[1] |
RASHID M M, SATO C. Photolysis, sonolysis, and photosonolysis of trichloroethane (TCA), trichloroethylene (TCE), and tetrachloroethylene (PCE) without catalyst[J]. Water, Air and Soil Pollution, 2011, 216(1/2/3/4): 429-440.
|
[2] |
张凤君, 王斯佳, 马慧, 等. 三氯乙烯和四氯乙烯在土壤和地下水中的污染及修复技术[J]. 科技导报, 2012, 30(18): 65-72. doi: 10.3981/j.issn.1000-7857.2012.18.010
|
[3] |
DAHMANI M A, HUANG K, HOAG G E. Sodium persulfate oxidation for the remediation of chlorinated solvents (USEPA superfund innovative technology evaluation program)[J]. Water, Air and Soil Pollution, 2006, 6(1/2): 127-141.
|
[4] |
WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
|
[5] |
GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. doi: 10.1016/j.cej.2016.10.064
|
[6] |
王琰涤, 吕树光, 顾小钢, 等. EDDS螯合Fe(Ⅲ)活化过硫酸盐技术对TCE的降解效果[J]. 环境科学研究, 2015, 28(11): 1728-1733.
|
[7] |
LEFEVRE E, BOSSA N, GUNSCH C K, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2015, 565: 889-901.
|
[8] |
KIM C, AHN J Y, KIM T Y, et al. Activation of persulfate by nanosized zero-valent iron (NZVI): Mechanisms and transformation products of NZVI[J]. Environmental Science and Technology, 2018, 52(6): 3625-3633. doi: 10.1021/acs.est.7b05847
|
[9] |
DONG H D, HE Q, ZENG G M, et al. Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA[J]. Chemical Engineering Journal, 2017, 316: 410-418. doi: 10.1016/j.cej.2017.01.118
|
[10] |
LIANG C, LAI M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation[J]. Environmental Engineering Science, 2008, 25(7): 1071-1078. doi: 10.1089/ees.2007.0174
|
[11] |
OH S Y, KIM H W, PARK J M, et al. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron[J]. Journal of Hazardous Materials, 2009, 168(1): 346-351. doi: 10.1016/j.jhazmat.2009.02.065
|
[12] |
GUPTA S S, GUPTA Y K. Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulfate in acid perchlorate solutions[J]. Inorganic Chemistry, 1981, 20(2): 454-457. doi: 10.1021/ic50216a027
|
[13] |
LIANG C J, LIANG C P, CHEN C C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene[J]. Journal of Contaminant Hydrology, 2009, 106(3/4): 173-182.
|
[14] |
LIANG C J, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion[J]. Chemosphere, 2004, 55(9): 1225-1233. doi: 10.1016/j.chemosphere.2004.01.030
|
[15] |
WU X L, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion[J]. Chemical Engineering Journal, 2014, 255: 585-592. doi: 10.1016/j.cej.2014.06.085
|
[16] |
ZHANG K J, ZHOU X Y, ZHANG T Q, et al. Degradation of the earthy and musty odorant 2, 4, 6-tricholoroanisole by persulfate activated with iron of different valences[J]. Environmental Science and Pollution Research, 2018, 25(4): 3435-3445. doi: 10.1007/s11356-017-0452-x
|
[17] |
DANISH M, GU X G, LU S G, et al. The effect of chelating agents on enhancement of 1,1,1-trichloroethane and trichloroethylene degradation by Z-nZVI-catalyzed percarbonate process[J]. Water, Air, and Soil Pollution, 2016, 227(9): 1-14.
|
[18] |
HAN Y, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J]. Environmental Science and Technology, 2016, 50(23): 12992-13001. doi: 10.1021/acs.est.6b03997
|
[19] |
YANG J W, ZHONG L Y, LIU L M. Chromium (VI) reduction in the nano- or micron-sized iron oxide-citric acid systems: Kinetics and mechanisms[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2564-2569. doi: 10.1016/j.jece.2017.05.011
|
[20] |
SEOL Y K, JAVANDEL I. Citric acid-modified Fenton’s reaction for the oxidation of chlorinated ethylenes in soil solution systems[J]. Chemosphere, 2008, 72(4): 537-542. doi: 10.1016/j.chemosphere.2008.03.052
|
[21] |
WU Y L, BIANCO A, BRIGANTE M, et al. Sulfate radical photogeneration using Fe-EDDS: Influence of critical parameters and naturally occurring scavengers[J]. Environmental Science and Technology, 2015, 49(24): 14343-14349. doi: 10.1021/acs.est.5b03316
|
[22] |
LIN C C, CHEN Y H. Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions[J]. Separation and Purification Technology, 2018, 194: 388-395. doi: 10.1016/j.seppur.2017.10.073
|
[23] |
RASTOGI A, ALABED S R, DIONYSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. doi: 10.1016/j.watres.2008.10.045
|
[24] |
王继鹏, 胡林潮, 杨彦, 等. Fe2+活化过硫酸钠降解1,2-二氯苯[J]. 环境工程学报, 2014, 8(9): 3767-3772.
|
[25] |
RASTOGI A, ALABED S R, DIONYSIOU D D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J]. Applied Catalysis B: Environmental, 2009, 85(3/4): 171-179.
|
[26] |
李永涛, 岳东, 熊鑫, 等. 零价铁活化过硫酸钠降解含油废水[J]. 环境工程学报, 2016, 10(8): 4239-4243. doi: 10.12030/j.cjee.201503147
|
[27] |
YU S X, GU X G, LU S G, et al. Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II)[J]. Chemical Engineering Journal, 2017, 333: 122-131.
|
[28] |
YAN J C, GAO W G, DONG M G, et al. Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle[J]. Chemical Engineering Journal, 2016, 295: 309-316. doi: 10.1016/j.cej.2016.01.085
|
[29] |
WEI X Y, GAO N Y, LI C G, et al. Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J]. Chemical Engineering Journal, 2016, 285: 660-670. doi: 10.1016/j.cej.2015.08.120
|
[30] |
LIANG C J, WANG Z S, BRUELL C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. doi: 10.1016/j.chemosphere.2006.05.026
|
[31] |
KHAN J A, HE X X, KHAN H M, et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82–/Fe2+ and UV/HSO5–/Fe2+ processes: A comparative study[J]. Chemical Engineering Journal, 2013, 218: 376-383. doi: 10.1016/j.cej.2012.12.055
|
[32] |
AKSOY Y Y, KHODADOUST A P, REDDY K R. Destruction of PCB 44 in spiked subsurface soils using activated persulfate oxidation[J]. Water, Air and Soil Pollution, 2010, 209(1/2/3/4): 419-427.
|
[33] |
崔航, 臧学轲, 吕树光. 抗坏血酸强化Fe(III)催化过碳酸钠体系降解水溶液中乙苯[J]. 环境污染与防治, 2018, 40(11): 1262-1266.
|
[34] |
LIANG C J, SU H W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial and Engineering Chemistry Research, 2009, 48(11): 5558-5562. doi: 10.1021/ie9002848
|
[35] |
MADDEN K P, TANIGUCHI H. The role of the DMPO-hydrated electron spin adduct in DMPO-OH spin trapping[J]. Free Radical Biology and Medicine, 2001, 30(12): 1374-1380. doi: 10.1016/S0891-5849(01)00540-8
|