-
随着“退城进园”和“退二进三”政策的逐步落实,大批污染企业被迫改造或搬迁[1]。高污染工厂旧址土壤中遗留的有机污染物质,会造成环境污染,危害人体健康,限制城市发展。在现有各种污染土壤修复技术中,热脱附技术由于其具有修复彻底、快速高效、不引入新的污染物等优势而发展较迅速。该技术早在30年前就开始在发达国家应用,但近年来才刚刚引入国内[2]。根据对美国超级基金1 246个项目进行的统计,在发达国家,污染土壤异位修复技术占比为48%[3]。污染土壤热脱附在异位修复技术中占比82%。从2009年异位热脱附技术引入到国内以来,相关专利逐年上升,并已在“十二五”“863”计划相关课题中得到应用[4]。异位热脱附技术在我国的应用已初具规模。
土壤异位热脱附技术发展至今,主要的研发方向是修复更多的污染物类型,以及不断改进尾气处理装置,减少有害气体排放[5]。国外由于能源较为便宜,所以在节能降耗方面的研究很少,对于整个系统能耗的热平衡和高温烟气余热利用的装置研究也不够,导致能耗较高。而我国天然气价格相比国外较高,亟需研究和提出直接热脱附装备节能降耗方案[6-7]。针对该问题,本研究通过对热脱附系统热平衡进行计算,梳理了每部分设备的能耗情况,找出了能耗较大且具有余热回收利用潜力的区域,有针对性地提出了热脱附系统节能降耗方案,为直接热脱附节能降耗装置的选型提供参考。
-
直接热脱附是火焰与污染土壤直接接触,且适用于挥发性、半挥发性有机污染物的处理方式。直接热脱附处理量大、传热效率高、能耗低,适合于大规模污染场地修复。该技术装置建造成本和运行维护成本低,污染土壤处理能力可达5~100 t·h−1,一般要求水分低于25%。直接热脱附回转窑热脱附过程中产生的尾气温度高、流量大,处理要求相对较高。
直接热脱附回转窑中燃烧产生的高温烟气通过热辐射、热传导和对流换热等方式向污染土壤传递热量,将土壤加热到一定温度,使其中的有机污染物解析分离,析出的污染物气体送入后续废水及尾气处理单元进行后处理。热脱附过程一般分为2个阶段:土壤污染物解析阶段和废气处理阶段[8]。
图1为典型直接热脱附装置的工艺流程。污染土壤经过破碎、筛分、调节含水率(拌石灰)、磁选等预处理过程,由传送带输送至回转窑加热单元进行热处理,其中的有机污染物经加热后从土壤中挥发和分离。高温洁净土壤从回转窑出口排出,含有机污染物的烟气进入旋风除尘器。旋风除尘器的作用是去除烟气中携带的粉尘,以保证管道设备正常运行。除尘后的烟气进入二燃室,在近1 000 ℃高温下,停留2 s以上。此过程可将烟气中的绝大多数有机污染物燃尽。急冷室将燃烧后的高温尾气温度迅速降低至200 ℃,以避免二燃室后高温尾气在缓慢冷却后重新生成二恶英等有毒物质[9]。急冷室排出的尾气经除尘装置和洗气装置净化达标后最终排入大气[10]。
-
现有工艺中能源浪费严重,故须针对系统各装置能耗进行分析。污染土壤所含水分被加热至300 ℃以上所吸收的能量是不必要的,可通过土壤预干燥减少土壤含水量来减少这部分能耗。土壤热脱附完成后,高温洁净土壤带走的热量理论上可以进行回收利用,但实际回收难度大。洁净土壤运输困难大,温度不够高,因而不利于异地回收;而就地采用热交换器利用余热又不具备经济性。系统散热损耗是不可避免的能源浪费。近1 000 ℃的高温烟气在急冷塔中,降温到250 ℃左右的冷却过程中消耗大量热量,这部分热量可以通过烟气热回用装置再进行利用。排烟带走的能量可以通过烟气热回用装置利用余热,但因排烟温度很低,不具备回收价值。
利用热平衡公式对各部分系统中可回收利用能量进行定量计算,再对比各部分能量回收的难易程度和成本,最后综合考虑以上因素,可设计出热脱附装置节能降耗方案[11-12]。本研究提出了在原有热脱附装备中加装烟气热回用模块和土壤预干燥模块,通过循环管道将二燃室烟气余热高效输送给土壤预干燥机作为干燥的热源,降低回转窑进口土壤的含水量,从而降低回转窑加热过程中土壤水分升温吸热,达到节能降耗的目的。
-
通过建立各个单元的输入、输出能量平衡关系式,计算系统中每个单元每个部分的能量,整合系统能耗,分析系统各模块能耗占比。图2是热脱附系统热平衡图,计算时以20 ℃为基准温度。
在加热单元中,设定进口土壤含水率、土壤温度、出口土壤温度。能量输入端是回转窑消耗天然气热值,能量输出端是烟气焓值[13]、水蒸气焓值、出口高温土壤带走的热量。热平衡方程如式(1)所示。
式中:Q1为天然气燃烧热,MJ·t−1;Q2为水分吸热,MJ·t−1;Q3为烟气热焓,MJ·t−1。Q4为回转窑散热,MJ·t−1;Q5为洁净土壤热量,MJ·t−1。
旋风除尘单元热平衡方程如式(2)所示。
式中:Q6为旋风除尘散热损失,MJ·t−1;Q7为考虑旋风除尘器热损失后烟气和水蒸气的剩余热量,MJ·t−1。
在二燃室中,高温烟气、过热蒸汽混合物进入燃烧室,经天然气为燃料的燃烧器加热[14],由急冷塔将烟气温度迅速冷却。热平衡方程如式(3)所示。
式中:Q8为二燃室天然气燃烧热,MJ·t−1;Q9为二燃室热损耗,MJ·t−1;Q10为二燃室后烟气和水蒸气总热量,MJ·t−1。
冷却室热平衡方程如式(4)所示。
式中:Q11为急冷损耗,MJ·t−1;Q12为排烟损耗,MJ·t−1。
-
本研究以湘潭某典型土壤直接热脱附工程为例,对热脱附系统进行热平衡计算。选取具有代表性的工况作为计算条件,其中土壤初始含水量为20%,过量空气系数为1.2,系统漏风率为10%,二燃室温度为1 000 ℃[15-16]。加热单元、旋风除尘单元、二燃室均考虑散热损失。由于土壤中不同污染物析出所需温度不同,故分别计算了清洁土壤温度为500 ℃和320 ℃的2种工况。根据式(1)和式(2),对于现有工艺进行了热平衡计算,求出系统各部分能耗及所占比例,绘制直接热脱附能量占比计算图(如图3和图4所示)。在洁净土壤加热至500 ℃工况下,总能耗为3 710 MJ·t−1。对于整个系统而言,能源输入端加热单元占比49%,二燃室占比51%,500 ℃洁净土壤系统能耗占比9.0%,急冷室系统能耗占比54.5%,除尘排烟系统能耗占比24.2%。在洁净土壤加热至320 ℃工况下,总能耗为3 273 MJ·t−1。加热单元占总能量输入37%,二燃室占总能量输入63%,320 ℃洁净土壤系统能耗占比6.5%,急冷室系统能耗占比55.1%,除尘排烟系统能耗占比26.1%[17]。
-
通过分析热平衡计算结果[18]可发现,直接热脱附装置节能能耗空间较大。其中急冷室消耗整个系统55.1%的能量,是最主要的耗能单元,可将1 000 ℃高温烟气冷却到200 ℃,前后温度差可达到800 ℃。将这部分热量利用起来,可极大地改善直接热脱附系统能源利用率,从而减小系统总能耗[19]。
在原有热脱附装备中加装烟气热回用模块和土壤预干燥模块,在二燃室末端加装热交换器,通过循环传热介质将烟气余热传送给土壤预干燥单元[20]。通过换热器将二燃室的末端烟气温度从1 000 ℃降低到500 ℃左右,传热介质通过循环管道将热量输送给土壤预干燥机作为干燥的热源。将进入加热单元前的土壤加热至100 ℃以上,使土壤中的水分蒸发。由于水的比热容很大,故进入回转窑加热单元的土壤含水率下降就意味着土壤温度上升所需的热量大幅降低。干燥完成后的低温热水再回到水气换热器冷端水进口,通过循环管路实现了热量由二燃室到预干燥机的高效转移,保证了二燃室余热的高效利用[21]。为防止热水过热,在其输送管路上安装调温换热器对热水温度进行调控,冷却水来自急冷塔的急冷水箱。循环管道中的热水虽然是循环使用,但使用过程中由于管道密封不到位等问题会造成循环水损耗,因此,需要在管路上加装补充水箱,以保证循环管道的正常运行。盘式连续干燥机和回转窑干燥机都可以用于土壤预干燥,分别适用于不同工况。在使用盘式连续干燥机且换热介质为水的条件下,设计了如图5所示的具有余热利用模块的直接热脱附系统。
图6为加装节能装置后热脱附能量平衡图。计算条件为初始土壤含水量为20%,过量空气系数为1.2,二燃室温度为1 000 ℃,清洁土壤温度为320 ℃。计算结果表明,加装节能降耗装置后,系统能耗可从3 273 MJ·t−1降低到2 610 MJ·t−1,节能效率达到了20%。
-
通过热平衡计算,得出了不同含水率的土壤在不同出土温度下的能耗结果。不同含水率能耗对预干燥节能效果的影响见图7。可以看出,随着土壤湿度从5%上升到25%,系统能耗上升了2.5倍左右,说明土壤含水率对热脱附加热单元能耗影响很大。如图8所示,土壤预干燥装置将土壤水分从20%降低到15%时,降低了20%总能耗。土壤预干燥装置将土壤水分从20%降到10%时,可降低热脱附装置总能耗35%~42%,节能效果非常显著。
二燃室后水气换热器余热占比与预干燥所需能量的关系见图9。可以看出,土壤预干燥热效率为50%时,二燃室后烟气余热足够用于减少10%左右的土壤水分。由于采用了热水循环干燥方式,土壤干燥热效率可提高至85%~90%(只有散热损失),烟气余热足够用于减少17%左右的土壤水分。当土壤处理速率为30 t·h−1时,烟气余热远大于土壤进行预干燥去除5%土壤水分所需的热量。在热源热量足够的情况下,需要考虑的问题就集中在选择合适的干燥机组将热量高效、稳定地传递给土壤以及选择合适的传热介质,安全、高效地完成烟气热回用装置和土壤预干燥装置间的循环热传导[22-23]。
对于连续处理土壤速率达到30 t·h−1的直接热脱附装置而言,考虑到干燥机体积、成本、连续工作稳定性,选择将湿度20%的污染土壤去除5%水分的预干燥方案,可带来20%左右的节能效果。
-
预干燥工序要求土壤处理量为30 t·h−1,并且能使土壤含水量从20%降低到15%。目前,国内干燥工艺成熟、种类多样,其中盘式连续干燥工艺和回转窑干燥工艺由于其对土壤处理量大,水分脱除效率高,基本可满足工况要求[24]。
-
盘式干燥机可实现对土壤的预干燥,且具有水蒸气蒸发量大、设备集成度高、占地面积小、装置简单、现场安装要求低、能耗低、烟尘少的优点[25]。考虑到干燥机的运输难度和运行稳定性问题,干燥设备的干燥面积不宜大于300 m2,设备重量不宜超过50 t,否则会增加运输和现场安装难度[26]。在满足干燥面积和设备重量的条件下,盘式干燥机处理速率约为15 t·h−1。因此,当土壤处理量较大时,至少需要2台干燥设备同时进行预干燥,设备投资较高。盘式干燥机对进料的要求较为苛刻[27]。盘式干燥机严格要求进料粒径控制在50 mm以下。土壤粒径较大时容易导致设备干燥能力下降,土块在设备中堆积,最终堵塞设备。因此,采用盘式干燥机对土壤破碎筛分工艺要求较高[28]。
简言之,作为土壤预干燥设备,盘式干燥机适合土壤处理速率为15 t·h−1左右、土壤粒径小于50 mm的工况。由于水-烟气换热器的换热系数大,采用水作为换热介质可大幅度降低换热器尺寸,便于实现装置的模块化和快速移动。
-
回转窑干燥机加热介质在回转窑中空的筒体内对筒内湿物料进行热传导[29]。物料进入窑体,在扬料板和筒体自身转动的作用下,不断被翻动的同时向窑头滚动前进[30]。回转窑内扬料板将湿物料扬起,不断翻转,从而增大湿物料与热空气的换热面积,使水分更容易蒸发,干燥后的物料在窑尾排出[31]。
回转窑干燥机对物料的适应性较强,但回转窑没有紧凑的换热面,换热介质只能选择传热效率低的空气,故传热效率较低,导致物料的干燥时间相对较长[32]。在干燥相同物料量时,设备体积相对庞大,不利于设备的模块化运输与组装。
-
1)土壤预干燥工序可降低污染土壤所含水分被加热至300 ℃以上所吸收的能量;烟气热回用装置可回收部分高温烟气,冷却过程消耗热量。
2)利用烟气热回用装置将二燃室高温烟气余热能量通过循环传热管道输送给土壤预干燥装置,可达到余热利用的效果,提高能源利用率。通过对比二燃室后水气换热器余热能量与预干燥所需能量间关系,计算出在预干燥工序去除土壤水分17%以下时,烟气余热量足够用于干燥土壤。与现有热脱附工艺相比,加入改进方案的热脱附工艺的能耗水平显著降低,节能效果达到20%。
3)在2种预干燥装置中,盘式干燥机传热效率高,但其结构复杂,长时间连续工作时有设备堵塞风险,要求土壤的粒径小于50 mm,土壤处理量偏小。回转窑干燥机与盘式干燥机相比,干燥性能稍差,但其对土壤没有太苛刻的要求,可作为盘式连续干燥方案的备选。
有机污染土壤异位直接热脱附装置节能降耗方案
Energy-saving and consumption-reducing scheme for direct thermal desorption of organic contaminated soil
-
摘要: 以异位直接热脱附技术的原理、适用范围、工艺流程、优缺点等为基础,建立了输入、输出能量平衡关系式并进行了热平衡计算;针对该工艺能耗过高的问题,分析了系统各部分能耗,提出了节能降耗方案。通过烟气热回用装置,将二燃室后高温烟气余热能量经循环管道输送给土壤预干燥装置,将有机污染土壤含水率降低,从而减少系统总能耗。结果表明:经过热力计算,土壤水分预干燥量越大,系统节能效果越好;烟气余热足够用于土壤预干燥减少17%左右土壤水分的要求。通过土壤预干燥装置将土壤水分从20%降低到15%,可使直接热脱附装置降低能耗20%以上。Abstract: With the implementation of the policies ‘relocation of industrial enterprises in the old city to the suburbs’ and ‘re-planning of residential land for residential use’ in our country, the possible environmental heath problems resulting from the organic pollution sites left during the relocation of high pollution chemical enterprises need to be resolved, it is urgent to carry out the contaminated soil remediation. Ex-situ direct thermal desorption is one of the main techniques for contaminated soil remediation. Based on the principles, application scope, process flow, advantages and disadvantages of the ex-situ direct thermal desorption technology, the input and output energy balance equations were established and the heat transfer balance was calculated. Aiming at the high energy consumption, the energy consumption of each part was analyzed and the energy saving plan was raised. The flue gas reusing device was used to transfer the waste heat energy from the high-temperature flue gas after the second combustion chamber to the soil pre-drying device through the circulating pipeline. The moisture content of the organic polluted soil decreased, and the total energy consumption of the system was significantly reduced. According to the thermodynamic calculation, the more moisture of the soil decreased, the more energy could be saved. Flue gas waste heat was enough to reduce soil moisture by about 17% for soil pre-drying. According to the analysis, due to the limited continuous drying capacity of soil, the reduction of soil moisture from 20% to 15% with the soil pre-drying device could reduce the energy consumption by more than 20% for the direct thermal desorption device. The feasibility, advantages and disadvantages, and application scope of the disc continuous dryer and the rotary kiln dryer as the soil pre-drying device were compared. This study provides the reference for the selection of direct thermal desorption and energy-saving devices.
-
近年来,土壤及地下水污染事件频发,其污染问题逐渐受到重视。土壤和地下水污染具有隐蔽性和滞后性,除了传统土壤和地下水采样分析,数值模拟方法是定量刻画土壤和地下水中污染物的运移的主要手段。通过数值模拟方法可以科学、可靠地预测土壤和地下水污染趋势,为污染防治工作提供技术支撑。
目前,土壤和地下水数值模拟研究分别形成成熟的研究方法和配套软件,取得了大量研究成果,在工程实践中广为运用。但已有研究大多数仅考虑单独介质开展数值模拟研究,少有研究将土壤和地下水作为一个整体看待。大量研究表明,土壤和地下水两者联系紧密,地表污染源通常在淋滤作用下通过土壤进而污染地下水含水层,土壤污染极易导致地下水污染,但土壤和地下水耦合数值模拟研究进展缓慢,对土壤和地下水交界面的污染物运移情况尚未摸清。本文对现有土壤和地下水水流及污染物运移的耦合模拟进展进行总结,旨在为进一步开展相关研究提供科学依据,为我国早日实现土壤与地下水污染协同防治奠定理论科学基础。
1. 土壤和地下水数值模拟方法
开展土壤和地下水数值模拟目的在于预测水流及污染物运移趋势,为提出相应的防控治理措施提供定量依据。数值模拟的基本步骤是构建水文地质概念模型、建立数学模型,通过解析解或数值方法求解描述水流及污染物状态的偏微分方程,常用的数值求解方法为限差分法、有限单元法、边界元法等,计算机模拟软件的发展也使大规模数值处理成为可能[1]。目前,土壤和地下水中水流与污染物迁移预测模拟方法不同,大部分研究是分别基于两套模拟预测系统开展的。而我国土壤和地下水模拟预测研究基础薄弱,受整体技术水平发展滞后和基础资料不完善的影响,针对土壤与地下水污染评估与风险预测相关研究,主要集中在基于采样结果的土壤或地下水现状评估,尚未建立基于模拟预测结果的动态风险预测系统。
1.1 土壤水分和污染物运移数值模拟
非饱和水流和溶质运移研究是土壤水分和污染物运移的基础研究内容。在达西定律的基础上,1907年Buckingham考虑土壤基质势、含水量等因素,修正达西定律得到白金汉-达西定律;通过将白金汉-达西定律带入连续方程可以得到Richards方程[2]。目前,土壤非饱和带模拟预测主要是基于Richards方程构建水流模型和对流-弥散方程构建的溶质运移模型开展研究[2-3],而Hydrus系列软件是非饱和带水流和溶质运移的主要模拟工具,方程求解采用伽辽金线性有限元法,综合考虑了非饱和带中植物根茎吸收、溶质在液态下的对流-弥散现象和气态下的扩散现象、固液态和气液态转化、合成和降解等情况[4]。徐丽萍等[5]对室内有机玻璃箱滴灌条件下土壤水分运动进行了模拟,证明Hydrus能够以较高的精度模拟土壤水分运移。杨洋等[6]利用HYDRUS-1D模拟垃圾填埋场渗滤液中的氨氮在不同包气带结构和不同污染源特征下的迁移转化规律,预测场地污染物污染程度。
大量研究证明土壤固体颗粒的吸附解析作用对溶质运移产生影响。彭盼盼等[7]在对天津市某区域未来30年污染物六价铬在浅层土壤中运移规律进行数值模拟和分析预测,发现在降雨入渗淋洗和土壤颗粒吸附作用下,土壤中六价铬含量将处于较低状态,不造成污染。尹芝华等[8]则利用HYDRUS-2D软件构建土壤水分运动和溶质运移模型,模拟三氮在该场地非饱和带垂向以及向下游地表水体的迁移转化过程,发现非饱和带介质是氮污染负荷的有效缓冲区,但对硝态氮的吸附能力相对较弱,因此硝态氮为主要污染物。
除HYDRUS外,还有SWAP、COMSOL等成熟商业软件可用于模拟非饱和带水流和溶质运移。总体来看,单独针对土壤介质的水流和溶质运移研究已较为成熟,商用软件可以涵盖运移过程中可能发生的各种反应,取得了大量研究结果。
1.2 地下水渗流和污染物运移数值模拟
在现阶段地下水污染模拟预测模型的研究中,利用达西定律、质量守恒方程和水流连续性方程建立地下水水流模型、利用溶质运移理论构建地下水污染预测模型,是地下水模拟研究人员使用的主要方式。
美国材料与试验协会(ASTM)在地下水模拟预测的不同阶段制定了行业系列标准[9-11],如《场地问题地下水水流模拟应用标准指南》(ASTM D5447 - 04(2010))《地下水水流与溶质运移建模标准指南》(ASTM D5880 - 95(2006))《污染场地概念模型创建标准指南》(ASTM E1689 - 95(2008))等。英国环保署对地下水模拟预测工作制定了不同尺度的规范,分别颁布了针对大尺度地下水模拟的《地下水资源模拟导则》(2002)[12]、针对污染场地和污染物迁移模拟制定的《概念模型创建及数学模型选择与应用实用指南》(2001)[13]等。中国也于2014年发布《地下水污染模拟预测评估工作指南》,奠定了我国地下水污染模拟预测评估工作的基础。地下水模拟预测行业制度要求严,标准高,未来该学科的研究将逐渐细分,并呈现多学科融合的趋势。
目前最广为运用的三维地下水水流模拟软件是MODFLOW,采用网格中心点有限差分法求解,可以模拟各种条件下水流在地下含水层中的运动,同时允许用户开发外部程序强化主程序功能[14-15]。在MODFLOW模型基础上,综合三维地下水溶质运移数值模拟软件MT3DMS等开发的Visual MODFLOW可模拟地下水中水流和污染物的物理迁移和化学反应过程,展现三维可视化地下水水流模型[1,10]。魏亚强等[16]采用MODFLOW中的SEAWAT模块,对压裂液突破页岩储层以多点状同时进入地层的情形进行了变密度流的模拟,并分析了不同渗漏点与断层底部距离、不同断层倾角对压裂液运移的影响。陈喜等[17]用MODFLOW和水平衡模型对美国某地区地下水位进行了模拟,并分析了含水层补排水量,河流与地下水补排关系以及区域水平衡过程,揭示了独特沙丘地形和土壤特性对地下水补排量的影响。克热木·阿布都米吉提等[18]模拟某垃圾填埋场在无控制措施、防渗墙和抽水井单独及同时运用时的地下水渗滤液运移过程,给出抽水井和防渗墙最佳布设方位建议。饶磊等[19]利用Visual MODFLOW建立地下水流概念模型,以化学需氧量(COD)和氨氮质量浓度做为污染物运移模拟研究的主要指标,对污水处理站发生泄漏后进入地下水中的主要污染物进行溶质运移模拟,发现7 300 d后污染物将进入长江。但MODFLOW不考虑非饱和带模拟预测,无法准确表现饱和带与非饱和带的水流运动关系[20]。
除MODFLOW之外,常用的软件平台还有Feflow、GMS、Visual Groundwater等[1]。GMS综合Modflow、MT3DMS、Modpath等软件主要计算模块和PEST、UCODE、MAP等辅助模块,功能齐全,可以概念化建立水文地质概念模型,前、后处理功能更强大,能用来模拟绝大部分地下水水流和溶质运移[21]。
2. 耦合数值模拟研究进展
随着将土壤和地下水作为一个整体看待的意识增强,关于土壤和地下水耦合模拟的研究成为近年来的热门话题,截止目前,针对土壤和地下水中水流运动耦合方法研究较多,而污染物运移研究还处于初步阶段。
2.1 水流耦合数值模拟
针对土壤和地下水中水流运动的耦合方法研究大多关注地下水埋深和入渗补给关系。孟宪萌[22]分别对河流和地下水建模,通过动态水量交换机制实现耦合,对地块进行水均衡分析。韩双平等[23]通过人为控制潜水埋深开展农作物实验,发现包气带-潜水系统水分转化率均衡临界深度对土壤水-潜水转化系统起主导作用,进而决定了土壤水和潜水对农作物需水的调节作用。牛赟等[24]分析降水-土壤水和地下水相关性,构建回归模型,表明5 cm土壤体积含水量和地下水埋深高度相关。邓洁等[25]则总结了河渠与地下水相互转化耦合模型研究进展,分析了国外典型数值模拟软件在模拟河渠与地下水相互转化的特点。
综上,已有水流模拟数值耦合方法研究主要关注水分在包气带和潜水带中的水分运移转化关系以及地下水埋深在两个系统中的同步性,模拟耦合过程中需要考虑的参数包括土壤含水量、渗透系数、潜水埋深、水流通量等。
2.2 污染物运移耦合数值模拟
虽然关于水流在包气带和潜水带之间运动的模拟研究已较为成熟,但对于其中的污染物运移研究还处于初步阶段,相关研究主要集中于表明土壤和地下水对污染物的运移存在耦合作用,目前常见于国外文献,国内较少见。KEESSTRA et al[26]通过大量案例表明土壤优先流(指土壤在整个入流边界上接受补给,但水分和溶质绕过土壤基质,只通过少部分土壤体的快速运移)中溶解的污染物对地下水有显著影响,同时土壤也对可能迁移至地下水的污染物起到过滤和缓冲作用,但土壤污染物迁移模型有待进一步研究。曾献奎[27]构建凌海市地下水-地表水耦合数值模拟,基于HydroGeoSphere进行求解,分析总氮迁移规律。ARIAS-ESTEVEZ et al[28]指出污染物从土壤迁移至地下水主要是由于土壤优先流和胶态共输的作用,土壤和污染物的理化性质均对迁移速率起到重要作用,但目前地下水脆弱性仅考虑了土壤而未考虑污染物类型,对土壤和地下水的关联关系考虑不充分。WANG et al[29]发现天然有机物(NOM)对土壤中砷元素的移动性有重要影响,进而影响地下水砷污染的可能性。HOSSAIN et al[30] 通过大数据挖掘,运用二分树法构建土壤理化性质与地下水砷污染浓度关系模型,较准确的预测了孟加拉国地下水砷浓度分布。
土壤和地下水中污染物运移模拟大多数还停留在定性研究上,有待进一步开展针对包气带和潜水带渗透系数、理化性质等差异及其对土壤水中污染物在迁移进入地下水过程中的过滤、缓冲、稀释和转化作用的影响的定量研究。模拟耦合过程中需要考虑的参数包括土壤和污染物理化性质、污染物浓度等,特别应注意在介质交界面上参数的瞬时变化对污染物迁移路径和性质的影响。
2.3 HYDRUS for MODFLOW的发展
目前已有部分软件可以针对土壤和地下水开展水流和溶质运移耦合数值模拟。Feflow采用有限元法进行非稳定水流和污染物运移三维模拟,对非承压含水层采用变动上边界的办法,根据水文地质条件生成有限单元网格,视具体情况定义所有边界条件及其限制条件、渗透系数、补排量等为常数或者变量,可用于模拟饱和带和非饱和带地下水流场变化和污染物在地下水中的迁移过程及其时间空间分布模式[31]。SUTRA是用于饱和带或非饱和带水流、溶质和能量运移的三维专业模型,广泛应用于模拟海水入侵过程[1]。下面主要以HYDRUS Package for MODFLOW(以下称HPM)为例介绍土壤和地下水耦合模拟过程。
HPM是较成熟的土壤和地下水中水流和溶质运移模拟耦合模块,由BEEGUM et al[32]自2007年起研发,于2008年正式向大众开放下载应用,并于2018年更新。张旭洋等[33]结合HPM软件和GIS技术,构建大沽河流域土壤水和地下水耦合模型,较好地预测了土壤水和地下水的时空变化状况和地下水补给量。
HPM将非饱和带Hydrus模块与饱和带MODFLOW模型关联,在MODFLOW中,整个区域被分为若干个单元格,整个模拟周期被分为若干个时段,在每个时段内,单元格遭受的外界影响被假设是恒定的[34]。HYDRUS则采用不同的分段方法,通常分段时长小于MODFLOW[32]。考虑耦合过程,HYDRUS将MODFLOW上一个时段计算得到的地下水埋深值H作为下个时段的底部边界条件,而Modflow则将Hydrus该时段计算得到的底部渗流量作为下个时段的补给量。模型流程见图1[33]。
该耦合方法的缺陷在于它假设每个MODFLOW时段土壤剖面底部水头压力是恒定的,忽略了时段中水流通过包气带到达饱和带带来的水头变化,可能导致土壤剖面底部产生突然的水流通量,使总通量计算结果不准确[32]。这个缺陷可以通过调整水头高度算法改善,新算法下的水头高度剖面示意图见图2。
2018年,HPM升级到可模拟包气带和潜水带中污染物溶质运移。耦合过程中,HYDRUS模拟包气带中的水流和溶质运移情况,计算得到的土壤底部水流和溶质浓度通量被分别作为Modflow的地下水补给量和MT3DMS的入渗浓度[34]。但该模型对污染物在土壤和地下水界面的转换、过滤、稀释和缓冲关系未予考虑,有待进一步研究。
2.4 拓展耦合数值模拟
除了对水流和污染物溶质运移进行耦合模拟,已有研究和软件关注土壤和地下水耦合过程中热、压力等其他性质的变化和对水循环系统的影响以提高系统模拟精度。GSFLOW在MODFLOW的基础上,考虑天气、用地、补给等因素,可以综合模拟地下水和地表水径流。Parflow是伯克利劳伦斯实验室开发的地球水循环系统模拟预测软件,集成地下水和地表水、生态水,考虑水流与土壤、大气之间的联系,通过将陆面-底层包气带模型替换为地下水-顶层包气带模型耦合通用陆面模型(Common Land Model,土壤含水量单位时间变化率考虑光照、温度、水在液态和固态间的转化率、水的密度、蒸发量等)和地下水径流模型,更加真实地模拟了地球水活动[35]。MAXWELL et al [35]运用Parflow对比了耦合条件和非耦合条件下对某场地降雨量、径流量、热通量和蒸发量的模拟结果,发现耦合模型预测结果更加准确。这些拓展性质及参数对土壤和地下水系统的影响应在耦合过程给予适当的考虑,同时在数值模拟的过程当中应考虑流场、浓度场、温度场、应力场等多场耦合的复杂交互作用。
3. 结论和发展趋势
目前对于土壤和地下水的数值预测模拟研究均过于独立,耦合系统研究大多关注水分运移,也考虑了土壤和地下水污染的同步性,关于污染物在土壤和地下水交界面的迁移转化研究较少,未建立成熟的土壤和地下水耦合数值模拟方法。当下我国土壤和地下水存在大量同步污染的情景,在土壤和地下水污染协同防治的新时代管理模式的背景下,对二者的耦合研究显得尤为重要,本文对土壤和地下水耦合数值模拟研究的发展方向进行了展望。
1)将数值模拟与大数据结合,利用统计学方法和人工智能技术确定不同类型场地土壤和地下水污染的关键参数,并分析关键参数对污染物空间分布规律的影响,剖析不同类型土壤和地下水污染中污染物的分布情况,探索污染物在土壤和地下水中分布的一致性和差异性,有助于进一步明确耦合作用关系。
2)在现有耦合方法的基础上,进一步分析土壤和地下水渗透系数、理化性质等差异对水流和溶质运移的影响,考虑耦合过程中污染物在包气带和潜水带交界面上复杂的输移转化关系,更精细地描绘污染物在运移过程中的浓度和路径变化,提高土壤和地下水耦合水流和溶质运移方法的准确性。
3)完善土壤和地下水耦合数值模拟系统。随着土壤和地下水耦合方法研究的进展,完善污染物在土壤和地下水耦合系统中的迁移模型,考虑整个土壤-地下水系统的输入-响应关系,整合现有模拟软件的部分功能,开发土壤-地下水耦合数值预测模拟系统,实现水流和溶质在土壤-地下水系统中的全路径动态模拟,同时配合污染评估和风险预测模块,形成基于模拟预测结果的动态污染评估和风险预测系统。
-
-
[1] 祁志福. 多氯联苯污染土壤热脱附过程关键影响因素的实验研究及应用[D]. 杭州: 浙江大学, 2014. [2] ZHAO C, DONG Y, FENG Y, et al. Thermal desorption for remediation of contaminated soil: A review[J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [3] 白四红. 高浓度多氯联苯污染土壤热脱附特性实验研究[D]. 杭州: 浙江大学, 2014. [4] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024. [5] LIU J, ZHANG H, YAO Z, et al. Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln[J]. Chemosphere, 2019, 220: 1041-1046. doi: 10.1016/j.chemosphere.2019.01.031 [6] 高艳菲. 六六六和滴滴涕污染场地土壤的修复[D]. 南京: 南京农业大学, 2011. [7] 马福俊, 丛鑫, 张倩, 等. 模拟水泥窑工艺对污染土壤热解吸尾气中六氯苯的去除效果[J]. 环境科学研究, 2015, 28(8): 1311-1316. [8] O'BRIEN P L, DESUTTER T M, CASEY F X, et al. Implications of using thermal desorption to remediate contaminated agricultural soil: Physical characteristics and hydraulic processes.[J]. Journal of Environmental Quality, 2016, 45(4): 1430-1432. doi: 10.2134/jeq2015.12.0607 [9] FRANTISEK K, PAVEL T, KAREL S, et al. Remediation of contaminated soils by thermal desorption: Effect of benzoyl peroxide addition[J]. Journal of Cleaner Production, 2016, 125: 309-313. doi: 10.1016/j.jclepro.2016.03.134 [10] 王奕文, 马福俊, 张倩, 等. 热脱附尾气处理技术研究进展[J]. 环境工程技术学报, 2017, 7(1): 52-58. doi: 10.3969/j.issn.1674-991X.2017.01.008 [11] 傅海辉, 黄启飞, 朱晓华, 等. 温度和停留时间对十溴联苯醚在污染土壤中热脱附的影响[J]. 环境科学研究, 2012, 25(9): 981-986. [12] 于颖, 周启星. 污染土壤化学修复技术研究与进展[J]. 环境污染治理技术与设备, 2005, 6(7): 1-7. [13] 李玉双, 胡晓钧, 宋雪英, 等. 城市工业污染场地土壤修复技术研究进展[J]. 安徽农业科学, 2012, 40(10): 6119-6122. doi: 10.3969/j.issn.0517-6611.2012.10.141 [14] 王瑛, 李扬, 黄启飞, 等. 污染物浓度与土壤粒径对热脱附修复DDTs污染土壤的影响[J]. 环境科学研究, 2011, 24(9): 1016-1022. [15] 高国龙, 蒋建国, 李梦露. 有机物污染土壤热脱附技术研究与应用[J]. 环境工程, 2012, 30(1): 128-131. [16] 白四红, 陈彤, 祁志福, 等. 载气流量及升温速率对污染土壤中多氯联苯热脱附的影响[J]. 化工学报, 2014, 65(6): 2256-2263. doi: 10.3969/j.issn.0438-1157.2014.06.041 [17] 赵中华. 含氯有机污染土壤热脱附及联合处置研究[D]. 杭州: 浙江大学, 2018. [18] HOU D Y, GU Q B, MA F J, et al. Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land[J]. Journal of Cleaner Production, 2016, 139: 949-956. doi: 10.1016/j.jclepro.2016.08.108 [19] XI H, HE Y L, WANG J H, et al. Transient response of waste heat recovery system for hydrogen production and other renewable energy utilization[J]. International Journal of Hydrogen Energy, 2019, 44(30): 15985-15996. doi: 10.1016/j.ijhydene.2018.08.062 [20] 张群力, 王明爽, 矫育青, 等. 喷淋式助燃空气加湿型烟气冷凝余热回收系统实验研究[J]. 科学技术与工程, 2019, 19(11): 123-129. doi: 10.3969/j.issn.1671-1815.2019.11.019 [21] 于晓娟, 阚德民, 顾吉浩. 天津某燃气锅炉的烟气余热回收案例实测分析[J]. 河北工业大学学报, 2019, 48(2): 56-61. [22] LU D, CHEN G F, GONG M Q, et al. Thermodynamic and economic analysis of a gas-fired absorption heat pump for district heating with cascade recovery of flue gas waste heat[J]. Energy Conversion and Management, 2019, 185: 87-100. doi: 10.1016/j.enconman.2019.01.110 [23] 徐廷万. 焦炉烟气SDS脱硫与余热回收的一体化应用[J]. 四川化工, 2019, 22(2): 25-27. doi: 10.3969/j.issn.1672-4887.2019.02.008 [24] 李顺营, 彭秋菊, 韩晓静, 等. 盐湖卤水制取电池级碳酸锂生产中盘式连续干燥器的应用[J]. 化学工程与装备, 2015(10): 182-184. [25] 郝万鹏. 盘式连续干燥机在聚天冬氨酸生产中的应用[J]. 化工管理, 2015(17): 18. doi: 10.3969/j.issn.1008-4800.2015.17.014 [26] 张继军, 杨大成, 李俊茹. 盘式连续干燥器的耙叶设计探讨[J]. 化学工程, 2011, 39(3): 13-17. doi: 10.3969/j.issn.1005-9954.2011.03.004 [27] 苏全卫, 周航. 连续盘式热风干燥器干燥盘结构设计与传热分析[J]. 食品与机械, 2017, 33(1): 97-100. [28] 周镝, 冯正茂, 徐彦国. 盘式连续干燥器与回转窑干燥机干燥镍精矿的比较[J]. 化工机械, 2009, 36(3): 230-233. doi: 10.3969/j.issn.0254-6094.2009.03.013 [29] 贺金森, 唐永亮. 精矿预干燥回转窑作业管理及故障分析[J]. 铜业工程, 2017(5): 93-96. doi: 10.3969/j.issn.1009-3842.2017.05.028 [30] 寇向上, 郭鹏飞. 镍铁回转窑-干燥窑系统除尘工艺分析[J]. 中国环保产业, 2017(1): 42-44. doi: 10.3969/j.issn.1006-5377.2017.01.008 [31] 赖栋文, 王欢. 浅谈红土镍矿回转窑: 干燥窑系统电除尘器分析与应用[J]. 资源节约与环保, 2016(6): 52-54. doi: 10.3969/j.issn.1673-2251.2016.06.037 [32] 魏博. 回转窑预干燥炉炉顶部位湿式喷补料的施工性[J]. 耐火与石灰, 2014, 39(5): 37-38. doi: 10.3969/j.issn.1673-7792.2014.05.012 -