关系[J]. 工业水处理, 1999, 19(4): 30-32. doi: 10.3969/j.issn.1005-829X.1999.04.013 [12] MAHMOUDABADI T Z, TALEBI P, JALILI M. Removing disperse red 60 and reactive blue 19 dyes removal by using alcea rosea root mucilage as a natural coagulant[J]. AMB Express, 2019, 9: 113-121. doi: 10.1186/s13568-019-0839-9 [13] 刘瑶. 聚合氯化铝强化有机膨润土合成-吸附处理一体化处理分散染料废水[D]. 杭州: 浙江大学, 2017. [14] CHEN Q Y, LAN Q, LI X Y, et al. Utilization of fine powder in demolition concrete as recyclable coagulant in removing color from dye-bearing wastewater[J]. Environmental Earth Sciences, 2015, 74(9): 6737-6745. doi: 10.1007/s12665-015-4683-1 [15] 石健, 万杨, 黄鑫, 等. 聚合铁钛混凝剂对印染废水的处理[J]. 环境工程学报, 2019, 13(5): 1021-1029. doi: 10.12030/j.cjee.201901137 [16] WANG W, YUE Q, LI R, et al. Investigating coagulation behavior of chitosan with different Al species dual-coagulants in dye wastewater treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 423-430. doi: 10.1016/j.jtice.2017.06.052 [17] LI R, GAO B, GUO K, et al. Effects of papermaking sludge-based polymer on coagulation behavior in the disperse and reactive dyes wastewater treatment[J]. Bioresource Technology, 2017, 240: 59-67. doi: 10.1016/j.biortech.2017.02.088 [18] WANG Y F, GAO B U, YUE Q Y, et al. Flocculation performance of epichlorohydrin-dimethylamine polyamine in treating dyeing wastewater[J]. Journal of Environmental Management, 2009, 91(2): 423-431. doi: 10.1016/j.jenvman.2009.09.012 [19] 史军歌, 杨德凤. 原油中主要无机氯化物的水解反应研究[J]. 石油化工腐蚀与防护, 2013, 30(4): 1-3. doi: 10.3969/j.issn.1007-015X.2013.04.001 [20] MRZEK O, ECORCHARD P, VOMČKA P, et al. Mg-Al-La LDH-MnFe2O4 hybrid material for facile removal of anionic dyes from aqueous solutions[J]. Applied Clay Science, 2019, 169: 1-9. doi: 10.1016/j.clay.2018.12.018 [21] AL-MASHAQBEH A, EL-ESWED B, BANAT R, et al. Immobilization of organic dyes in geopolymeric cementing material[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 351-359. [22] WU K, WANG H, LIU R, et al. Arsenic removal from a high-arsenic wastewater using in situ formed Fe-Mn binary oxide combined with coagulation by poly-aluminum chloride[J]. Journal of Hazardous Materials, 2011, 185(2/3): 990-995. [23] WENG X, LIN Z, XIAO X, et al. One-step biosynthesis of hybrid reduced graphene oxide/iron-based nanoparticles by eucalyptus extract and its removal of dye[J]. Journal of Cleaner Production, 2018, 203: 22-29. doi: 10.1016/j.jclepro.2018.08.158 [24] WANG B, YAN R, LEE D H, et al. Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol-gel combustion synthesis[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 105-113. doi: 10.1016/j.jaap.2011.01.010 [25] TANG H, FENG X, WANG D. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review[J]. Advances in Colloid & Interface Science, 2015, 226(A): 78-85.