-
三氯乙烯(TCE)是一种优良的溶剂,常作为清洗剂和脱脂剂大量应用于金属脱脂和干洗等行业。由于使用过程中的不当处置等原因,导致其成为土壤和地下水中最常见的有机污染物之一[1]。TCE具有“三致”效应,密度大于水,属重质非水相液体(DNAPLs),进入环境后可长期滞留于含水层底部,持续污染地下水并危害人类健康[2]。
近年来,基于活化过硫酸盐的原位化学氧化(ISCO)技术被广泛应用于修复受有机物污染的土壤和地下水[3]。在热、光、碱和过渡金属离子等活化条件下,过硫酸盐可以产生强氧化性的硫酸根自由基(
${\rm{SO}}_4^ - \cdot $ )[4],能够氧化降解包括氯代烃、多环芳烃、苯系物等在内的多种有机污染物[5-6],过渡金属铁活化是其中主要的一种方式。铁是一种可以大规模应用于污染治理的环境友好型材料,相比普通铁粉,纳米零价铁(nZVI)由于其粒径小,比表面积大等特点,具有优越的吸附性能、更高的还原能力和更好的迁移性能,因而被广泛应用于土壤和地下水原位修复[7]。有研究[8]表明,在有氧和厌氧条件下,纳米零价铁表面均可以发生腐蚀反应且可释放Fe(II),进而活化过硫酸盐,产生${\rm{SO}}_4^ - \cdot $ ,以降解目标污染物,如式(1)~式(3)所示。然而,在酸性介质中,纳米零价铁的腐蚀过快,短时间内释放出大量的Fe(Ⅱ),高浓度的Fe(Ⅱ)反而会清除反应体系中的
${\rm{SO}}_4^ - \cdot $ ,降低污染物的降解率[9];在反应过程中,Fe(Ⅱ)被迅速氧化为Fe(Ⅲ),如式(4)所示,致使催化剂的活化能力降低,也不利于氧化反应的持续进行[10-11];此外,当溶液pH大于4时,Fe(Ⅱ)和Fe(Ⅲ)易形成沉淀,导致溶解性铁离子浓度降低[12]。有研究[13-15]表明,加入螯合剂(如柠檬酸、乙二胺四乙酸等)可以消除过量Fe(Ⅱ)对活性氧自由基的清除,减缓Fe(Ⅱ)向Fe(Ⅲ)的转化,阻碍铁离子的沉淀,提高氧化剂和催化剂的利用效率,从而提高污染物的降解率。ZHANG等[16]发现,在纳米零价铁活化过硫酸钠体系中,加入螯合剂柠檬酸,可以促进2,4,6-三氯苯甲醚的降解。DANISH等[17]发现,螯合剂草酸、柠檬酸、谷氨酸的加入,可以提高纳米零价铁活化过碳酸钠体系中游离Fe(Ⅱ)的浓度,强化活性氧自由基的产生,进而提高三氯乙烷的降解率。在众多螯合剂中,广泛存在于自然界中的天然有机酸柠檬酸(CA),是一种鳌合能力优良、可生物降解的绿色螯合剂,可大规模应用于环境修复领域。到目前为止,CA对nZVI活化过硫酸盐降解有机污染物的影响尚鲜有报道。本研究选用CA为螯合剂,过硫酸钠(PS)为氧化剂,TCE为目标污染物,主要研究了CA对PS/nZVI体系降解TCE的强化作用,考察了PS、CA和nZVI投加量、溶液初始pH和无机阴离子对PS/nZVI/CA体系中TCE降解的影响,探究了反应体系中活性氧自由基的产生及其降解TCE的作用机制,最终在实际地下水中验证PS/nZVI/CA体系降解TCE的效果,为该技术应用于实际污染场地地下水修复提供技术支持。
柠檬酸强化纳米零价铁活化过硫酸钠体系降解水溶液中的三氯乙烯
Enhanced trichloroethylene degradation in aqueous solution by citric acid and nanoscale zero-valent iron activated sodium persulfate system
-
摘要: 采用螯合剂柠檬酸(CA)强化纳米零价铁(nZVI),活化过硫酸钠(PS)体系,降解水溶液中的三氯乙烯(TCE),分别考察了PS、CA、nZVI投加量、溶液初始pH和无机阴离子对TCE降解效果的影响,确定了在TCE降解过程中起主导作用的活性氧自由基,并验证了PS/nZVI/CA体系降解实际地下水中TCE的效果。结果表明:投加适量的CA可以明显提高PS/nZVI体系对TCE的降解效果,但当CA浓度过高时,TCE降解反而受到抑制,过量或不足的PS、nZVI均会降低TCE的降解率;当溶液初始pH为3~9时,PS/nZVI/CA体系可有效降解TCE;溶液中存在的Cl–和
${\rm{HCO}}_3^ - $ 会抑制TCE的降解,其中${\rm{HCO}}_3^ - $ 的抑制作用大于Cl–;自由基清除实验和电子顺磁共振实验表明PS/nZVI/CA体系中产生了HO·、${\rm{SO}}_4^ - \cdot $ 和${\rm{O}}_2^ - \cdot $ 活性氧自由基,其中HO·、${\rm{SO}}_4^ - \cdot $ 对TCE降解起主导作用;CA的加入有利于实际地下水中TCE的降解,PS/nZVI/CA体系相比PS/nZVI体系,更适应实际地下水中各种水质条件的冲击,具有实际应用前景。-
关键词:
- 纳米零价铁 /
- 过硫酸纳活化 /
- 柠檬酸 /
- 三氯乙烯(TCE)降解 /
- 自由基清除
Abstract: The chemical degradation performance of trichloroethylene (TCE) in aqueous solution by citric acidenhanced nanoscale zero-valent iron (nZVI) activated sodium persulfate (PS) system was investigated. The effects of various factors, including the dosages of PS, CA, nZVI, initial solution pH and common inorganic anions concentration (Cl–,${\rm{HCO}}_3^ - $ ) on TCE degradation were evaluated. The generation of reactive oxygen species (ROS) was elucidated by free radical scavenger test and electron paramagnetic resonance (EPR) analysis. Moreover, TCE degradation performance by PS/nZVI/CA system in actual groundwater was tested. The results indicated that the addition of CA in moderate dosages could remarkably enhance TCE removal, but excessive dose of CA had an inhibitive effect on TCE degradation. Excessive or deficient dosages of PS and nZVI could cause the reduction in TCE degradation rate. TCE could be effectively degraded by PS/nZVI/CA system within a wider pH range of 3~9. Cl– and${\rm{HCO}}_3^ - $ in solution had inhibitive effects on TCE removal, of which the inhibitive effect of${\rm{HCO}}_3^ - $ was higher. The scavenging tests and EPR detection confirmed that HO·,${\rm{SO}}_4^ - \cdot $ and${\rm{O}}_2^ - \cdot $ were generated, and HO· and${\rm{SO}}_4^ - \cdot $ were the dominant radicals responsible for TCE degradation in PS/nZVI/CA system. PS/nZVI/CA system had better adaptation to the impact of actual groundwater constituents than PS/nZVI system, and TCE degradation efficiency by PS/nZVI system was improved by CA addition when implemented in actual groundwater, indicating that PS/nZVI/CA system has practical application prospects in the remediation of TCE contaminated groundwater. -
表 1 溶液初始pH对TCE降解率及终点pH的影响
Table 1. Effect of initial solution pH on TCE degradation efficiency and final solution pH
序号 初始pH 终点pH TCE降解率/% 1 3.0 2.92 94.80 2 5.0 3.26 92.49 3 7.0 3.28 91.92 4 9.0 3.33 90.35 5 11.0 10.81 11.57 表 2 实际地下水理化性质
Table 2. Physico-chemical characteristics of actual groundwater
pH TOC/(mg·L−1) Cl−/(mg·L−1) ${\rm{CO}}_3^ - $ /(mg·L−1)7.82 13.2 38.6 95 ${\rm{NO}}_3^ - $ /(mg·L−1)${\rm{SO}}_4^{2 - }$ /(mg·L−1)Fe2+/(mg·L−1) 总铁离子/(mg·L−1) < 0.1 46.4 1.2 2.1 -
[1] RASHID M M, SATO C. Photolysis, sonolysis, and photosonolysis of trichloroethane (TCA), trichloroethylene (TCE), and tetrachloroethylene (PCE) without catalyst[J]. Water, Air and Soil Pollution, 2011, 216(1/2/3/4): 429-440. [2] 张凤君, 王斯佳, 马慧, 等. 三氯乙烯和四氯乙烯在土壤和地下水中的污染及修复技术[J]. 科技导报, 2012, 30(18): 65-72. doi: 10.3981/j.issn.1000-7857.2012.18.010 [3] DAHMANI M A, HUANG K, HOAG G E. Sodium persulfate oxidation for the remediation of chlorinated solvents (USEPA superfund innovative technology evaluation program)[J]. Water, Air and Soil Pollution, 2006, 6(1/2): 127-141. [4] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [5] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064 [6] 王琰涤, 吕树光, 顾小钢, 等. EDDS螯合Fe(Ⅲ)活化过硫酸盐技术对TCE的降解效果[J]. 环境科学研究, 2015, 28(11): 1728-1733. [7] LEFEVRE E, BOSSA N, GUNSCH C K, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2015, 565: 889-901. [8] KIM C, AHN J Y, KIM T Y, et al. Activation of persulfate by nanosized zero-valent iron (NZVI): Mechanisms and transformation products of NZVI[J]. Environmental Science and Technology, 2018, 52(6): 3625-3633. doi: 10.1021/acs.est.7b05847 [9] DONG H D, HE Q, ZENG G M, et al. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA[J]. Chemical Engineering Journal, 2017, 316: 410-418. doi: 10.1016/j.cej.2017.01.118 [10] LIANG C, LAI M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation[J]. Environmental Engineering Science, 2008, 25(7): 1071-1078. doi: 10.1089/ees.2007.0174 [11] OH S Y, KIM H W, PARK J M, et al. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron[J]. Journal of Hazardous Materials, 2009, 168(1): 346-351. doi: 10.1016/j.jhazmat.2009.02.065 [12] GUPTA S S, GUPTA Y K. Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulfate in acid perchlorate solutions[J]. Inorganic Chemistry, 1981, 20(2): 454-457. doi: 10.1021/ic50216a027 [13] LIANG C J, LIANG C P, CHEN C C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4): 173-182. [14] LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion[J]. Chemosphere, 2004, 55(9): 1225-1233. doi: 10.1016/j.chemosphere.2004.01.030 [15] WU X L, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion[J]. Chemical Engineering Journal, 2014, 255: 585-592. doi: 10.1016/j.cej.2014.06.085 [16] ZHANG K J, ZHOU X Y, ZHANG T Q, et al. Degradation of the earthy and musty odorant 2, 4, 6-tricholoroanisole by persulfate activated with iron of different valences[J]. Environmental Science and Pollution Research, 2018, 25(4): 3435-3445. doi: 10.1007/s11356-017-0452-x [17] DANISH M, GU X G, LU S G, et al. The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process[J]. Water, Air, and Soil Pollution, 2016, 227(9): 1-14. [18] HAN Y, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J]. Environmental Science and Technology, 2016, 50(23): 12992-13001. doi: 10.1021/acs.est.6b03997 [19] YANG J W, ZHONG L Y, LIU L M. Chromium (VI) reduction in the nano- or micron-sized iron oxide-citric acid systems: Kinetics and mechanisms[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2564-2569. doi: 10.1016/j.jece.2017.05.011 [20] SEOL Y K, JAVANDEL I. Citric acid-modified Fenton’s reaction for the oxidation of chlorinated ethylenes in soil solution systems[J]. Chemosphere, 2008, 72(4): 537-542. doi: 10.1016/j.chemosphere.2008.03.052 [21] WU Y L, BIANCO A, BRIGANTE M, et al. Sulfate radical photogeneration using Fe-EDDS: Influence of critical parameters and naturally occurring scavengers[J]. Environmental Science and Technology, 2015, 49(24): 14343-14349. doi: 10.1021/acs.est.5b03316 [22] LIN C C, CHEN Y H. Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions[J]. Separation and Purification Technology, 2018, 194: 388-395. doi: 10.1016/j.seppur.2017.10.073 [23] RASTOGI A, ALABED S R, DIONYSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. doi: 10.1016/j.watres.2008.10.045 [24] 王继鹏, 胡林潮, 杨彦, 等. Fe2+活化过硫酸钠降解1,2-二氯苯[J]. 环境工程学报, 2014, 8(9): 3767-3772. [25] RASTOGI A, ALABED S R, DIONYSIOU D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179. [26] 李永涛, 岳东, 熊鑫, 等. 零价铁活化过硫酸钠降解含油废水[J]. 环境工程学报, 2016, 10(8): 4239-4243. doi: 10.12030/j.cjee.201503147 [27] YU S X, GU X G, LU S G, et al. Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II)[J]. Chemical Engineering Journal, 2017, 333: 122-131. [28] YAN J C, GAO W G, DONG M G, et al. Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle[J]. Chemical Engineering Journal, 2016, 295: 309-316. doi: 10.1016/j.cej.2016.01.085 [29] WEI X Y, GAO N Y, LI C G, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J]. Chemical Engineering Journal, 2016, 285: 660-670. doi: 10.1016/j.cej.2015.08.120 [30] LIANG C J, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026 [31] KHAN J A, HE X X, KHAN H M, et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82–/Fe2+ and UV/HSO5–/Fe2+ processes: A comparative study[J]. Chemical Engineering Journal, 2013, 218: 376-383. doi: 10.1016/j.cej.2012.12.055 [32] AKSOY Y Y, KHODADOUST A P, REDDY K R. Destruction of PCB 44 in spiked subsurface soils using activated persulfate oxidation[J]. Water, Air and Soil Pollution, 2010, 209(1/2/3/4): 419-427. [33] 崔航, 臧学轲, 吕树光. 抗坏血酸强化Fe(III)催化过碳酸钠体系降解水溶液中乙苯[J]. 环境污染与防治, 2018, 40(11): 1262-1266. [34] LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial and Engineering Chemistry Research, 2009, 48(11): 5558-5562. doi: 10.1021/ie9002848 [35] MADDEN K P, TANIGUCHI H. The role of the DMPO-hydrated electron spin adduct in DMPO-OH spin trapping[J]. Free Radical Biology and Medicine, 2001, 30(12): 1374-1380. doi: 10.1016/S0891-5849(01)00540-8