-
随着国民生活水平的日益提高,与人民生活密切相关的《生活饮用水卫生标准》也更加严苛。目前,生活饮用水面临的主要问题是输水管网带来的饮用水中生物安全隐患[1]。可同化生物有机碳(AOC)被普遍认为是饮用水生物稳定性的一个重要参数[2]。已有研究[3]发现,磷是控制管网中饮用水微生物生长的重要因素,当饮用水中磷酸盐浓度低于0.01 mg·L−1时,显示出明显的细菌生长抑制作用[4]。因此,控制饮用水中磷含量是有效的控制细菌生长的重要手段之一。
与其他的除磷技术相比,吸附法具有占地面积小、稳定性强等特点,故引起越来越广泛的关注[5]。在已有的研究中,以天然高分子材料[6]、碳基材料[7]、无机金属氧化物材料[8]、纤维材料[9]等作为改性材料来吸附水中的磷均具有良好的效果。与其他材料相比,镧基改性材料[10]对磷酸盐的吸附容量高,吸附选择性强,且具有较好的生物安全性,在水体除磷领域备受关注[11]。
本研究以熔融纺丝法制备纳米氧化镧负载的聚丙烯纤维复合材料,再经聚乙烯亚胺改性制备成PEI/La2O3/PP纤维吸附材料,研究了其对饮用水中微量磷的去除效果及对饮用水中细菌生长的抑制作用;考察了pH、共存离子等因素对磷吸附效果的影响;采用吸附等温模型、吸附动力模型对吸附机理进行了探讨;通过微生物实验,探究了饮用水中细菌生长与磷含量的关系。本研究可为控制饮用水中微生物的二次生长潜能提供参考。
改性La2O3/聚丙烯纤维对饮用水中磷的吸附及控菌效果
Effect of phosphate adsorption and antibacteria in drinking water by modified La2O3/polypropylene fibers
-
摘要: 为了研究吸附剂在饮用水中除磷控菌效果,在聚丙烯(PP)纤维上负载氧化镧(La2O3)纳米颗粒,并用聚乙烯亚胺(PEI)对吸附剂表面进行亲水改性,制备出PEI/La2O3/PP纤维吸附材料,使用X射线衍射分析(XRD)对其进行了表征。实验结果表明:偏酸性条件有利于磷的吸附,溶液中共存离子对吸附效果的影响不大;当温度为45 ℃时,PEI/La2O3/PP对磷的饱和吸附容量达到76.67 mg·g−1,吸附过程能够较好地拟合Langmuir模型;吸附动力学过程能够较好地拟合准二级反应动力学方程。该吸附材料对饮用水中的微量磷具有良好的吸附去除效果,磷深度去除后能达到明显的抑菌效果。Abstract: In order to study the effect of adsorbent on phosphate removal and antibacteria in drinking water. Lanthanum oxide (La2O3) nanoparticles were loaded on polypropylene (PP) fibers and polyethyleneimine (PEI) was used to perform hydrophilic modification of the adsorbent surface, then PEI/La2O3/PP adsorbent was prepared. The materials were characterized by X-ray diffraction (XRD). The experimental results showed that the weak acidic conditions could facilitate its phosphate adsorption, and the coexistence ions had slight effect on the adsorption effect. When the temperature was 45 ℃, the saturated adsorption capacity of PEI/La2O3/PP towards phosphate reached 76.67 mg·g−1. The adsorption isotherm followed Langmuir model. The kinetic equation followed pseudo-second-order kinetics. The adsorbent had a good adsorption effect on trace phosphate in drinking water. Moreover, an excellent bacteriostatic effect could occur after phosphate removal.
-
Key words:
- La2O3 /
- polypropylene fibers /
- adsorption /
- phosphate /
- antibacteria
-
表 1 吸附等温线模型拟合参数
Table 1. Adsorption isotherm parameters for phosphate adsorption
温度/℃ Langmuir Freundlich qm/(mg·g−1) KL/(L·g−1) R2 n KF/(L·g−1) R2 25 99.305 0.031 67 0.934 08 1.317 1 3.297 0 0.947 57 35 99.701 0.037 29 0.951 96 1.348 0 3.789 2 0.943 01 45 102.56 0.044 52 0.964 86 1.428 9 3.609 2 0.915 82 表 2 吸附动力学模型拟合参数
Table 2. Kinetic parameters for phosphate adsorption
温度/℃ 准一级动力学 准二级动力学 k1/min−1 qe/(mg·g−1) R2 k2/(g·(mg·min)−1) qe/(mg·g−1) R2 25 0.505 16 0.263 70 0.873 42 1.649 71 0.326 50 0.930 91 35 0.570 99 0.289 43 0.893 24 1.802 26 0.352 28 0.953 54 45 0.631 57 0.318 02 0.949 80 1.891 19 0.382 24 0.986 28 -
[1] 姜登岭, 张晓健. 饮用水中磷与细菌再生长的关系[J]. 环境科学, 2004, 25(5): 57-60. doi: 10.3321/j.issn:0250-3301.2004.05.012 [2] KOOIJ D V D, VISSER A, HIJNEN W A M. Determining the concentration of easily assimilable organic carbon in drinking water[J]. Journal American Works Association, 1982, 74(10): 540-545. doi: 10.1002/j.1551-8833.1982.tb05000.x [3] MIETTINEN I T, VARTIAINEN T, MARTIKAINEN P J. Contamination of drinking water[J]. Proceedings of the Academy of Natural Sciences of Philadelphia, 1996, 29(6584): 19-20. [4] MIETTINEN I T, VARTIAINEN T, MARTIKAINEN P J. Phosphorus and bacterial growth in drinking water[J]. Applied & Environmental Microbiology, 1997, 63(8): 3242-3245. [5] 孟顺龙, 胡庚东, 宋超, 等. 镧改性吸附剂废水除磷技术研究进展[J]. 环境科学与技术, 2012, 35(S2): 194-199. [6] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 14-22. [7] LIU T, CHEN X, WANG X, et al. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3[J]. Chemical Engineering Journal, 2018, 335: 443-449. doi: 10.1016/j.cej.2017.10.117 [8] 雷行, 杨雪, 刘婷, 等. 锆改性铝氧化物对水中磷的吸附特性[J]. 环境工程学报, 2018, 12(5): 117-124. [9] HE J J, WANG W, SHI W X, et al. La2O3 nanoparticles polyacrylonitrile nanofibers for bacterial inactivation based on phosphate control[J]. RSC Advances, 2016, 6: 99353-99360. doi: 10.1039/C6RA22374E [10] HAGHSERESHT F, WANG S B, DO D D. A novel lanthanum-modified bentonite, phoslock, for phosphate removal from wastewaters[J]. Applied Clay Science, 2009, 46(4): 369-375. doi: 10.1016/j.clay.2009.09.009 [11] COPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review[J]. Water Research, 2016, 97: 162-174. doi: 10.1016/j.watres.2015.11.056 [12] 于岩. 新型水相吸附材料[M]. 北京: 科学出版社, 2016. [13] ZHU H T, QIU S S, JIANG W, et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45(10): 4527-4531. [14] LIU C, WU L L, ZHANG C C, et al. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine[J]. Applied Surface Science, 2018, 457: 695-704. doi: 10.1016/j.apsusc.2018.06.131 [15] 杜涛, 王莹, 高超, 等. 离子色谱法测定饮用水中无机阴离子[J]. 沈阳师范大学学报 (自然科学版), 2011, 29(2): 260-263.