-
吲哚常见于焦化废水中,是一种典型的氮杂环污染物。环境中过量的吲哚类物质会对人体造成伤害,故对吲哚废水的处理与资源化已成为急须解决的问题[1-4]。已有研究[5-11]表明,微生物能够对吲哚进行生物转化,生成靛蓝、靛玉红等具有高附加值的靛蓝类色素。相关研究有助于探索吲哚废水的资源化处置,近年来已逐渐引起人们的广泛关注。
研究发现,苯酚降解菌及相关功能酶能够较好地转化吲哚合成靛蓝类色素。KIM等[12]从苯酚降解菌Pseudomonas sp. KL28中克隆表达的多组分苯酚羟化酶(mPHKL28)能够转化吲哚,合成靛蓝和7-羟基吲哚,也能转化多种吲哚衍生物,合成具有不同颜色的靛蓝类色素。QU等[13]分离得到的苯酚降解菌Pseudomonas monteilii QM可转化吲哚,合成靛蓝、靛玉红等物质。WANG等[14]筛选的Pseudomonas sp. PI1和Acinetobacter sp. PI2也可在苯酚诱导下转化吲哚,合成多种靛蓝类色素。目前,苯酚降解菌对吲哚的生物转化研究报道较多,但是对于其他吲哚类物质(如甲基吲哚)的生物转化研究相对较少。
本研究在土壤中分离得到1株苯酚降解菌YC,通过形态观察及16S rRNA序列分析对菌株进行鉴定,考察菌株对吲哚及甲基吲哚的生物转化特性,并利用响应曲面法对菌株转化吲哚合成靛蓝的条件进行优化,为焦化废水中吲哚的生物处理与资源化提供高效的微生物资源。
苯酚降解菌生物转化吲哚及甲基吲哚的特性
Characteristics of indole and methylindoles biotransformation by phenol degrading bacteria
-
摘要: 为探索吲哚类废水的资源化处置效果,考察了苯酚降解菌对吲哚及甲基吲哚的生物转化行为,从土壤中分离筛选苯酚降解菌,结合16S rRNA序列分析对菌株进行鉴定;利用菌株休眠细胞对吲哚及甲基吲哚进行生物转化,采用液相色谱-质谱联用分析其转化产物,并结合响应曲面法对吲哚转化合成靛蓝的条件进行优化。结果表明:筛选得到的1株苯酚降解菌YC为Pseudomonas菌属;菌株YC的休眠细胞可对吲哚、5-甲基吲哚、6-甲基吲哚、7-甲基吲哚进行生物转化,生成靛蓝及甲基取代靛蓝。菌株转化吲哚合成靛蓝的最适条件为:生物量OD660 2.50,吲哚50.00 mg·L−1,反应体系pH 8.00,在此条件下,靛蓝产量可达到29.78 mg·L−1。综合上述结果,苯酚降解菌Pseudomonas sp. YC能较好地转化吲哚及甲基吲哚合成靛蓝类色素,在吲哚类废水生物修复中具有一定的应用前景。Abstract: In this study, the biotransformation behavior of indole and methylindoles by phenol-degrading bacteria was explored, as well as the resource utilization of the indoles wastewater. The phenol-degrading bacterial strain was isolated from soil, then was identified by 16S rRNA sequence analysis. The indole and methylindoles were biotransformed by the resting cells of strain, and the products were analyzed by liquid chromatography-mass spectrometry (LC-MS). The response surface methodology (RSM) was used to optimize the conditions of indoles biotransformation and indigo blue preparation. The results showed that a phenol-degrading bacterial strain YC was isolated and identified as Pseudomonas sp. Indole, 5-methylindole, 6-methylindole and 7-methylindole could be transformed to indigo and methyl substituted indigo by the resting cells of strain YC. The optimal conditions for indole biotransformation to indigo were as follows: biomass OD660 of 2.50; indole of 50.00 mg·L−1 and pH 8.00. Under the optimal conditions, the indigo yield could reach 29.78 mg·L−1. This indicated that the phenol-degrading strain Pseudomonas sp. YC could transform indole and methylindoles to indigoid pigments, which presents a promising potential application in the bioremediation of indole wastewater.
-
Key words:
- phenol-degrading bacteria /
- indole /
- methylindoles /
- indigo /
- surface response methodology
-
表 1 吲哚的生物转化合成靛蓝的条件优化与结果
Table 1. Condition optimization of indole biotransformation and indigo preparation and the corresponding experimental results
编号 生物量(OD660) 吲哚/
(mg·L−1)pH 靛蓝/(mg·L−1) 实验值 预测值 1 1.50 50.00 6.00 1.37 0 2 2.50 50.00 6.00 6.67 11.19 3 1.50 150.00 6.00 0.24 2.24 4 2.50 150.00 6.00 1.72 5.61 5 1.50 50.00 8.00 11.96 11.23 6 2.50 50.00 8.00 27.50 28.67 7 1.50 150.00 8.00 3.54 2.19 8 2.50 150.00 8.00 4.94 10.64 9 1.16 100.00 7.00 7.63 10.71 10 2.84 100.00 7.00 35.76 28.20 11 2.00 15.91 7.00 9.15 9.24 12 2.00 184.09 7.00 1.50 0 13 2.00 100.00 5.32 0.43 0 14 2.00 100.00 8.68 13.27 11.94 15 2.00 100.00 7.00 13.70 12.74 16 2.00 100.00 7.00 10.52 12.74 17 2.00 100.00 7.00 15.47 12.74 18 2.00 100.00 7.00 12.73 12.74 19 2.00 100.00 7.00 11.11 12.74 20 2.00 100.00 7.00 12.13 12.74 表 2 模型中不同因素的ANOVA结果
Table 2. ANOVA results for different factors in model
因素 偏差平法和 均方和 F值 P值1) 模型 1 093.64 121.52 14.22 0.000 1 A 220.69 220.69 25.83 0.000 5 B 203.86 203.86 23.86 0.000 6 C 284.82 284.82 33.34 0.000 2 AB 54.17 54.17 6.34 0.030 5 AC 21.12 21.12 2.47 0.140 7 BC 96.13 96.13 11.25 0.007 3 A2 11.06 11.06 1.29 0.281 8 B2 122.48 122.48 14.34 0.003 6 C2 81.48 81.48 9.54 0.011 5 注:1)P < 0.05则说明模型具有显著性。 -
[1] GUY R H, JEFFREY T K. Practical methodologies for the synthesis of indoles[J]. Chemical Reviews, 2006, 106(7): 2875-2911. doi: 10.1021/cr0505270 [2] 徐兆瑜. 医药化工中的一些重要吲哚化合物[J]. 精细化工原料及中间体, 2009(1): 27-30. [3] MA Q, ZHANG X, QU Y. Biodegradation and biotransformation of indole: Advances and perspectives[J]. Frontiers in Microbiology, 2018, 9: 2625. doi: 10.3389/fmicb.2018.02625 [4] QU Y, SHEN E, MA Q, et al. Biodegradation of indole by a newly isolated Cupriavidus sp. SHE[J]. Journal of Environmental Sciences, 2015, 34(8): 126-132. [5] 韩晓红, 王伟, 肖兴国. 靛蓝及其同类色素的微生物生产与转化[J]. 生物工程学报, 2008, 24(6): 921-926. doi: 10.3321/j.issn:1000-3061.2008.06.003 [6] 马桥, 曲媛媛, 张旭旺, 等. 靛蓝的微生物合成研究新进展[J]. 应用与环境生物学报, 2012, 18(2): 344-350. [7] BOYD C, LARKIN M J, REID K A, et al. Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038[J]. Applied & Environmental Microbiology, 1997, 63(1): 151-155. [8] MURDOCK D, ENSLEY B D, SERDAR C, et al. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli[J]. Biotechnology, 1993, 11(3): 381-386. doi: 10.1038/nbt0393-381 [9] GUI H H, SHIN H J, SI W K. Optimization of bio-indigo production by recombinant E. coli, harboring fmo gene[J]. Enzyme & Microbial Technology, 2008, 42(7): 617-623. [10] HAN G H, BANG S E, BABU B K, et al. Bio-indigo production in two different fermentation systems using recombinant[J]. Process Biochemistry, 2011, 46(3): 788-791. doi: 10.1016/j.procbio.2010.10.015 [11] 由胜男, 沈文丽, 裴晓芳, 等. Comamonas sp. IDO2合成靛蓝的特性研究[J]. 环境科学学报, 2017, 37(6): 2069-2075. [12] KIM J Y, KIM J K, LEE S O, et al. Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives[J]. Letters in Applied Microbiology, 2005, 41: 163-168. doi: 10.1111/lam.2005.41.issue-2 [13] QU Y, MA Q, ZHANG X, et al. Optimization of indigo production by a newly isolated Pseudomonas sp. QM[J]. Journal of Basic Microbiology, 2012, 52(6): 687-694. doi: 10.1002/jobm.v52.6 [14] WANG J, ZHANG X, FAN J, et al. Indigoids biosynthesis from indole by two phenol-degrading strains, Pseudomonas sp. PI2[J]. Applied Biochemistry and Biotechnology, 2015, 176(5): 1263-1276. doi: 10.1007/s12010-015-1644-9 [15] 王永菲, 王成国. 响应面法的理论与应用[J]. 中央民族大学学报(自然科学版), 2005, 14(3): 236-240. doi: 10.3969/j.issn.1005-8036.2005.03.008 [16] KIM J Y, LEE K, KIM Y, et al. Production of dyestuffs from indole derivatives by naphthalene dioxygenase and toluene dioxygenase[J]. Letters in Applied Microbiology, 2003, 36(6): 343-348. doi: 10.1046/j.1472-765X.2003.01279.x [17] O′CONNOR K E, HARTMANS S. Indigo formation by aromatic hydrocarbon-degrading bacteria[J]. Biotechnology Letters, 1998, 20(3): 219-223. doi: 10.1023/A:1005361415496 [18] LU Y, MEI L. Optimization of fermentation conditions for P450 BM-3 monooxygenase production by hybrid design methodology[J]. Journal of Zhejiang University Science B, 2007, 8(1): 27-32. doi: 10.1631/jzus.2007.B0027 [19] DOUKYU N, NAKANO T, OKUYAMA Y, et al. Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole[J]. Applied Microbiology and Biotechnology, 2002, 58(4): 543-546. doi: 10.1007/s00253-001-0919-y [20] 李诗阳, 袁琪, 黄益养, 等. 萘降解菌MQ合成靛蓝的研究[J]. 环境科学学报, 2012, 32(8): 1807-1813.