[1] |
ZHANG Z L, HONG H S, ZHOU J L, et al. Occurrence and behaviour of organophosphorus insecticides in the River Wuchuan, southeast China[J]. Journal of Environmental Monitoring, 2002, 4(4): 498-504. doi: 10.1039/b203852h
|
[2] |
GAO J, LIU L, LIU X, et al. The occurrence and spatial distribution of organophosphorous pesticides in Chinese surface water[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(2): 223-229. doi: 10.1007/s00128-008-9618-z
|
[3] |
李永玉, 洪华生, 王新红, 等. 厦门海域有机磷农药污染现状与来源分析[J]. 环境科学学报, 2005, 25(8): 1071-1077. doi: 10.3321/j.issn:0253-2468.2005.08.013
|
[4] |
王凌, 黎先春, 殷月芬, 等. 莱州湾水体中有机磷农药的残留检测与风险影响评价[J]. 安全与环境学报, 2007, 7(3): 83-85. doi: 10.3969/j.issn.1009-6094.2007.03.021
|
[5] |
ORMAD M P, MIGUEL N, CLAVER A, et al. Pesticides removal in the process of drinking water production[J]. Chemosphere, 2008, 71(1): 97-106. doi: 10.1016/j.chemosphere.2007.10.006
|
[6] |
龚勇, 秦冬梅. 臭氧消解水中残留农药的试验研究[J]. 农药科学与管理, 1999, 20(2): 16-17.
|
[7] |
陆胜民, 欧阳小琨, 应敏, 等. 臭氧降解乐果机理探讨[J]. 农村生态环境, 2004, 20(3): 70-72.
|
[8] |
陈建秋, 王志良, 王铎, 等. 纳米TiO2光催化降解乐果溶液的影响因素研究[J]. 中国给水排水, 2007, 23(19): 98-102. doi: 10.3321/j.issn:1000-4602.2007.19.026
|
[9] |
王秀芹, 李政一. TiO2对有机磷农药乐果光催化降解的影响[J]. 安全与环境学报, 2008, 8(3): 82-84. doi: 10.3969/j.issn.1009-6094.2008.03.021
|
[10] |
GANDHI K, LARI S, TRIPATHI D, et al. Advanced oxidation processes for the treatment of chlorpyrifos, dimethoate and phorate in aqueous solution[J]. Journal of Water Reuse and Desalination, 2016, 6(1): 195-203. doi: 10.2166/wrd.2015.062
|
[11] |
吴进华, 李小明, 曾光明, 等. 含乐果废水的循环电-Fenton氧化过程及其影响因素[J]. 环境科学学报, 2008, 28(8): 1534-1541. doi: 10.3321/j.issn:0253-2468.2008.08.007
|
[12] |
YAO J J, HOFFMANN M R, GAO N Y, ZHANG Z, et al. Sonolytic degradation of dimethoate: Kinetics, mechanisms and toxic intermediates controlling[J]. Water Research, 2011, 45(18): 5886-5894. doi: 10.1016/j.watres.2011.08.042
|
[13] |
LIU Y N, JIN D, LU X P, et al. Study on degradation of dimethoate solution in ultrasonic airlift loop reactor[J]. Ultrasonics Sonochemistry, 2008, 15(5): 755-760. doi: 10.1016/j.ultsonch.2007.12.004
|
[14] |
黄雅, 李政一, 赵博生. 有机磷农药乐果降解的研究现状与进展[J]. 环境科学与管理, 2009, 34(4): 20-24. doi: 10.3969/j.issn.1673-1212.2009.04.007
|
[15] |
ZOSCHKE K, BORNICK H, WORCH E. Vacuum-UV radiation at 185 nm in watertreatment: A review[J]. Water Research, 2014, 52(4): 131-145.
|
[16] |
吴铮笛, 温栋, 李梦凯, 等. 真空紫外线(185 nm)在水处理中的研究及应用进展[J]. 中国给水排水, 2017, 33(22): 43-48.
|
[17] |
CHEN J, ZHANG P Y, LIU J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light[J]. Journal of Environmental Science, 2007, 19(4): 387-390. doi: 10.1016/S1001-0742(07)60064-3
|
[18] |
YANG L X, LI M K, LI W T, et al. Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process[J]. Chemical Engineering Journal, 2018, 342: 155-162. doi: 10.1016/j.cej.2018.02.075
|
[19] |
LI M K, QIANG Z M, HOU P, et al. VUV/UV/chlorine as an enhanced advanced oxidation process for organic pollutant removal from water: Assessment with a novel mini-fluidic VUV/UV photoreaction system (MVPS)[J]. Environmental Science & Technology, 2016, 50(11): 5849-5856.
|
[20] |
WEN D, WU Z D, TANG Y B, et al. Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: Impact of sulfamethazine concentration on reaction mechanism[J]. Journal of Hazardous Materials, 2018, 344: 1181-1187. doi: 10.1016/j.jhazmat.2017.10.032
|
[21] |
田芳. 水中农药与氯系消毒剂反应的动力学与机理研究[D]. 北京: 中国科学院大学, 2010.
|
[22] |
WEEKS J L, MEABURN G M A, GORDON S. Absorption coefficients of liquid water and aqueous solutions in far ultraviolet[J]. Radiation Research, 1963, 19(3): 559-567. doi: 10.2307/3571475
|
[23] |
FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
|
[24] |
LI M K, WANG C, YAU M L, et al. Sulfamethazine degradation in water by the VUV/UV process: Kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system[J]. Water Research, 2016, 108: 348-355.
|
[25] |
FENG Y, SMITH D W, BOLTON J R. Corrigendum: photolysis of aqueous free chlorine species (HOCl and OCl−) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering & Science, 2015, 6(1): 179-180.
|
[26] |
杨腊祥. VUV/UV处理饮用水中农药的机理和应用研究[D]. 北京: 中国科学院大学, 2018.
|
[27] |
JIN J, El-DIN M G, BOLTON J R. Assessment of the UV/chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896. doi: 10.1016/j.watres.2010.12.008
|
[28] |
WANG D, BOLTON J R, ANDREWS S A, et al. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012, 46(15): 4677-4686. doi: 10.1016/j.watres.2012.06.007
|
[29] |
BUCHANAN W, RODDICK F, PORTER N, et al. Fractionation of UV and VUV pretreated natural organic matter from drinking water[J]. Environmental Science & Technology, 2005, 39(12): 4647-4654.
|
[30] |
GONZALEZ M C, BRAUN A M. VUV photolysis of aqueous solutions of nitrate and nitrite[J]. Research on Chemical Intermediates, 1995, 21(8/9): 837-859.
|
[31] |
ALEGRE M L, GERONES M, ROSSO J A, et al. Kinetic study of the reactions of chlorine atoms and $ {\rm{Cl}}_2^{ \cdot - } $ radical anions in aqueous solutions. 1. Reaction with benzene[J]. Journal of Physical Chemistry A, 2000, 104(14): 3117-3125. doi: 10.1021/jp9929768
|