-
在我国,农药被大量生产和广泛使用,随之产生了严重的环境污染问题。有机磷杀虫剂是一类常用农药,在我国地表水和地下水中常被检出[1-4]。乐果作为一种典型的有机磷类农药,不仅污染土壤、水体,而且对动植物和人类的健康也造成潜在危害,因此,去除饮用水中的微量污染物乐果具有重要的现实意义。
传统的饮用水处理流程包括预氧化、混凝/沉淀、过滤、消毒等工艺,难以去除水中微量的乐果[5]。有些研究采用臭氧氧化法[6-7]、纳米TiO2光催化氧化法[8-9]、芬顿(Fenton)氧化法[10-11]、超声波降解法[12-13]等技术去除水中的乐果,虽有一定的效果,但这些方法在实际应用中仍存在一些局限性,如降解效率低、光量子产率低、催化剂难再生、能耗大等,无法高效、经济地对水中有机磷农药进行去除[14]。近年来,有研究[15]发现,真空紫外(VUV)及其组合工艺对水中微量有机污染物具有高效的去除能力,且与其他高级氧化工艺(AOPs)相比,具有低能耗、低成本等优点[16],因而日益受到研究者的关注。采用此法降解全氟辛酸、农药涕灭威、甲草胺、氯烯酮等[17-18],均取得较好的效果。
本研究将VUV/UV新型光源辐照与饮用水常用消毒剂Cl2相结合,构建了VUV/UV/Cl2工艺,考察其对饮用水中乐果的去除效果,以期为饮用水中难降解微量污染物的高效去除提供参考。
VUV/UV/Cl2工艺去除饮用水中的乐果
Removal of dimethoate in drinking water by VUV/UV/Cl2 process
-
摘要: 乐果是常规饮用水处理技术难以去除的一种典型有机磷农药。为了能够控制并去除饮用水中的农药残留,达到进一步净化水质的目的,建立了降解动力学模型,采用模拟降解饮用水中乐果的方法,对比了乐果在紫外(UV)、氯(Cl2)、紫外/氯(UV/Cl2)、真空紫外/紫外(VUV/UV)和真空紫外/紫外/氯(VUV/UV/Cl2) 5种工艺下的去除效果,并考察了乐果初始浓度、Cl2投加量、溶液pH、水中共存天然有机物(NOM)和无机阴离子(
${\rm{NO}}_3^ - $ 、Cl−、${\rm{HCO}}_3^ - $ 、${\rm{SO}}_4^ {2-} $ )对VUV/UV/Cl2工艺降解乐果的影响。结果表明:VUV/UV/Cl2对乐果的降解效率最高,乐果的去除率随其初始浓度的增加而减小;适当增加Cl2投加量,可提高乐果的降解效率;提高pH有利于乐果的降解;NOM对乐果的降解有一定的抑制作用;水中共存无机阴离子${\rm{NO}}_3^ - $ 、Cl−和${\rm{HCO}}_3^ - $ 可以捕获反应体系中的强氧化性羟基自由基(HO·),对乐果的降解起到抑制作用,而${\rm{SO}}_4^ {2-} $ 因其捕获HO·的速率很低,无抑制作用。-
关键词:
- VUV/UV/Cl2 /
- 乐果 /
- 去除 /
- 饮用水处理
Abstract: In order to control and remove pesticide residues in drinking water and achieve the purpose of further purification of water quality, a degradation kinetic model was established, and a method for simulating degradation of dimethoate (DMT) in drinking water was selected. DMT is a typical organophosphorus pesticide and is difficult to remove by conventional drinking water treatment technologies. The removal efficiencies of DMT by five treatment processes including ultraviolet (UV), chlorine (Cl2), UV/Cl2, vacuum-UV/UV (VUV/UV) and VUV/UV/Cl2 were investigated comparatively. The effects of initial DMT concentration, Cl2 dosage, solution pH, co-existing natural organic matter (NOM) and inorganic anions (${\rm{NO}}_3^ - $ , Cl−,${\rm{HCO}}_3^ - $ ,${\rm{SO}}_4^ {2-} $ ) in water on DMT degradation by VUV/UV/Cl2 were explored. The results indicated that the VUV/UV/Cl2 process was the most efficient one to remove DMT. The DMT removal rate decreased with the increase of its initial concentration. The increase of the Cl2 dosage to a certain extent improved DMT removal, and the increase of pH also facilitated DMT removal. NOM exhibited a certain inhibition on DMT removal. Co-existing inorganic anions including${\rm{NO}}_3^ - $ , Cl− and${\rm{HCO}}_3^ - $ in water could capture the hydroxyl radicals (HO·) generated in the reaction system, thus inhibiting DMT removal, while${\rm{SO}}_4^ {2-} $ reacted with HO· very slowly and did not show any inhibitory effect.-
Key words:
- VUV/UV/Cl2 /
- dimethoate /
- removal /
- drinking water treatment
-
-
[1] ZHANG Z L, HONG H S, ZHOU J L, et al. Occurrence and behaviour of organophosphorus insecticides in the River Wuchuan, southeast China[J]. Journal of Environmental Monitoring, 2002, 4(4): 498-504. doi: 10.1039/b203852h [2] GAO J, LIU L, LIU X, et al. The occurrence and spatial distribution of organophosphorous pesticides in Chinese surface water[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(2): 223-229. doi: 10.1007/s00128-008-9618-z [3] 李永玉, 洪华生, 王新红, 等. 厦门海域有机磷农药污染现状与来源分析[J]. 环境科学学报, 2005, 25(8): 1071-1077. doi: 10.3321/j.issn:0253-2468.2005.08.013 [4] 王凌, 黎先春, 殷月芬, 等. 莱州湾水体中有机磷农药的残留检测与风险影响评价[J]. 安全与环境学报, 2007, 7(3): 83-85. doi: 10.3969/j.issn.1009-6094.2007.03.021 [5] ORMAD M P, MIGUEL N, CLAVER A, et al. Pesticides removal in the process of drinking water production[J]. Chemosphere, 2008, 71(1): 97-106. doi: 10.1016/j.chemosphere.2007.10.006 [6] 龚勇, 秦冬梅. 臭氧消解水中残留农药的试验研究[J]. 农药科学与管理, 1999, 20(2): 16-17. [7] 陆胜民, 欧阳小琨, 应敏, 等. 臭氧降解乐果机理探讨[J]. 农村生态环境, 2004, 20(3): 70-72. [8] 陈建秋, 王志良, 王铎, 等. 纳米TiO2光催化降解乐果溶液的影响因素研究[J]. 中国给水排水, 2007, 23(19): 98-102. doi: 10.3321/j.issn:1000-4602.2007.19.026 [9] 王秀芹, 李政一. TiO2对有机磷农药乐果光催化降解的影响[J]. 安全与环境学报, 2008, 8(3): 82-84. doi: 10.3969/j.issn.1009-6094.2008.03.021 [10] GANDHI K, LARI S, TRIPATHI D, et al. Advanced oxidation processes for the treatment of chlorpyrifos, dimethoate and phorate in aqueous solution[J]. Journal of Water Reuse and Desalination, 2016, 6(1): 195-203. doi: 10.2166/wrd.2015.062 [11] 吴进华, 李小明, 曾光明, 等. 含乐果废水的循环电-Fenton氧化过程及其影响因素[J]. 环境科学学报, 2008, 28(8): 1534-1541. doi: 10.3321/j.issn:0253-2468.2008.08.007 [12] YAO J J, HOFFMANN M R, GAO N Y, ZHANG Z, et al. Sonolytic degradation of dimethoate: Kinetics, mechanisms and toxic intermediates controlling[J]. Water Research, 2011, 45(18): 5886-5894. doi: 10.1016/j.watres.2011.08.042 [13] LIU Y N, JIN D, LU X P, et al. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor[J]. Ultrasonics Sonochemistry, 2008, 15(5): 755-760. doi: 10.1016/j.ultsonch.2007.12.004 [14] 黄雅, 李政一, 赵博生. 有机磷农药乐果降解的研究现状与进展[J]. 环境科学与管理, 2009, 34(4): 20-24. doi: 10.3969/j.issn.1673-1212.2009.04.007 [15] ZOSCHKE K, BORNICK H, WORCH E. Vacuum-UV radiation at 185 nm in watertreatment: A review[J]. Water Research, 2014, 52(4): 131-145. [16] 吴铮笛, 温栋, 李梦凯, 等. 真空紫外线(185 nm)在水处理中的研究及应用进展[J]. 中国给水排水, 2017, 33(22): 43-48. [17] CHEN J, ZHANG P Y, LIU J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light[J]. Journal of Environmental Science, 2007, 19(4): 387-390. doi: 10.1016/S1001-0742(07)60064-3 [18] YANG L X, LI M K, LI W T, et al. Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process[J]. Chemical Engineering Journal, 2018, 342: 155-162. doi: 10.1016/j.cej.2018.02.075 [19] LI M K, QIANG Z M, HOU P, et al. VUV/UV/chlorine as an enhanced advanced oxidation process for organic pollutant removal from water: Assessment with a novel mini-fluidic VUV/UV photoreaction system (MVPS)[J]. Environmental Science & Technology, 2016, 50(11): 5849-5856. [20] WEN D, WU Z D, TANG Y B, et al. Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: Impact of sulfamethazine concentration on reaction mechanism[J]. Journal of Hazardous Materials, 2018, 344: 1181-1187. doi: 10.1016/j.jhazmat.2017.10.032 [21] 田芳. 水中农药与氯系消毒剂反应的动力学与机理研究[D]. 北京: 中国科学院大学, 2010. [22] WEEKS J L, MEABURN G M A, GORDON S. Absorption coefficients of liquid water and aqueous solutions in far ultraviolet[J]. Radiation Research, 1963, 19(3): 559-567. doi: 10.2307/3571475 [23] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [24] LI M K, WANG C, YAU M L, et al. Sulfamethazine degradation in water by the VUV/UV process: Kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system[J]. Water Research, 2016, 108: 348-355. [25] FENG Y, SMITH D W, BOLTON J R. Corrigendum: photolysis of aqueous free chlorine species (HOCl and OCl−) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering & Science, 2015, 6(1): 179-180. [26] 杨腊祥. VUV/UV处理饮用水中农药的机理和应用研究[D]. 北京: 中国科学院大学, 2018. [27] JIN J, El-DIN M G, BOLTON J R. Assessment of the UV/chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896. doi: 10.1016/j.watres.2010.12.008 [28] WANG D, BOLTON J R, ANDREWS S A, et al. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012, 46(15): 4677-4686. doi: 10.1016/j.watres.2012.06.007 [29] BUCHANAN W, RODDICK F, PORTER N, et al. Fractionation of UV and VUV pretreated natural organic matter from drinking water[J]. Environmental Science & Technology, 2005, 39(12): 4647-4654. [30] GONZALEZ M C, BRAUN A M. VUV photolysis of aqueous solutions of nitrate and nitrite[J]. Research on Chemical Intermediates, 1995, 21(8/9): 837-859. [31] ALEGRE M L, GERONES M, ROSSO J A, et al. Kinetic study of the reactions of chlorine atoms and $ {\rm{Cl}}_2^{ \cdot - } $ radical anions in aqueous solutions. 1. Reaction with benzene[J]. Journal of Physical Chemistry A, 2000, 104(14): 3117-3125. doi: 10.1021/jp9929768