Processing math: 100%

原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用

杨振, 靳青青, 衣桂米, 刘亮亮, 柳林杉, 刘明杰, 鲁永蒲, 岳勇. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168
引用本文: 杨振, 靳青青, 衣桂米, 刘亮亮, 柳林杉, 刘明杰, 鲁永蒲, 岳勇. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168
YANG Zhen, JIN Qingqing, YI Guimi, LIU Liangliang, LIU Linshan, LIU Mingjie, LU Yongpu, YUE Yong. Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168
Citation: YANG Zhen, JIN Qingqing, YI Guimi, LIU Liangliang, LIU Linshan, LIU Mingjie, LU Yongpu, YUE Yong. Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168

原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用

    作者简介: 杨振(1989—),男,硕士研究生。研究方向:土壤污染与控制。E-mail:zhen.yang@jereh.com
    通讯作者: 岳勇(1977—),男,博士,高级工程师。研究方向:土壤污染与控制。E-mail:yong.yue@jereh.com
  • 中图分类号: X53

Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation

    Corresponding author: YUE Yong, yong.yue@jereh.com
  • 摘要: 利用杰瑞环保科技有限公司自主研发生产的原地异位建堆热脱附设备对新疆某地区506 t石油污染土壤进行了修复处理实验,并在此基础上探讨了原地异位建堆热脱附技术在石油污染土壤修复领域应用的相关技术问题。通过温度场模拟,为设备投入及修复堆体的搭建提供了参考数据;通过项目现场温升曲线,分析了升温效率与物料属性的关系。结果表明,含水率越低的物料升温速率越快。此外,通过对设备投入、石油污染土壤修复效果、修复过程运行能耗等方面进行综合分析,评估了原地异位建堆热脱附技术在石油污染土壤修复领域的有效性和实用性。本研究可为原地异位建堆热脱附技术在石油污染土壤修复领域的工业化应用提供参考。
  • 由于国内污水处理排放标准日益严格,污水处理厂普遍面临氮磷达标的难题。目前,国内大部分采用的A2/O工艺及以其为基础的前置反硝化工艺自身脱氮效果受硝化液回流比限制,难以实现深度脱氮[1-3]。此外,我国的污水普遍存在碳源不足的特点,而脱氮除磷又存在碳源竞争,导致了氮磷不易达标[4-5]。目前,对于低C/N水质的污水,常采用投加碳源、增设反硝化滤池、分段进水A2/O工艺等[6-8]来提高脱氮效率;除磷方面,则通过投加大量化学除磷药剂来满足日趋严格的出水标准。但这些方法大都存在处理流程长、运行成本高、控制复杂等问题。因此,研发经济高效的脱氮除磷新工艺成为一大热点。

    后置反硝化AOA (厌氧\好氧\缺氧) 工艺因可利用内碳源来反硝化,且工艺简单无需硝化液回流,而被广泛研究。WINKLER等[9]和许德超等[10]研究了后置缺氧序批式反应器 (SBR) 工艺,VOCKS等[11]研究了连续流后置缺氧膜生物反应器 (MBR) 工艺,ZHAO等[12]研究了连续流AOA工艺,均取得了良好的脱氮除磷效果。这些研究表明,原水中有机物在厌氧段和好氧段被微生物消耗储存,在缺氧段则利用胞内糖原或PHA 来反硝化脱氮。但相比外碳源反硝化,后置缺氧区的内源反硝化速率较低,所需缺氧区停留时间往往较长[12-13]。ZHANG等[14]和GAO等[15]报道了一种污泥双回流-AOA (SDR-AOA) 新工艺,该工艺通过设置二沉池到缺氧池的第二污泥回流,提高缺氧区污泥质量浓度,强化脱氮效果,在小试规模的实验中,该工艺处理低C/N污水,无需外加碳源,TN去除率可达90%以上。但是目前尚缺乏对该工艺中试以上放大规模的实验报道,且除磷效果如何也缺乏研究报道。本研究建立了处理规模100 m3·d−1的SDR-AOA中试系统,在大规模中试条件下对工艺的脱氮除磷性能重点考察,并对无第二污泥回流的AOA工艺和SDR-AOA工艺处理效果进行对比,分析SDR-AOA工艺设置第二污泥回流的优势,以期为该新工艺的推广应用提供参考。

    本实验处理的污水来自海口某污水处理厂曝气沉砂池出水,具体水质特征见表1。污水平均COD/TN为6.34,据研究报道,COD/TN>8时,脱氮效果较好[16],显然实验水质并不满足。污泥接种自该污水处理厂生化池。

    表 1  进水水质特征
    Table 1.  Characteristics of influent quality mg·L−1
    检测项目 范围 平均值
    COD 143~216 164.5
    NH4+-N 20.01~28.68 24.53
    TN 20.38~30.4 26.18
    TP 2.14~4.52 3.05
     | Show Table
    DownLoad: CSV

    SDR-AOA工艺中试系统如图1所示。中试装置由碳钢防腐的AOA生化池和二沉池2个主体反应器组成。AOA生化池为长方形反应池,总有效体积为45 m3,反应器分7个格室,依次划分为厌氧区、好氧区、缺氧区,其中厌氧区体积11.25 m3,好氧区体积11.25 m3,缺氧区体积22.5 m3。厌氧区第一格室填充有悬浮填料,填充比约12%,缺氧区第一、二格室填充悬浮填料,填充比约12%。二沉池为竖流式,澄清区体积为27 m3。其工艺流程为:潜污泵将污水处理厂曝气沉砂池出水抽到本中试系统,依次流经生化池的厌氧段、好氧段、缺氧段,生化池出水进入二沉池,泥水分离后,上清液排出,沉淀污泥分两路回流到AOA生化池,一路回流到厌氧池前端 (第一污泥回流) ,一路回流到缺氧池前端 (第二污泥回流) 。污水进水量和回流污泥量通过电磁调节阀控制。好氧段通过回转式风机曝气,变频控制。本研究实验阶段反应器填料已挂膜2个月,挂膜稳定,中试运行条件见表2

    图 1  SDR-AOA工艺中试系统
    Figure 1.  Pilot system of SDR-AOA process
    表 2  中试运行条件
    Table 2.  Operational conditions of the pilot scale test
    参数 phase1 phase2
    时间/d 1~13 14~30
    第一污泥回流比R1/% 100 100
    第二污泥回流比R2/% 0 100
    进水量Q/(m3·d−1) 100 100
    HRT/h 10.8 10.8
    好氧池末端DO/(mg·L−1) 2 2
    好氧区MLSS/(mg·L−1) 4 707±768 4 787±446
    温度/ ℃ 26~30 26~30
     | Show Table
    DownLoad: CSV

    取SDR-AOA中试系统好氧末端污泥,用去离子水清洗3次,确保泥水混合液中没有溶解态的有机物、NH4+-N、NO3-N和NO2-N。然后分别取300、500、700、900 mL混合液分别加入4个有效容积为1 L的锥形瓶中,用去离子水定容至1 L后,在DO小于0.1 mg·L−1条件下,加入KNO3,使混合液初始NO3-N质量浓度约为20 mg·L−1。在室温25 ℃的条件下,采用封口膜隔绝外部空气,磁力搅拌器进行搅拌,并定时取样测定NO3-N和NO2-N质量浓度。

    COD采用美国哈希 (HACH) 快速测定仪法。TN、NH4+-N、NO3-N、NO2-N、TP、MLSS根据国标法检测:TN采用碱性过硫酸钾消解紫外分光光度法;NH4+-N采用纳氏试剂分光光度法;NO3-N采用紫外分光光度法;NO2-N采用N-(1-萘基)-乙二胺分光光度法;TP采用钼酸铵分光光度法;MLSS、MLVSS采用重量法。DO、温度采用美国哈希在线监测仪监测。微生物多样性检测委托上海美吉生物医药科技有限公司进行高通量测序。

    CODintra=[12.86(NO3,i+NO3,eR1NO3,an(1+R1))+1.71(NO2,i+NO2,eR1NO2,an(1+R1))CODi+CODeCODan(1+R1)]×100 (1)

    式中: CODintra 为内碳源转化率,%; CODi CODe CODan 分别为进水、回流污泥和厌氧末COD,mg·L−1;2.86和1.71为去除每mg NO3-N和NO2-N消耗COD量; NO3,i NO2,i 为进水NO3-N和NO2-N质量浓度,mg·L−1 NO3,e NO2,e 为回流污泥中NO3-N和NO2-N质量浓度,mg·L−1 NO3,an NO2,an 为厌氧末NO3-N和NO2-N质量浓度,mg·L−1 R1 为回流到厌氧区的第一污泥回流比。

    为量化SDR-AOA工艺各单元氮和磷的变化情况,应用物料平衡分析方法,对各单元氮磷的去除情况进行计算,计算公式如下。

    ΔMan=[Si+Se×R1San×(R1+1)]×Q (2)
    ΔMo=[(SanSo)×(R1+1)]×Q (3)
    ΔMd=[So×(R1+1)+Se×R2Sd×(R1+R2+1)]×Q (4)
    ΔMs=[(SdSe)×(R1+R2+1)]×Q (5)

    式中: ΔMan ΔMo ΔMd ΔMs 为厌氧段、好氧段、缺氧段和二沉池物料变化,g·d−1; Si Se San So Sd 为进水、出水、厌氧末、好氧末、缺氧末氮磷质量浓度,mg·L−1Q为进水流量,m3·d−1R1为回流到厌氧区的第一污泥回流比;R2为回流到缺氧区的第二污泥回流比。

    1) 对COD的去除效果。中试实验阶段对COD的去除效果见图2。由图可知,phase2增设第二污泥回流后,COD去除率较phase1有所提升。phase1进水COD平均为177.28 mg·L−1,出水COD平均为33 mg·L−1,平均去除率81.4%;phase2进水COD平均为156.36 mg·L−1,出水COD平均为17.54 mg·L−1,平均去除率88.8%。

    图 2  对COD的去除效果
    Figure 2.  Removal effect of COD

    2) 对NH4+-N和TN的去除效果。中试实验阶段对NH4+-N和TN去除效果见图3。由图3可见,无第二污泥回流时 (phase1) 出水NH4+-N质量浓度高于设置第二污泥回流时 (phase2);phase1出水NH4+-N质量浓度平均值为1.58 mg·L−1,平均去除率为94.0%;phase2出水NH4+-N质量浓度平均值为0.86 mg·L−1,平均去除率为96.3%。phase1出水TN质量浓度平均值为5.14 mg·L−1,TN平均去除率为82.3%,最低值至78.0%;phase2设置第二污泥回流后,TN去除率上升且保持平稳,TN平均去除率达85.8%,出水TN稳定小于5 mg·L−1,平均值仅为3.45 mg·L−1。可见,SDR-AOA工艺较AOA工艺强化了脱氮效果。

    图 3  对NH4+-N和TN的去除效果
    Figure 3.  Removal effect of NH4+-N and TN

    3) 对TP的去除效果。中试实验阶段对TP的去除效果见图4,由图可见,增加了第二污泥回流后 (phase2),TP去除率逐渐提升。无第二污泥回流时 (phase1),平均出水TP质量浓度0.72 mg·L−1,TP平均去除率只有78.4%;而phase2出水TP质量浓度平均降低至0.17 mg·L−1,可稳定满足《城镇污水处理厂污染物排放标准》 (GB 18918-2002) 一级A标准,TP平均去除率高达94.1%。这说明SDR-AOA工艺除磷方面也有良好的效果。

    图 4  对TP的去除效果
    Figure 4.  Removal effect of TP

    实验分析了phase1和phase2有代表性的2天 (第8 d和第28 d) 的COD、N和P质量浓度的沿程变化,见图5

    图 5  phase1和phase2 COD、N和P质量浓度的沿程变化
    Figure 5.  Variations of COD、N and P concentrations along the process in phase1 and phase2

    1) 系统脱氮过程分析。由图5可知,phase1和phase2,AOA工艺在厌氧初因回流污泥稀释作用,TN下降到进水的1/2左右,且在厌氧区主要以氨氮形式存在,说明回流污泥中的硝酸盐氮在厌氧初迅速被反硝化去除;在好氧段,氨氮逐渐被氧化成硝酸盐,好氧末几乎全部转化成硝酸盐氮,亚硝酸盐氮含量较低,可见在本系统中主要以全程硝化反应为主。这点不同于ZHANG等[14]和GAO等[15]对SDR-AOA工艺的小试研究结果,其在好氧段实现了稳定的短程硝化反应。这主要是因为短程硝化影响因素较多且不易控制,在大规模工程应用中难以稳定实现[17]。实验系统在缺氧段,因硝态氮被反硝化,TN有明显去除,但phase1和phase2 硝态氮的去除效果有明显不同。phase1,NO3-N质量浓度由好氧末11.7 mg·L−1到缺氧末下降到3.3 mg·L−1 (图5(a)) ;phase2,NO3-N质量浓度由好氧末11.3 mg·L−1到缺氧末下降到1.4 mg·L−1 (图5(b)) 。可见,设置第二污泥回流后系统在缺氧段的反硝化效果显著提升,这主要是与缺氧区污泥浓度增大有关。值得注意的是,phase1在缺氧末的亚硝酸盐积累质量浓度较phase2要高,主要是因为phase1碳源的缺乏造成缺氧末短程内源反硝化比例增大。由图5中COD的沿程变化可见,COD的去除主要发生在厌氧区和好氧区,且以厌氧区去除为主;经计算,phase1和phase2好氧末到出水COD分别去除0.4 kg∙d−1和1.6 kg∙d−1,而phase1和phase2从好氧末到出水用于反硝化的COD理论需求量分别为4.1 kg∙d−1和5.5 kg∙d−1,可见外源COD的减少远远不足以提供反硝化COD需求量,说明反硝化利用的碳源主要来自于污泥内碳源。

    另外,phase1和phase2在TN变化趋势上不同的一点是,phase1在二沉池TN有小幅地回升,由图5(a)可知主要是因为NH4+-N质量浓度的回升所致。phase1,NH4+-N质量浓度由缺氧初0 mg·L−1到缺氧末提升到0.5 mg·L−1,到二沉池出水提升到1.52 mg·L−1;而在phase2,NH4+-N质量浓度在缺氧段和二沉池保持平稳。可能的原因为在取消第二污泥回流时,缺氧区污泥浓度低,可利用的内碳源少,污泥处在饥饿状态,且污泥在缺氧池和二沉池的缺氧环境停留时间较长,加之中试所在地海口水温较高,容易发生污泥自身水解,释出NH4+-N[18-19]。而设置第二污泥回流后,加速了污泥的循环,可避免污泥因长期处于底物匮乏的厌氧状态而发生水解,保证了NH4+-N和TN良好的出水效果。

    根据物料平衡计算公式,可计算出厌氧段、缺氧段、好氧段、二沉池去除TN量,进一步可计算出各阶段TN去除量占进水TN的比例,因好氧段和二沉池对TN去除影响较小,故将两者合并,结果见图6。从各单元对TN去除的贡献率可见,缺氧段对TN去除贡献率最大,厌氧段其次。phase2缺氧段去除TN贡献率较phase1大幅提升,缺氧段TN去除量占进水TN的比例由44.7% (phase1) 提升到73.9% (phase2),提高了65.18%。可见,SDR-AOA工艺强化缺氧内源反硝化效果显著,这也是TN去除率提升的主要原因。

    图 6  phase1和phase2 TN在各反应段去除分布
    Figure 6.  Distribution of TN loss in different zones in phase1 and phase2

    2) 缺氧区脱氮负荷、比反硝化速率和内碳源转化率。缺氧区NOX-N去除容积负荷 (以下简称脱氮负荷) 可直接反映缺氧区脱氮效果,脱氮负荷与比内源反硝化速率直接相关,而内碳源转化率是比反硝化速率的重要因素之一 [15]。因此,对phase1和phase2缺氧区脱氮负荷、比反硝化速率和内碳源转化率进行测算,结果见表3。由表3可知,phase2设置第二污泥回流后比反硝化速率有所上升,是phase1的1.07倍;而另一方面,设置第二污泥回流后缺氧区的污泥浓度提高,MLSS均值是phase1的1.17倍,则phase2缺氧区反硝化菌群的数量较phase1更多;比反硝化速率和反硝化菌群数量的提高使得系统的脱氮负荷升高。由表3可知,phase2的脱氮负荷明显高于phase1,phase1缺氧区的脱氮负荷平均值为0.070 kgN·(m−3·d−1),phase2的脱氮负荷平均值提升至0.086 kgN·(m−3·d−1),较phase1提升了22.8%。GAO等[15]的研究结果表明,以NO2-N为电子受体的脱氮负荷是以NO3-N为电子受体时的2.2倍,其实验过程短程硝化亚硝盐氮积累率94%左右时,脱氮负荷达0.17 kgN/(m−3·d−1)。约是本研究中脱氮负荷的2倍,而本研究则主要是以NO3-N为电子受体,与其研究结果相符。

    表 3  phase1和phase2缺氧段脱氮负荷、比反硝化速率、内碳源转化率和MLSS
    Table 3.  Nitrogen removal load, specific denitrification rate, intracellular carbon storage efficiency and MLSS
    参数 phase1 (均值) phase2 (均值)
    脱氮负荷/kgN·(m−3·d−1) 0.070±0.006 0.086±0.010
    比反硝化速率/kgN·(kg−1VSS·d−1) 0.030±0.002 0.032±0.005
    CODintra/% 90%±2% 94%±3%
    MLSS/mg·L−1 4707±798 5516±732
     | Show Table
    DownLoad: CSV

    为进一步探究污泥浓度对内源反硝化的影响,开展了批次实验,结果见图7。在起始硝酸盐质量浓度相同时,随着MLSS的升高,比反硝化速率也逐渐升高,当MLSS由3634升高到10521 mg·L−1时,比反硝化速率由0.0167 kgN·(kg−1VSS·d−1)升高到0.0204 kgN·(kg−1VSS·d−1),即提升至1.22倍,这与王少坡等的研究结果相似[20]。而系统的脱氮负荷计算是比反硝化速率与MLVSS的乘积,因此,当MLSS由3634 mg·L−1升高到10521mg·L−1时,脱氮负荷提升至3.67倍。经线性拟合,脱氮负荷与污泥浓度呈正相关 (R2=0.9881)。根据ZHANG等[14]的研究结果,SDR-AOA系统二沉池污泥有高含量的PHA和Gly。因此,二沉池回流到缺氧池的污泥既增加了缺氧池反硝化菌数量,也补充了更多的内碳源,两者共同作用,使脱氮负荷提升。

    图 7  MLSS对脱氮负荷和比反硝化速率的影响
    Figure 7.  Effect of MLSS on Nitrogen removal load and specific denitrification rate

    另外,缺氧区内碳源的另一主要来源为厌氧区内碳源的储存量,内碳源转化率体现了微生物在厌氧区内碳源储存量的多少。由表3可见,内碳源转化率在phase2高于phase1,平均值由90%提升到94%。内碳源转化率与厌氧区COD的总利用量和用于反硝化的COD相关。在进水稳定、厌氧区停留时间和污泥浓度稳定的情况下,厌氧区COD的总利用量相对稳定,则用于反硝化的COD决定了内碳源转化率。phase2设置第二污泥回流后,脱氮负荷提升,出水硝态氮质量浓度降低,在厌氧区因还原污泥回流液携带的硝态氮而被利用的外碳源也随之减少,进而促进了有机物转化为内碳源。由图5可知,phase1出水NO3-N质量浓度3.8 mg·L−1,NO2-N质量浓度1.2 mg·L−1,而phase2出水硝态氮质量浓度降低,NO3-N质量浓度仅为1.38 mg·L−1,NO2-N质量浓度0.7 mg·L−1,会使得phase2在厌氧区因反硝化消耗的COD减少。虽然phase2进水的NO3-N质量浓度较phase1低1.67 mg·L−1,因进水差异在厌氧区会较phase1少消耗一部分COD,但显然phase2由于出水硝态氮质量浓度降低而引起的COD消耗减少作用更大。可见,设置第二污泥回流促进了内碳源转化率提升。而内碳源转化率的提升会进一步提升缺氧段的脱氮负荷。内碳源转化率和内源脱氮负荷两者相互促进,系统形成良性循环。

    3) 系统除磷过程分析。由图5可知,phase1和phase2的除磷过程主要发生在好氧段。由图5(a)可知,phase1进水TP质量浓度3.10 mg·L−1,厌氧段释磷后TP质量浓度升至3.45 mg·L−1,好氧段吸磷后TP质量浓度下降至0.43 mg·L−1,在缺氧末端和二沉池TP质量浓度却有小幅回升,升至0.9 mg·L−1。由图5(b)可知,phase2进水TP质量浓度3.48 mg·L−1,厌氧段释磷后TP质量浓度升至4.20 mg·L−1,好氧段吸磷后TP质量浓度下降至0.52 mg·L−1,在缺氧段TP质量浓度继续下降至0.10 mg·L−1。phase2在缺氧段发生了吸磷现象,说明系统中反硝化聚磷菌 (DPAOs) 发挥了作用[21]。研究表明,富磷污泥的释磷机制主要有2种:一种是聚磷菌利用体内聚磷释放时的能量吸收有机物合成PHA的生物释磷机制;另一种是污泥水解或细菌解体释磷机制。通常这两种情况都存在[22]。但推测phase1的释磷应以污泥水解或细菌解体释磷机制为主,因为phase1中缺氧末和二沉池中的硝酸盐会抑制生物释磷,且缺乏可直接利用的碳源。phase1,无第二污泥回流时,缺氧区内碳源量较少,且在缺氧区和二沉池实际停留时间较长。若细菌处于底物匮乏的时间较长,内碳源消耗完后易导致聚磷菌的过分衰减引起Poly-P释放或污泥自身水解、死亡解体等[19,23]。phase2,第二污泥回流的设置,加快了系统的循环且补充了缺氧区内碳源,避免了缺氧区释磷,使得DPAOs有效发挥作用。

    根据物料平衡计算公式,可计算出各单元磷的变化量,结果见图8。虽然两者进水TP质量浓度相差不大 (3.10和3.48 mg·L−1) ,但phase2厌氧段释磷量显著高于phase1,是phase1释磷量的1.7倍。这是因为phase2脱氮效果更佳,回流到厌氧池的NO3-N较少,厌氧段脱氮与除磷对碳源竞争较弱,PAOs可以吸收更多碳源并释磷,从而提供更足的除磷动力。phase2在好氧段的吸磷量也高于phase1。值得关注的是,phase2反硝化吸磷量占总吸磷量的比例达10.4%,在phase2实现好氧吸磷和缺氧反硝化吸磷协同作用,强化了系统除磷效果。

    图 8  phase1和phase2 TP在各反应段去除分布
    Figure 8.  Distribution of TP loss in different zones in phase1 and phase2

    通过高通量测序技术对phase2运行后期系统的活性污泥进行微生物多样性分析,属水平上主要功能菌的相对丰度如图9所示。Candidatus_CompetibacterDefluviicoccus已被证明是可利用内碳源的反硝化聚糖菌 (DGAOs)[24],两者相对丰度分别为3.42%和0.51%,其中Candidatus_Competibacter菌属的丰度显著高于系统中的其他菌属成为优势菌。系统中聚磷菌 (PAOs) 有TetrasphaeraDechloromonasCandidatus_Accumulibacter,其中Tetrasphaera丰度最高为0.5%。Tetrasphaera可以通过降解大分子有机物进行发酵除磷,具有更加稳定高效的除磷性能[25]DechloromonasCandidatus_Accumulibacter被证明具有反硝化除磷功能[26-27],两者的存在是系统缺氧区除磷的原因。系统中还存在OttowiaRhodoplanesHaliangium等多种普通反硝化菌 (DNB)[13,28-29],辅助内源反硝化菌共同脱氮。Nitrospira为亚硝酸氧化菌 (NOB)[28],其丰度为0.23%,氨氧化菌 (AOB)检出两个菌属,分别为Ellin6067Nitrosomonas[28],其丰度分别为0.83%和0.03%。

    图 9  phase2活性污泥中主要功能菌属相对丰度
    Figure 9.  Relative abundance of functional bacteria in phase2 activated sludge

    本研究的SDR-AOA工艺通过设置二沉池到缺氧区的第二污泥回流强化脱氮除磷效果,在百吨级中试中TN、TP平均去除率分别达85.8%和94.1%。与GAO等[15]在SDR-AOA小试研究中97.7%的TN去除率相比有所降低,这主要是因为在本文的放大中试中未实现稳定、高水平亚硝酸盐积累率的短程硝化现象。众所周知,短程硝化影响因素复杂,在大规模市政污水处理工程中难以稳定实现,但是,本研究的SDR-AOA工艺在全程硝化反硝化为主的情况下依然实现了高效的脱氮除磷效果。本文中试所在水厂采用A2/O工艺,与本研究相同进水条件下二级生物处理工艺TN、TP平均去除率为61.2%和85.2%,可见本研究SDR-AOA工艺脱氮除磷效果优于A2/O工艺。对于A2/O类前置反硝化工艺若要达到与SDR-AOA中试相同的TN去除率,理论上需要内外总回流比达到600%。而总回流比为400%时,再增加回流比,对脱氮效果的提高不大。总回流比过大,会使系统由推流式趋于完全混合式,导致污泥性状变差;在进水质量浓度较低时,会使缺氧区/池氧化还原电位ORP升高,导致反硝化速率降低。因此,SDR-AOA工艺可实现前置反硝化类工艺难以实现的深度脱氮效果。此外,中试SDR-AOA工艺好氧停留时间仅为2.7 h,较所在地污水处理厂A2/O工艺 (6.7 h)大幅缩短,SDR-AOA工艺占地与对照水厂A2O工艺占地降低约25%。中试SDR-AOA工艺平均吨水曝气电耗为0.062 kW·h,约是对照水厂A2O工艺吨水曝气电耗的80%。较常规A2/O工艺,SDR-AOA工艺无大比例的硝化液回流,无外碳源投加,即可保障出水TN小于8.0 mg·L−1。该工艺具有高效脱氮除磷和节能降耗的优势,在处理低C/N污水或深度脱氮要求的应用场景十分具有推广价值。

    1) 建立了处理规模为100 m3·d−1的SDR-AOA中试系统考察工艺处理效果,并对比了无第二污泥回流时的AOA工艺处理效果。结果表明,工艺设置第二污泥回流时,处理效果显著优于无第二污泥回流时,COD、NH4+-N、TN、TP平均去除率分别达88.8%,96.3%,85.8%,94.1%,说明SDR-AOA工艺通过设置第二污泥回流有效地强化了脱氮除磷效果,具有推广应用价值。

    2) 内源脱氮负荷与污泥浓度呈正相关,第二污泥回流提高了缺氧区MLSS,进而提升比反硝化速率和内碳源转化率;其中,无第二污泥回流时,系统缺氧区脱氮负荷为0.070 kgN·(m−3·d−1),第二污泥回流比100%时,提升至0.086 kgN·(m−3·d−1),表明污泥双回流的设计可有效促进生化系统脱氮效率。

    3) SDR-AOA工艺设置第二污泥回流可有效避免系统在缺氧末和二沉池的NH4+-N和TP质量浓度小幅回升,保证系统高效脱氮除磷。

    4) 高通量测序结果表明,属于DGAOs的Candidatus_Competibacter为系统的优势菌属。

  • 图 1  原地异位建堆热脱附技术工艺原理示意图

    Figure 1.  Schematic diagram of the process principals for in-situ ectopic pile thermal desorption technology

    图 2  污染土壤建堆示意图

    Figure 2.  Schematic diagram for piled contaminated soil

    图 3  3类物料的表观性状

    Figure 3.  Appearance properties of three kinds of material

    图 4  堆体搭建实物图

    Figure 4.  Diagram of pile construction

    图 5  隔热层示意图

    Figure 5.  Diagram of thermal insulation

    图 6  堆体搭建工艺路线图

    Figure 6.  Process graph for the pile establishment

    图 7  燃气式加热圆柱体模型

    Figure 7.  Cylindrical model for gas heating

    图 8  温度场模拟图

    Figure 8.  Simulation map of temperature field

    图 9  各点位温升曲线

    Figure 9.  Temperature curves at different points

    表 1  堆体内设备

    Table 1.  Equipments in the pile

    序号设备名称功能数量
    1加热管外管与污染土壤直接接触,加热土壤11根
    2加热管内管插入外管中,提供烟气流通通道11根
    3抽提管抽提污染气体16根
    4余热利用管实现加热管外管排出烟气的二次利用5根
    5热电偶测量堆体温度8个
    6压力变送器测量堆体负压3个
    7高压离心风机用于燃烧器产生烟气的排烟1台
    8燃烧器天然气点火燃烧11台
    9耐火管燃烧器与加热管间的过渡段11根
    10烟囱烟气外排1个
    序号设备名称功能数量
    1加热管外管与污染土壤直接接触,加热土壤11根
    2加热管内管插入外管中,提供烟气流通通道11根
    3抽提管抽提污染气体16根
    4余热利用管实现加热管外管排出烟气的二次利用5根
    5热电偶测量堆体温度8个
    6压力变送器测量堆体负压3个
    7高压离心风机用于燃烧器产生烟气的排烟1台
    8燃烧器天然气点火燃烧11台
    9耐火管燃烧器与加热管间的过渡段11根
    10烟囱烟气外排1个
    下载: 导出CSV

    表 2  气处理系统设备

    Table 2.  Equipments for the gas treatment system

    序号设备名称功能数量
    1一级气液分离器分离气体中夹带的颗粒及液滴1台
    2列管换热器石油烃组分冷凝1台
    3二级气液分离器分离冷却后气体中雾状液滴1台
    4罗茨风机污染气体抽提2台
    5活性炭罐不凝气体吸附2个
    6板翅式换热器循环水冷却1台
    7齿轮泵冷凝油相外排1个
    序号设备名称功能数量
    1一级气液分离器分离气体中夹带的颗粒及液滴1台
    2列管换热器石油烃组分冷凝1台
    3二级气液分离器分离冷却后气体中雾状液滴1台
    4罗茨风机污染气体抽提2台
    5活性炭罐不凝气体吸附2个
    6板翅式换热器循环水冷却1台
    7齿轮泵冷凝油相外排1个
    下载: 导出CSV

    表 3  污染土壤分析检测结果

    Table 3.  Results of contaminated soil analysis

    物料编号含油率/%含水率/%含固率/%分布位置
    a3.8<1>95堆体底层和顶层
    b23.16.770.2堆体第2层
    c17.85.177.1堆体第3层
    物料编号含油率/%含水率/%含固率/%分布位置
    a3.8<1>95堆体底层和顶层
    b23.16.770.2堆体第2层
    c17.85.177.1堆体第3层
    下载: 导出CSV

    表 4  污染土壤总量及堆体尺寸

    Table 4.  Amount of contaminated soiland size of the pile

    底面尺寸顶面尺寸高度/m总方量/m3密度/(t·m−3)总重/t
    长/m宽/m长/m宽/m
    1411863.1297.61.7506
    底面尺寸顶面尺寸高度/m总方量/m3密度/(t·m−3)总重/t
    长/m宽/m长/m宽/m
    1411863.1297.61.7506
    下载: 导出CSV
  • [1] 任磊, 黄廷林. 土壤的石油污染[J]. 农业环境科学学报, 2000, 19(6): 360-363. doi: 10.3321/j.issn:1672-2043.2000.06.014
    [2] 中华人民共和国环境保护部和国土资源部. 全国土壤污染状况调查公报[R/OL]. [2019-05-20]. http://www.gov.cn/foot/2014-04/17/content_2661768.htm.
    [3] 王万福, 金浩, 石丰, 等. 含油污泥热解技术[J]. 石油与天然气化工, 2010, 39(2): 173-177. doi: 10.3969/j.issn.1007-3426.2010.02.024
    [4] LAM S S, RUSSELL A D, LEE C L, et al. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil[J]. Fuel, 2012, 92(1): 327-339. doi: 10.1016/j.fuel.2011.07.027
    [5] ARESTA M, DIBENNDETTO A, FRAGALE C, et al. Thermal desorption of polychlorobiphenyls from contaminated soils and their hydrodechlorination using Pd-and Rh-supported catalysts[J]. Chemosphere, 2008, 70(6): 1052-1058. doi: 10.1016/j.chemosphere.2007.07.074
    [6] 刘凯, 张瑞环, 王世杰. 污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱, 2017, 37(12): 31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013
    [7] LIU J, ZHANG H, YAO Z, et al. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln[J]. Chemosphere, 2019, 220: 1041-1046. doi: 10.1016/j.chemosphere.2019.01.031
    [8] ZHAO T, YU Z, ZHANG J F, et al. Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil[J]. Environmental Science and Pollution Research, 2018, 25: 24135-24142. doi: 10.1007/s11356-018-2387-2
    [9] LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52: 5330-5338.
    [10] MECHATI F, ROTH E, RENAULT V, et al. Pilot scale and theoretical study of thermal remediation of soils[J]. Environmental Engineering Science, 2004, 21: 361-370. doi: 10.1089/109287504323067003
    [11] 杨勇, 黄海, 陈美平, 等. 异位热解吸技术在有机污染土壤修复中的应用和发展[J]. 环境工程技术学报, 2016, 6(6): 559-570. doi: 10.3969/j.issn.1674-991X.2016.06.081
    [12] 廖志强, 朱杰, 罗启仕, 等. 污染土壤中苯系物的热解吸[J]. 环境化学, 2013, 32(4): 646-650. doi: 10.7524/j.issn.0254-6108.2013.04.016
    [13] QI Z, CHEN T, BAI S, et al. Effect of temperature and particle size on the thermal desorption of PCBs from contaminated soil[J]. Environmental Science & Pollution Research, 2014, 21(6): 4697-4704.
    [14] 夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报, 2014, 65(4): 1470-1480. doi: 10.3969/j.issn.0438-1157.2014.04.043
    [15] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024.
    [16] GAO Y F, YANG H, ZHAN X H, et al. Environmental impacts of remediation of a trichloroethene contaminated site: Life cycle assessment of remediation alternatives[J]. Environmental Science & Technology, 2010, 44: 9163-9169.
    [17] MCALEXANDER B L, KREMBS F J, CARDENOSA M M. Treatability testing for weathered hydrocarbons in soils: Bioremediation, soil washing, chemical oxidation and thermal desorption[J]. Soil and Sediment Contamination, 2015, 24: 882-897. doi: 10.1080/15320383.2015.1064088
    [18] HUNG P C, CHANG S H, OUYANG C C, et al. Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil[J]. Chemosphere, 2016, 144: 50-58. doi: 10.1016/j.chemosphere.2015.08.058
    [19] LIM M W, LAU E V, POH P E. A comprehensive guide of remediation technologies for oil contaminated soil: Present works and future directions[J]. Marine Pollution Bulletin, 2016, 109: 14-45. doi: 10.1016/j.marpolbul.2016.04.023
    [20] 张新建, 王茂仁. 浅谈石油烃污染土壤间接热脱附修复技术[J]. 化工管理, 2018(14): 113-114. doi: 10.3969/j.issn.1008-4800.2018.14.089
    [21] 周东美, 郝秀珍, 等. 污染土壤的修复技术研究进展[J]. 生态环境学报, 2004, 13(2): 234-242. doi: 10.3969/j.issn.1674-5906.2004.02.028
    [22] 梁庆, 卜涛, 贺亚维, 等. 一种含油污泥无害化处理资源化利用方法: ZL201610452563.3[P]. 2017-05-03.
    [23] 梅志华, 刘志阳, 王从利, 等. 燃气热脱附技术在某有机污染场地的中试应用[J]. 资源节约与环保, 2015, 33(1): 34-35. doi: 10.3969/j.issn.1673-2251.2015.01.035
    [24] 王锦淮. 原位热脱附技术在某有机污染场地修复中试应用[J]. 化学世界, 2018, 59(3): 182-186.
    [25] 杜玉吉, 刘文杰, 王海刚, 等. 污染土壤原位热修复应用进展及综合评价[J]. 环境保护与循环经济, 2018, 38(12): 26-31.
    [26] BAKER R S, LACHANCE J C. In situ thermal remediation of contaminated sites: A technique for the remediation source zones[R]. Fitchburg: Terra Therm, 2006.
    [27] 刘娅琼, 陈秋燕, 沈飞翔, 等. 活性炭吸附有害气体特性分析[J]. 绿色科技, 2018(20): 124-126.
    [28] 郭昊. 活性炭吸附回收VOCs的过程研究与工程设计[D]. 北京: 中国林业科学研究院, 2014.
    [29] TSOKUR A K, TSOKUR A Y, GAVRILOV V G. Mathematical simulation of heat conduction processes in an abrasive tool in the presence of physicochemical transformations in it[J]. Journal of Engineering Physics and Thermophysics, 1995, 68(2): 269-273. doi: 10.1007/BF00862873
  • 加载中
图( 9) 表( 4)
计量
  • 文章访问数:  6280
  • HTML全文浏览数:  6280
  • PDF下载数:  205
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-29
  • 录用日期:  2019-06-28
  • 刊出日期:  2019-09-01
杨振, 靳青青, 衣桂米, 刘亮亮, 柳林杉, 刘明杰, 鲁永蒲, 岳勇. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168
引用本文: 杨振, 靳青青, 衣桂米, 刘亮亮, 柳林杉, 刘明杰, 鲁永蒲, 岳勇. 原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用[J]. 环境工程学报, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168
YANG Zhen, JIN Qingqing, YI Guimi, LIU Liangliang, LIU Linshan, LIU Mingjie, LU Yongpu, YUE Yong. Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168
Citation: YANG Zhen, JIN Qingqing, YI Guimi, LIU Liangliang, LIU Linshan, LIU Mingjie, LU Yongpu, YUE Yong. Application of in-situ ectopic pile thermal desorption technology and equipment in the petroleum-contaminated soil remediation[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2083-2091. doi: 10.12030/j.cjee.201905168

原地异位建堆热脱附技术和设备在石油污染土壤修复中的应用

    通讯作者: 岳勇(1977—),男,博士,高级工程师。研究方向:土壤污染与控制。E-mail:yong.yue@jereh.com
    作者简介: 杨振(1989—),男,硕士研究生。研究方向:土壤污染与控制。E-mail:zhen.yang@jereh.com
  • 1. 杰瑞环保科技有限公司,烟台 264000
  • 2. 新疆维吾尔自治区固体废物管理中心,克拉玛依 834000
  • 3. 中国石油新疆油田分公司,克拉玛依 834000

摘要: 利用杰瑞环保科技有限公司自主研发生产的原地异位建堆热脱附设备对新疆某地区506 t石油污染土壤进行了修复处理实验,并在此基础上探讨了原地异位建堆热脱附技术在石油污染土壤修复领域应用的相关技术问题。通过温度场模拟,为设备投入及修复堆体的搭建提供了参考数据;通过项目现场温升曲线,分析了升温效率与物料属性的关系。结果表明,含水率越低的物料升温速率越快。此外,通过对设备投入、石油污染土壤修复效果、修复过程运行能耗等方面进行综合分析,评估了原地异位建堆热脱附技术在石油污染土壤修复领域的有效性和实用性。本研究可为原地异位建堆热脱附技术在石油污染土壤修复领域的工业化应用提供参考。

English Abstract

  • 土壤作为地球生命赖以生存的重要资源与环境基础,是自然界物质和能量参与转化、迁移、积累等循环过程的重要场所。石油由多种复杂的烃类化合物组成,一旦进入土壤,将对人类健康和生态环境安全造成严重威胁[1]。根据环境保护部和国土资源部已公布的《全国土壤污染状况调查公报》,我国土壤总超标率高达16.1%[2],有机类污染物,特别是石油污染物已成为造成土壤安全问题的主要因素之一。因此,石油污染土壤的修复工作迫在眉睫。

    采用热脱附技术,可对石油污染土壤进行高温加热处理,使石油污染土壤中的污染成分裂解为轻质组分后挥发,然后对其收集并进行达标处理。热脱附处理过程除受土壤本身属性影响外,处理温度、处理时间等工艺条件也将对热解效果带来一定的影响[3-4]。原地异位建堆热脱附技术[5-6]属于热脱附技术的一种,其技术原理是在微负压条件下,对建成堆体的污染土壤进行加热并维持在一定温度,促使污染物从土壤中脱附并进入气相,并通过抽提的方式将污染物抽出,再进行气处理,最终实现石油污染土壤的修复。该技术具有现场处置便利、无需长距离运输、二次污染少和对有机污染土壤修复效果好[7-10]等优点。采用该技术进行污染土壤修复的过程包含污染物在受热过程中从石油污染土壤中挥发并转移到尾气中和尾气中污染物的处理2个阶段[11]

    近年来,国内研究者已经开展了关于热处理技术的在苯系物[12]、PCBs[13]、PAHs[14]等土壤污染修复领域的应用探索,针对有机物污染场地修复技术的专利也日益增多[15]。原地异位建堆热脱附技术作为一项重要的非燃烧技术[16-19],在有机污染(包括石油污染)土壤修复领域具有较好的应用前景[20-23]。截至目前,国内外针对原地异位建堆热脱附技术在石油污染土壤修复领域的应用研究较少[20-24],因此,有必要开展该项技术在石油污染土壤修复领域的应用探究,为石油污染土壤的修复提供新思路。本研究采用杰瑞环保科技有限公司现有的原地异位建堆热脱附设备,对新疆某地区石油污染土壤进行热脱附处理实验,从修复过程、温度场模拟、温升曲线分析、设备投入、设备运行能耗及土壤修复效果评估等多个方面进行了综合分析,以期为原地异位建堆热脱附技术在石油污染土壤修复领域的工业化应用提供参考。

  • 原地异位建堆热脱附技术的工艺原理如图1所示。该技术是通过将挖掘堆放的污染土壤加热至污染组分的沸点以上,使污染物从土壤中挥发、分离,这一过程包括了污染组分的挥发、裂解等物理化学变化[6,25]。当污染组分变为气态后,其流动性将大大增加,可通过风机抽提的方式进行收集。根据热源的不同,热脱附技术可分为燃气式和电加热式2种方式。新疆地区自然能源丰富,结合这一特点,本研究采用天然气作为热源。污染土壤将以四棱台式堆体的形式进行搭建,建堆过程中分层安装加热管和抽提管。污染土壤建堆示意图如图2所示。天然气在燃烧器内燃烧产生高温烟气,经加热管内管传输至加热管外管中,外管在辐射传热和烟气对流传热的双重作用下实现升温,并以热传导的方式加热污染土壤;当污染土壤被加热至一定温度后,附着在土壤颗粒上的污染物将由液相变为气相,并得以挥发,从而实现从污染土壤表面的剥离,然后经抽提管和风机抽出,并送入尾气处理系统从而实现石油组分的冷凝回收。

  • 本研究挖掘的污染土壤总量约506 t,堆体搭建过程中配备加热管外管11根、内管11根、抽提管16根、余热利用管5根、热电偶8个、压力变送器3个、高压风机1台、燃烧器11台、耐火管11根、烟囱1个,如表1所示。天然气燃烧后产生的高温烟气(700~800 ℃)通入加热管中,通过间接换热的方式对土壤进行加热;加热管排出的烟气温度仍高达400 ℃,为实现该部分热量的利用,将在土壤中插入余热利用管,并将排出的高温烟气注入到余热利用管中,对污染土壤进行加热,从而实现余热利用。

    气处理系统主要由气液分离器、列管换热器、罗茨风机、活性炭罐、板翅式换热器、齿轮泵等组成,见表2

  • 污染土壤自身的属性对于热脱附处理过程具有一定的影响。对污染物料区域(待修复的污染土壤)开挖后发现,污染状况较为复杂。对代表性污染物料进行分析后,将待处理物料分为3类,对应物料的表观性状如图3所示,对应物料的检测分析结果如表3所示。

  • 根据待处理物料的属性,共分4层进行修复堆体的搭建,物料a、b、c在堆体内的分布位置如表4所示。本研究石油污染土壤总量约506 t,总方量297.6 m3,堆体搭建尺寸如表4所示。待处理物料经筛分等预处理后作为堆体物料进行堆体的搭建。物料a按照设定尺寸平铺于底层,并分别按照1.5 m的间距铺设加热管(包括内管、外管)和抽提管(图4(a)),完成第1层堆体的搭建。在第2层堆体搭建的过程中,物料b铺设完成后,安装余热利用管(图4(a))和抽提管,并在本层安装热电偶(图4(a))和压力变送器,以实现堆体温度和负压的监测。物料c分布于第3层堆体中,并再次铺设加热管和抽提管。再将物料a铺于第4层,封顶。堆体搭建完成后,开始表面隔离层的施工,堆体四周只采用混凝土抹面固封(厚度6 cm),堆体顶部加盖岩棉板(厚度8 cm)进行隔热。同时,为了防止雨水的干扰,在岩棉板铺设完毕后,再覆盖混凝土层(厚度6 cm),如图5所示。

    最终成形的四棱台形式的堆体如图4(b)所示,堆体搭建的详细工艺路线如图6所示。堆体外将安装燃烧器、烟囱、离心机和气处理系统,实现堆体系统管路的连接,形成待修复的石油污染土壤堆体,如图4(c)所示。

  • 天然气在燃烧器内燃烧时产生的高温烟气进入加热管内管,经加热管外管排出后,再进入余热利用管进行热量的二次利用,最终由烟囱排出。在整个过程中,加热管外管以热传导的形式加热污染土壤,实现污染物的挥发和分离。在加热过程中,为保证燃烧器的正常运行,对加热管外管温度进行实时监测,既防止由于长时间持续加热而导致加热管因温度过高受损,又保证加热管外管温度不低于550 ℃,以满足污染土壤修复效果。在热脱附过程中,堆体内冷点[26]位置的污染土壤加热温度至少应达到300 ℃。在建堆过程中,在含油率最多的物料b所在的第2层设置土壤取样口,修复完成后,从取样口取样并送到具有相关资质的第三方检测机构进行检测,评估土壤修复效果。

  • 热脱附处理后,石油烃类物质转移到气相中。为满足《大气污染物综合排放标准》(GB 16297-1996)的相关要求,须进行后续气处理。本研究气处理系统主要包含气液分离器、列管换热器、罗茨风机、活性炭罐、板翅式换热器、齿轮泵等。气处理工艺流程如下。

    1)经抽提收集的污染气体首先进入一级气液分离器,实现气体与其携带的土壤颗粒和大液滴的分离。

    2)分离后的气相进入列管式换热器,实现石油烃组分的冷凝回收。

    3)冷凝处理后的气相进入二级气液分离器,实现冷凝后气体与其夹带的雾状液滴的分离,防止雾状液滴进入风机。

    4)处理后的气相以风机为动力源,依次通过两级活性炭体系,利用活性炭的吸附作用对气体进行净化处理[27-28]

    5)气体处理达标后通过烟囱排放。

    6)经两级气液分离和列管换热器冷凝后的油水混合物收集至吨桶中,定期交由当地污水处理厂进行处理。

  • 根据污染土壤中含有的石油烃的性质,为达到修复效果,堆体内土壤的平均温度须达到300 ℃以上。修复前,为保证各管件、设备布局的合理性,保证污染土壤修复效果,特针对污染土壤的处理过程进行温度场模拟。

  • 在数学模拟过程中,参考TSOKUR等[29]的研究,建立数学模型。为实现温度场模拟,假设每个燃烧器所形成的温度场为一圆柱体模型,如图7所示。

    土壤热处理过程能量平衡方程如式(1)所示。

    土壤热处理过程物料平衡方程如式(2)和式(3)所示。

    式中:λ为土壤导热系数,W·(m·℃)−1r为加热半径,m;T为加热温度,℃;t为加热时间,s;Cp,m为土壤比热容,J·(kg·K)−1Cp,g为气体比热容,J·(kg·K)−1ε为土壤孔隙度;Sg为土壤中气体饱和度,即气体填充在土壤内部孔隙之间的体积分数;Ug为污染气体流速,m·s−1K为渗透面积,m2k为渗透系数,m·s−1ρg为气体密度,kg·m−3μg为气体黏度,kg·(m·s)−1h为蒸发焓变,J·kg−1m为单位体积内液相蒸发速度,kg·(m3·s)−1

    关联式如式(4)~式(11)所示。

    式中:A为单位体积土壤的传质面积,m2·m−3Cg为传质过程中污染物气相浓度,kg·m−3Ceq,g为传质平衡状态下污染物气相浓度,kg·m−3Sl为土壤中液体饱和度,即液体填充在土壤内部孔隙之间的体积分数;Re为雷诺数;Sc为施密特准数;abc为安托尼常数;de为当量直径,m。

    边界条件如式(12)~式(16)所示。

  • 采用ANSYS 15.0软件对上述圆柱模型进行结构化网格划分,然后采用FLUENT软件中的有限控制体积法计算网格节点上的温度等数值解。在模拟过程中,以间距1.5 m对加热管进行布置,当加热管外管管壁温升至550 ℃时,考察任意3根加热管组成的三角区域内温度场的分布,以此分析修复过程中堆体内全部污染土壤的温度状况。

  • 采用FLUENT软件进行温度场模拟的结果如图8所示。图8(a)为3根间距1.5 m的加热管温度场模拟效果。由图8可见,温度在加热管处高达550 ℃,并沿着加热管向四周递减。每根加热管长14 m,分别模拟此3根加热管在5 m和10 m位置组成的三角区域内的温度场分布。如图8(b)图8(c)所示,土壤各点温度均超过300 ℃,冷点位置的温度高达314 ℃。由此可见,当设计加热管间距为1.5 m时,3根加热管所覆盖的区域内无温度场盲点,各点温度均能够满足最低要求,具备除去污染土壤中所含的石油烃类物质的条件。

  • 在污染土壤处理过程中,以K型热电偶的形式实现对污染土壤的温度监测。结合本研究中污染土壤的处理量,在堆体搭建过程中设置了8个热电偶,分别安装于第2层污染土壤(6个)和顶层污染土壤(2个)中,每根热电偶设2个测温点位,共16个测温点位,点位编号为T101~T116。图9可见,温升曲线T101~T112为第2层污染土壤在热脱附处理过程中的温度变化情况;T113~T116为顶层污染土壤在热脱附处理过程中的温度变化情况。当温度低于100 ℃时,各测温点位的升温速率较慢,这是因为污染土壤中含有水,水的比热容高于干土壤的比热容,因此该阶段加热过程中土壤升温较慢。由图9可见,当测温点位的温度达到100 ℃后,温度会在一段时间内保持恒定。在此期间内,污染土壤中所含的水分将逐渐蒸发并经抽提管抽出。由于本阶段的热量主要转化为水的气化潜热,因此,此阶段内土壤温度趋于稳定。温升曲线T113~T116在该阶段的持续时间明显低于其他点位,这是因为顶层污染土壤的含水率低于1%,水体气化用时较短。由此可见,温度恒定阶段的时间随着待处理土壤含水率的升高而变长。水分被蒸发抽提后,堆体内土壤的升温速率大幅加快,石油烃各组分随之挥发,通过罗茨风机将污染物蒸汽抽提、收集,统一进行气处理。

  • 含油率较高的污染土壤b位于第2层堆体内,其原始含油率为23.1%;经原地异位建堆热脱附处理后的样品送至SGS-CSTC检测中心进行检测,2个平行样品中总石油烃含量分别为496 mg·kg−1和602 mg·kg−1,处理后土壤中石油烃平均含量约549 mg·kg−1,能够满足《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)中的相关要求。

  • 在处理过程中,堆体自2017年10月19日开始修复,至11月24日实验结束,共施工运行37 d,天然气总用量14 977 m3。利用原地异位热脱附技术处理该项目506 t石油污染土壤,天然气用量统计分析结果如下:天然气用量14 977 m3,污染土方量297.6 m3,污染土总重量506 t,1 t用气量29.6 m3,1 m3用气量50.3 m3。每处理1 m3石油污染土壤约消耗天然气50.3 m3

  • 1)通过数学模型进行温度场模拟,在加热管外壁温度达到550 ℃、加热管和抽提管间距分别为1.5 m的条件下,堆体内所有污染土壤均能达到目标温度(300 ℃),满足去除污染土壤中所含石油烃类物质的条件。

    2)采用原地异位建堆热脱附技术进行土壤修复处理时,待处理物料(污染土壤)的含水率对污染土壤升温速率有较大影响。含水率越低的物料,升温速率越快。

    3)采用原地异位建堆热脱附技术能够实现石油污染土壤的修复,修复后土壤样品中总石油烃的含量能够达到《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的修复要求。在应用过程中,原地异位建堆热脱附技术具有设备投入少、人员投入少、场地限制低的优势,处理后土壤能够满足国家和地区对相关指标的管控要求,具备开展大规模现场应用的条件。

参考文献 (29)

返回顶部

目录

/

返回文章
返回