-
随着国民生活水平的日益提高,与人民生活密切相关的《生活饮用水卫生标准》也更加严苛。目前,生活饮用水面临的主要问题是输水管网带来的饮用水中生物安全隐患[1]。可同化生物有机碳(AOC)被普遍认为是饮用水生物稳定性的一个重要参数[2]。已有研究[3]发现,磷是控制管网中饮用水微生物生长的重要因素,当饮用水中磷酸盐浓度低于0.01 mg·L−1时,显示出明显的细菌生长抑制作用[4]。因此,控制饮用水中磷含量是有效的控制细菌生长的重要手段之一。
与其他的除磷技术相比,吸附法具有占地面积小、稳定性强等特点,故引起越来越广泛的关注[5]。在已有的研究中,以天然高分子材料[6]、碳基材料[7]、无机金属氧化物材料[8]、纤维材料[9]等作为改性材料来吸附水中的磷均具有良好的效果。与其他材料相比,镧基改性材料[10]对磷酸盐的吸附容量高,吸附选择性强,且具有较好的生物安全性,在水体除磷领域备受关注[11]。
本研究以熔融纺丝法制备纳米氧化镧负载的聚丙烯纤维复合材料,再经聚乙烯亚胺改性制备成PEI/La2O3/PP纤维吸附材料,研究了其对饮用水中微量磷的去除效果及对饮用水中细菌生长的抑制作用;考察了pH、共存离子等因素对磷吸附效果的影响;采用吸附等温模型、吸附动力模型对吸附机理进行了探讨;通过微生物实验,探究了饮用水中细菌生长与磷含量的关系。本研究可为控制饮用水中微生物的二次生长潜能提供参考。
-
试剂:氢氧化钠(AR,天津市风船化学试剂有限公司)、盐酸(AR,天津市风船化学试剂有限公司)、磷酸二氢钾(AR,上海麦克林生化科技有限公司)、抗坏血酸(AR,天津市天新精细化工开发中心)、钼酸铵(AR,天津市光复科技发展有限公司)、过硫酸钾(AR,天津市风船化学试剂有限公司)、H2SO4(AR,天津市风船化学试剂有限公司)、纳米氧化镧(50 nm,罗恩试剂)、聚丙烯(工业级,中国石化上海石油化工股份有限公司)、聚乙烯亚胺(M.W.600,上海麦瑞尔化学技术有限公司)、戊二醛(上海麦瑞尔化学技术有限公司)、异丙醇(AR,天津市津东天正精细化学试剂厂)、牛肉膏蛋白胨培养基(BR,北京奥博星生物技术有限公司)。
仪器:小型单丝纺丝试验机(无锡市兰华纺织机械有限公司)、真空干燥箱(恒幸仪器设备厂)、精密电子天平(奥豪斯国际上海贸易有限公司)、PH-3210PH计(德国WTW公司)、磁力加热搅拌器(C-MAG HS7)、蠕动泵BT100-2J(Longer Pump)、立式压力蒸汽灭菌器(上海博讯实业有限公司医疗设备厂)、紫外可见分光光度计TU-1810(北京朴析通用仪器有限责任公司)、超净工作台(苏州金大净化工程有限公司)、光照培养箱SPX-300B-G型(上海博讯实业有限公司)。
-
氧化镧/聚丙烯(La2O3/PP)复合纤维材料的制备:将25、50、100、300 g纳米La2O3颗粒分别与10 kg聚丙烯颗粒手动混合约2 min,然后将混合物加入到熔融纺丝机的进样料斗中,将进样料斗调到振荡模式,保证混合均匀,随后进入高温熔融室(熔融温度约为210 ℃),经过高温熔融纺丝制得负载La2O3的聚丙烯纤维材料,La2O3的负载质量分数分别为0.25%、0.5%、1%、3%。
La2O3/PP复合纤维材料的亲水性改性:使用去离子水∶异丙醇=1∶1配制质量分数为0.25%、0.5%、1%、3%聚乙烯亚胺(PEI)溶液。将筛选出的最佳La2O3负载量的La2O3/PP复合材料分别溶于不同浓度的聚乙烯亚胺溶液中,浸渍24 h。然后将其浸渍于质量分数为0.1%的戊二醛溶液中,交联反应12 h,用大量蒸馏水洗涤,烘干。最终制得吸附材料,简称为PEI/La2O3/PP。采用X射线衍射分析仪(XRD)进行晶型结构分析。
-
实验均取3 L不同浓度磷溶液,置于实验装置中,加入复合纤维材料,反应一定时间,测定溶液的磷含量。循环吸附实验装置如图1所示。
配置0.1 mg·L−1的磷溶液,加入氧化镧负载量分别为0.25%、0.5%、1%、3%的吸附材料,在实验装置中进行吸附反应,测定反应后磷溶液的浓度。使用磷钼蓝分光光度法(GB 11893-1989),此方法磷的检出限为0.01 mg·L−1。使用电感耦合等离子体原子发射光谱(ICP-OES)测定镧元素的溶出率,此方法的镧检出限为1 μg·L−1。
配置0.1 mg·L−1的磷溶液,加入PEI浓度分别为0.25%、0.5%、1%、3%的吸附剂,其余步骤同上述实验。
配置0.1 mg·L−1的磷溶液,用NaOH/HCl调节pH为3、4、5、6、7、8、9、10、11,其余步骤同上述实验。
配置
CO2−3 、SO2−4 、Cl−、NO−3 离子浓度均为1 mmol·L−1,磷浓度为0.1 mg·L−1的溶液,其余步骤同上述实验。配置初始浓度为1~80 mg·L−1的磷溶液,置于实验装置中,控制温度在25、35、45 ℃,反应6 h后取样,测定溶液中磷含量。
Langmuir等温吸附理论的观点是:吸附剂表面吸附位点分布均匀,吸附质在固体表面上存在着吸附和解析2种过程,这2种过程通过相互作用最后达到吸附平衡[12]。其吸附等温线模型如式(1)所示。
式中:qe为平衡吸附量,mg·g−1;qm为饱和吸附量,mg·g−1;Ce为平衡吸附浓度,mg·L−1;KL为平衡吸附常数。
Freundlich吸附机理对表面不均匀、比表面积大的固体具有很好的适应性[12],其表达式如式(2)所示。
式中:qe为平衡吸附量,mg·g−1;Ce为平衡吸附浓度,mg·L−1;KF为吸附相关系数;n为吸附相关系数。
根据Freundlich吸附理论,KF表征吸附剂的吸附能力,n值反映了吸附剂的不均匀吸附反应,当n<0.5时,吸附不易进行。
配置初始浓度为0.1 mg·L−1的磷溶液,置于吸附实验装置中,控制温度在25、35、45 ℃,在一定时间间隔中取样,测定溶液中磷含量。
准一级动力学方程认为,吸附速率与吸附剂上未被占据的吸附位点成正比,方程如式(3)所示。
式中:k1为准一级吸附速率常数,min−1;qe为平衡吸附量,mg·g−1;qt为t时刻吸附量,mg·g−1;t为吸附时间,h。
准二级动力学方程认为,吸附速率与吸附剂上未被占据的吸附位点的平方成正比,方程如式(4)所示。
式中:k2为准二级吸附速率常数,min−1;qe为平衡吸附量,mg·g−1;qt为t时刻吸附量,mg·g−1;t为吸附时间,h。
-
测定细菌浓度具体方法按照《生活饮用水标准检测方法》(GB/T 5750-2006)进行检测。取一定量超纯水,经过高温灭菌制成无菌水,用无菌水配置细菌浓度为1 000 CFU·mL−1的大肠杆菌溶液,取3 L大肠杆菌溶液于实验装置中,分别加入PEI/La2O3/PP纤维材料和PEI /PP纤维材料,在一定时间内取样,测定自来水中细菌浓度。饮用水在无菌的条件下放置3 d,以达到去除余氯的目的。取3 L自来水于实验装置中,加入复合纤维材料,在一定时间间隔内取样,测定自来水中细菌浓度。
-
由图2可以看出,氧化镧负载聚丙烯纤维后衍射谱图中出现了较多新的峰,与PDF标准卡片进行比对,发现新出现的峰与氧化镧标准物的衍射峰相对应,说明氧化镧成功负载在聚丙烯纤维上。图2中衍射角26.106°、29.950°、39.474°、46.058°分别对应氧化镧的(100)、(012)、(012)、(110)晶面。
-
吸附剂对低浓度含磷溶液的吸附效果如图3所示。吸附8 d后,氧化镧负载量为1%的吸附剂将磷浓度吸附至0.01 mg·L−1以下。当氧化镧负载量为3%时,磷的吸附效果反而下降,这是因为较高负载量条件下,纳米氧化镧颗粒容易发生团聚现象,在聚丙烯纤维中的分散性较差,使有效的吸附位点减少,造成了吸附效果降低。而过低的氧化镧负载量会导致有效吸附位点的不足,因此,在制备La2O3/PP复合吸附材料过程中,氧化镧的最佳负载量为1%。
将最佳负载量的La2O3/PP复合材料氧化镧的溶出率进行检测,实验结果表明,吸附时间为9 d后,溶液中的镧浓度均小于10 μg·L−1,证明该复合材料具有很好的稳定性。
-
由于聚丙烯纤维表面的非极性特征,其本身亲水性能很差,并且容易带静电[13],降低了La2O3/PP材料与磷溶液的反应速率。本实验通过聚乙烯亚胺与戊二醛交联反应,在聚丙烯纤维表面交联氨基[14],使其具有良好的亲水性。改性前后La2O3/PP接触角的变化如图4所示。改性前La2O3/PP的接触角为98°,而经过PEI处理后的PEI/La2O3/PP的接触角发生明显变化,减小到50°,表现出较好的亲水性。这是由于PEI改性使纤维表面增加了一定数量的氨基亲水性基团,从而明显提高了聚丙烯材料的亲水性。材料表面亲水性的增强能够明显增加磷酸盐的吸附速率。
此外,氨基的质子化作用还可以与磷酸根发生静电引力作用,从而促进磷酸盐的吸附。不同PEI浓度对磷吸附效果的影响如图5所示。La2O3/PP复合材料经亲水改性后,对磷的吸附反应速率大大提高。当PEI浓度为1%和3%时,吸附速率的变化明显,吸附反应6 h后,磷浓度降至0.01 mg·L−1以下;当PEI浓度为3%时,吸附速率没有明显提高,这是由于较高浓度的PEI会导致溶液黏度增大,不利于PEI分子的扩散。因此,本实验选取PEI的最佳浓度为1%。
-
不同初始pH对磷吸附效果的影响如图6所示。随着溶液初始pH的升高,吸附容量呈现出下降趋势,吸附材料的吸附能力降低。当pH=3时,磷的最大吸附容量为0.30 mg·g−1;当pH在3~8时,磷的吸附容量保持在0.24 mg·g−1以上,这说明吸附剂具有较宽的pH适用范围。当溶液初始pH不断增大时,吸附容量快速下降,说明碱性条件不利于吸附剂对磷的吸附。吸附后溶液的pH都有所升高,这是氧化镧对磷的吸附是一个化学反应过程,且反应过程中有OH−的释放。
通过测量PEI/La2O3/PP表面的Zeta电位,测出PEI/La2O3/PP的等电点为8.2。这说明当溶液pH小于8.2时,吸附材料表面呈现正电性,可以与溶液中的带负电荷的磷酸根离子产生静电吸引作用。同时,大量质子化的磷酸根与材料表面氧化镧羟基化产生的氢氧根离子发生离子交换作用,这也进一步证实了吸附磷后溶液pH升高的现象。
-
水体中与磷酸根共存的常见阴离子有
CO2−3 、SO2−4 、Cl−、NO−3 [15],这4种阴离子对PEI/La2O3/PP复合材料除磷的影响如图7所示。实验结果表明,这4种阴离子对PEI/La2O3/PP复合材料的磷吸附能力没有明显的影响,说明PEI/La2O3/PP对磷酸盐具有很强的吸附选择性。 -
吸附等温线可以确定吸附平衡浓度与吸附容量的关系,通过模型拟合可以估算吸附剂的最大吸附容量。如图8所示,吸附剂的吸附容量随着磷初始浓度的升高而不断升高,当达到一定浓度时吸附容量趋于平稳。在不同温度条件下,磷吸附容量随着温度的升高而升高。当温度为45 ℃时,最大吸附容量达到76.67 mg·g−1。
采用Langmuir模型和Freundlich模型对吸附等温线进行拟合,拟合结果如表1所示。Langmuir模型和Freundlich模型均能较好地拟合PEI/La2O3/PP对磷酸盐的吸附,但Langmuir模型的拟合程度更好。KL是表示吸附剂对磷的吸附亲和力强弱的重要参数,随着温度从25 ℃逐渐提高到45 ℃,平衡吸附常数KL从0.032提高到0.045,表明PEI/La2O3/PP吸附磷的过程为吸热反应,在一定范围内,提高温度有利于反应的进行。Freundlich模型中的n值也能反映吸附剂对吸附质吸附能力的强弱,如表1所示,不同温度下的n值均大于0.5,表示吸附反应较容易进行。
-
吸附动力学曲线主要用于描述吸附速率变化的特征,通过拟合动力学反应模型可以进一步分析吸附原理。不同温度条件下PEI/La2O3/PP吸附磷酸盐的动力学曲线如图9所示。当温度从25 ℃上升到45 ℃时,吸附反应速率明显加快,这进一步说明升温有利于吸附反应的进行。准一级和准二级动力学模型拟合结果如表2所示,可见,准二级动力学模型能更好地拟合PEI/La2O3/PP吸附磷的反应过程,模型的R2为0.93~0.98。
-
为了研究PEI/La2O3/PP纤维自身的杀菌能力,本实验对比了负载氧化镧颗粒的PP纤维与未负载氧化镧颗粒的PP纤维对大肠杆菌生长的作用。由图10可以看出,2种材料在不同的反应时间条件下大肠杆菌的数量基本相同,说明PEI/La2O3/PP纤维所负载的氧化镧颗粒自身对大肠杆菌生长没有明显的抑制作用,这可能是由于氧化镧颗粒的负载量较小的缘故。但是,在磷源极度缺乏的状态下,大肠杆菌浓度会迅速下降,证明控制磷营养源才是抑制细菌生长繁殖的关键因素。
-
为了进一步研究本实验中制备的吸附材料对实际饮用水是否具有除磷控菌的效果,本研究以饮用水为研究对象,考察了磷浓度与细菌生长之间的关系,实验结果如图11所示。取饮用水并自然晾晒3 d,以去除余氯,之后使用平板计数法检测水中细菌浓度为10 000 CFU·mL−1,饮用水磷浓度的本底值为0.02 mg·L−1。通过PEI/La2O3/PP吸附2 h后,磷浓度降至0.01 mg·L−1以下。在磷源极度缺乏的条件下,细菌含量明显下降,除磷后的1~3 d细菌含量迅速下降,自来水中磷酸盐被去除,细菌由于失去了存活必备的磷源而迅速减少,随后是细菌缓慢凋亡的过程。到第10天,细菌含量降至100 CFU·mL−1以下;到第11天,细菌含量进一步降至10 CFU·mL−1左右。除磷控菌的微生物学实验表明,饮用水中细菌生长与磷浓度存在明显的正相关性,当水中磷浓度降低到0.01 mg·L−1以下时,细菌生长受到强烈抑制。因此,除磷控菌方法为控制饮用水中微生物的二次生长潜能提供了一种具有前瞻性的水质稳定技术。
-
1) PEI/La2O3/PP复合纤维材料的最佳制备条件:氧化镧的最佳负载量为1%,PEI的最佳浓度为1%。中性和偏酸性条件有利于磷的吸附,水中常见共存阴离子对磷的吸附效果影响不大。
2) PEI/La2O3/PP复合纤维材料对水中磷酸盐具有很好的吸附效果,最大吸附容量可达76.67 mg·g−1。在温度为25~45 ℃时,随着温度的升高,磷吸附容量和吸附速率均有明显提高。吸附模型拟合结果表明,PEI/La2O3/PP对磷的吸附过程主要以单分子层化学吸附为主。
3) PEI/La2O3/PP复合纤维材料对饮用水中的磷具有很好的吸附效果,可以将饮用水中磷浓度降至0.01 mg·L−1以下。饮用水中磷源的缺乏可以起到明显的控菌效果,吸附反应11 d后,细菌浓度从10 000 CFU·mL−1降至10 CFU·mL−1左右。
改性La2O3/聚丙烯纤维对饮用水中磷的吸附及控菌效果
Effect of phosphate adsorption and antibacteria in drinking water by modified La2O3/polypropylene fibers
-
摘要: 为了研究吸附剂在饮用水中除磷控菌效果,在聚丙烯(PP)纤维上负载氧化镧(La2O3)纳米颗粒,并用聚乙烯亚胺(PEI)对吸附剂表面进行亲水改性,制备出PEI/La2O3/PP纤维吸附材料,使用X射线衍射分析(XRD)对其进行了表征。实验结果表明:偏酸性条件有利于磷的吸附,溶液中共存离子对吸附效果的影响不大;当温度为45 ℃时,PEI/La2O3/PP对磷的饱和吸附容量达到76.67 mg·g−1,吸附过程能够较好地拟合Langmuir模型;吸附动力学过程能够较好地拟合准二级反应动力学方程。该吸附材料对饮用水中的微量磷具有良好的吸附去除效果,磷深度去除后能达到明显的抑菌效果。Abstract: In order to study the effect of adsorbent on phosphate removal and antibacteria in drinking water. Lanthanum oxide (La2O3) nanoparticles were loaded on polypropylene (PP) fibers and polyethyleneimine (PEI) was used to perform hydrophilic modification of the adsorbent surface, then PEI/La2O3/PP adsorbent was prepared. The materials were characterized by X-ray diffraction (XRD). The experimental results showed that the weak acidic conditions could facilitate its phosphate adsorption, and the coexistence ions had slight effect on the adsorption effect. When the temperature was 45 ℃, the saturated adsorption capacity of PEI/La2O3/PP towards phosphate reached 76.67 mg·g−1. The adsorption isotherm followed Langmuir model. The kinetic equation followed pseudo-second-order kinetics. The adsorbent had a good adsorption effect on trace phosphate in drinking water. Moreover, an excellent bacteriostatic effect could occur after phosphate removal.
-
Key words:
- La2O3 /
- polypropylene fibers /
- adsorption /
- phosphate /
- antibacteria
-
我国《水污染防治行动计划》明确规定,在重点的湖泊(水库)等水质要求敏感的区域排放的污水必须达到城镇污水处理厂污染物排放标准(GB 18918-2002)一级A排放要求[1]。虽然目前我国污水处理设施在数量上已达4 000多个,但在处理能力以及处理设施上的发展并不平衡。目前部分城镇污水处理厂在出水一级A提标改造中对氮磷的去除效果并不十分理想,需要进一步研发新技术以改进现有技术,提高脱氮除磷效率[2]。藻菌共生体系是利用藻类和细菌2类生物之间在协同作用处理污水的一种生态系统[3]。污水中的有机物经好氧菌分解产生
NH+4 -N、PO3−4 和CO2等无机物,为藻类提供营养,合成自身细胞组织;藻类光合作用释放的O2又可供好氧菌继续氧化有机物[4]。藻菌共生体系能有效去除污水中含碳、氮、磷等的污染物,具有运行成本低、无二次污染以及藻、菌生物资源可再利用的特点,在城镇污水处理研究中受到广泛关注并得到了实际应用[5]。碳源是藻类与菌类进行生命活动时不可或缺的条件之一。藻类可利用无机碳源进行光合作用合成有机碳[6],菌类利用有机或无机碳源为细胞生长提供能量以及合成碳骨架[7],因此,外在碳源的缺乏直接影响藻菌共生体系的稳定生长及其污水处理效率。然而,我国城镇污水处理厂的进水COD普遍偏低,部分进水甚至低于100 mg·L−1。因此,在藻菌共生体系等生物处理工艺运行中可考虑通过补充合适的碳源来进一步提升脱氮除磷效率[8]。
本研究以某城镇污水厂中鉴定出的优势脱氮除磷藻种短带鞘藻(Oedogonium brevicingulatum)为藻源,以该厂好氧池中活性污泥为菌源,构建并优化了短带鞘藻-活性污泥共生体系。从乙酸钠、葡萄糖、碳酸钠和碳酸氢钠4种外加碳源中筛选出最适宜该体系的外加碳源,对其脱氮除磷处理效果进行了评价,并使用其处理某城镇污水,以期为该藻菌共生技术的实际应用提供技术参数[9]。
1. 材料与方法
1.1 藻种、活性污泥来源与培养
在前期研究中,采用PCR-DGGE分子生物学方法筛选并鉴定某污水处理厂中的优势藻种为丝状短带鞘藻(Oedogonium brevicingulatum)[10]。从中国科学院武汉水生所国家淡水藻库购置的纯种短带鞘藻作为实验所用藻种。接种前用超纯水将藻细胞清洗3次,随后在无菌操作台中用接种环将藻细胞接种于含300 mL改良BG11培养基的锥形瓶中,摇匀,并用透气膜封口。将锥形瓶置于光照恒温培养箱中培养,培养条件设置为:温度(25±1) ℃、光照强度6 000 lx、光暗比12 h∶12 h[11]。每天定时摇瓶3次,防止藻类贴壁生长。
实验所用活性污泥取自某城市污水处理厂A2O处理工艺中的好氧池。将取回的活性污泥曝气24 h以去除杂质,再用葡萄糖、可溶性淀粉、NH4Cl、K2HPO4、KH2PO4按照C∶N∶P为100∶5∶1的比例配置营养盐培养活性污泥,每天更换营养盐3次,曝气间歇时间为12 h∶12 h。
1.2 实验污水进水水质
实验前期,对某城镇污水处理厂二沉池进水的主要污染物进行了为期1年的跟踪监测并计算年平均值,
NH+4 -N、TN、TP和COD分别为15.4、21.5、1.5和102.4 mg·L−1,按照该污水厂主要污染物的年平均进水浓度,分别采用NH4Cl、KNO3、K2HPO4和葡萄糖来配置实验用模拟城镇污水。在反应器运行期间,采用该城镇污水厂二沉池4月份的实际进水,主要污染物进水水质指标
NH+4 -N、TN、TP和COD平均值分别为16.5、27.5、1.4和87.4 mg·L−1。实验过程中水温控制在(25±1) ℃[12],pH控制在7.0~8.0[13-14]。1.3 固定化藻菌共生生物膜反应器
实际污水处理采用课题组研究设计的固定化藻菌共生生物膜反应器[15]。该反应器的总高度为0.5 m,总容积为17 L,通体由透明有机玻璃制成,固定化材料为聚乙烯弹性立体填料,生物反应区的高度为0.25 m,有效直径为0.25 m。反应器结构实物图见图1。
1.4 检测指标与方法
用恒重的定量滤纸过滤并称量一系列不同湿重梯度的短带鞘藻,然后将短带鞘藻和滤纸置于103~105 ℃的烘箱中烘至恒重,利用差减法得出藻的干重质量,再分别以藻湿重和藻干重为横、纵坐标来绘制藻的干、湿重关系标准曲线,得到式(1);短带鞘藻叶绿素的测定采用丙酮提取法[16],取一系列不同湿重的藻体,分别测定总叶绿素含量,作出总叶绿素—藻湿重标准曲线,得到式(2)。
y=0.122x+0.002302 (1) y=3.1345x+1.0967 (2) 用量筒准确量取100 mL混合均匀的活性污泥混合液后过滤,将载有活性污泥的滤纸移入103~105 ℃的烘箱内烘至恒重,利用差减法求得活性污泥干重质量,最后将活性污泥干重质量除以体积确定活性污泥浓度。培养过程中每2~3 d对出水中的沉淀物在光学显微镜下进行观察。当视野中观察到累枝虫(Epistylislacustris)伴随钟虫(Vorticellidae)一起出现时,表明出水活性污泥的培养进入成熟期且可用于后续的实验。
NH+4 -N的测定采用纳氏试剂分光光度法(GB 7479-1887);TN、TP的测定分别采用便携式总氮测定仪(深昌鸿PWN-810 B)和钼酸铵分光光度法(GB 11893-1989);COD的测定采用微波消解滴定法(GB 11914-1989);pH采用便携式pH计(雷磁PHS-3E)测定。1.5 Monod动力学模型
采用Monod动力学方程(式(3))建立短带鞘藻和活性污泥生长动力学模型,描述稳态时碳酸氢钠限制条件下对短带鞘藻和活性污泥生长的影响。
μ=μmSKS+S (3) 式中:μ为比生长速率,d−1;μm为最大比生长速率,d−1;S为限制性碳酸氢钠浓度,mg·L−1;KS为半饱和常数,mg·L−1。根据该动力学方程可分别求出短带鞘藻和活性污泥的动力学参数。
2. 结果与讨论
2.1 短带鞘藻-活性污泥共生体系的构建
在5 d的实验周期中,首先对短带鞘藻-活性污泥共生体系进行工艺参数优化[17]。考察了初始藻菌干重比(1∶1、2∶1、3∶1、5∶1)、初始生物量(0.2、0.3、0.4、0.5 g·L−1)、曝气量(0、0.2、0.4、1 L·min−1)和曝气间歇时间(1、3、6、24 h)对短带鞘藻-活性污泥共生体系脱氮除磷的影响。结果表明,在初始藻菌比为3∶1,初始生物量0.3 g·L−1,曝气量0.2 L·min−1和曝气间歇时间6 h∶6 h的条件下,短带鞘藻-活性污泥共生体系对各污染物去除率最优。如图2所示,在实验第5天时,
NH+4 -N、TN、TP和COD的去除率分别为83.7%、67.6%、64.7%和100%。2.2 外加碳源对藻菌共生体系脱氮除磷效果的促进
碳源是藻类与菌类进行生命活动时不可或缺的因素之一。目前由于雨污分流不彻底,污水管网收集不充分,城镇污水处理厂进水普遍存在COD偏低的问题,部分进水小于100 mg·L−1[18]。在本研究中,某城镇污水厂在A2O工艺运行中通过比较葡萄糖和乙酸钠后,加入了乙酸钠来提升脱氮除磷效率。因此,为进一步提升藻菌共生体系的脱氮除磷效率,解决进水碳源不足的问题,可考虑通过补充合适的外加碳源。本研究考察了2种有机碳源(乙酸钠、葡萄糖)和2种无机碳源(碳酸钠、碳酸氢钠)对短带鞘藻-活性污泥共生体系去除氮磷和COD的影响。如图3(a)和图3(b)所示,外加有机碳源(乙酸钠和葡萄糖)的实验组对
NH+4 -N和TN的去除速率高于外加无机碳源(碳酸钠和碳酸氢钠)的实验组,其中葡萄糖为外加碳源的实验组脱氮效率最高。该体系中氮的去除主要靠藻菌共同作用,藻类通过吸收氮素将其合成为自身细胞,菌类硝化作用将氨氮转化为亚硝酸盐和硝酸盐后通过反硝化作用将硝态氮和亚硝态氮转化为氮气[19]。有机碳源的加入增强了菌类的活性,进而提高了脱氮效率[20]。与脱氮的效果不同,如图3(c)所示,当外加碳源为无机碳时,对TP的去除效果更好且TP< 0.5 mg·L−1,达到一级A排放标准。在第6 h时,外加碳源为碳酸氢钠的实验组先于碳酸钠TP达到一级A标准,且相比于外加碳源为葡萄糖和乙酸钠的实验组其对TP的去除率分别提高了6.0%和14.4%。在该藻菌体系中,藻对磷的同化吸收和表面吸附为主要的除磷途径,无机碳源更容易被藻类利用[21],新细胞合成速率加快,除磷效率得到提高。在本研究中,如图3(d)所示,4个实验组在第6 h时COD的去除率虽均能达到100%,但是,添加无机碳源的实验组在6 h内对COD的去除率更高。综合评价,碳酸氢钠是该体系的最适外加碳源。
进一步考察了碳酸氢钠初始浓度对该藻菌共生体系去除氮、磷和COD的影响。由图4(a)、图4(b)可知,当初始碳酸氢钠初始浓度为100 mg·L−1时,对
NH+4 -N和TN的去除率最高,分别为98.7%和78.6%。初步分析,投加碳酸氢钠改变了体系初始HCO−3 浓度,进而导致初始pH也不同。如图5所示,当初始碳酸氢钠浓度为75~125 mg·L−1时,pH维持在7.1~8.8,适合藻菌体系的生长,随着碳酸氢钠投加量的增加175 mg·L−1的实验组pH达到9.4~10.3,过高的pH不利于藻菌体系脱氮[22]。如图4(c)所示,各实验组在0~4 h里TP的浓度波动较大,随后TP浓度开始持续降低,直至平稳。造成上述现象的主要原因:一方面是由于碳酸氢钠的加入使pH发生变化,部分藻菌共生体表面附着的磷溶入水中造成TP浓度的短暂升高;另一方面是体系在脱氮除磷的过程中会使氮磷比发生变化,从而引起藻类向水中释放磷以维持自身细胞生长[23]。在12 h实验周期结束时,碳酸氢钠初始浓度为100 mg·L−1和125 mg·L−1的实验组TP浓度达到一级A标准,分别为0.42 mg·L−1和0.48 mg·L−1。COD的去除效果如图4(d)所示,在4个实验组中并未表现出明显的差异,均能达到一级A排放标准。外加碳酸氢钠的投加时间对体系脱氮的影响如图6(a)和图6(b)所示,在体系脱氮过程中,藻菌生物体利用污水中的碳源作为能源支撑同化吸收以及分解转化水中的氮素。加入碳酸氢钠后,短带鞘藻持续吸收水中的氮元素以合成自身细胞等物质,因此,在补充碳源后的数小时内
NH+4 -N和TN的浓度开始快速下降。如图6(c)所示,TP浓度在0~3 h内出现波动,这可能是因为藻在最初的延滞生长期吸收磷并储存于体内,随着环境变化和生长需要会将体内部分的磷释放出来[24]。如图6(d)所示,外加碳酸氢钠的投加时间对体系去除COD的影响不大。而第3 h由于碳源的加入短带鞘藻的活性增强,快速吸收水中以及藻中释放出来的磷。综合考虑各污染物的去除情况,在第3 h补充碳酸氢钠的实验组有着更好的脱氮除磷性能,在实验周期12 h时结束时,出水中NH+4 -N、TN、TP和COD分别为0.14、6.54、0.43和0 mg·L−1。2.3 外加碳酸氢钠短带鞘藻和活性污泥脱氮除磷效果的影响
为确定碳酸氢钠对共生体系中短带鞘藻和活性污泥去除氮、磷与COD的影响,分别设置了单藻和单泥实验组。由图7(a)可以看出,短带鞘藻加碳酸氢钠实验组在实验第4 h时
NH+4 -N浓度最先达到一级A标准。活性污泥加碳酸氢钠实验组与单泥实验组在对TN、TP的去除效果如图7(b)、图7(c)所示,二者并未表现出明显差异,且在12 h实验周期结束时,活性污泥加碳酸氢钠实验组和单泥实验组中TP的浓度分别为0.82 mg·L−1和0.72 mg·L−1,均未达到一级A排放标准。这是由于加入碳酸氢钠后,活性污泥中的硝化菌逐渐成为优势菌种,加快吸收水中的NH+4 -N,并将其氧化为硝酸盐或亚硝酸盐,但厌氧条件下反硝化菌缺少有机碳源的补充,硝态氮还原成氮气的过程缓慢;在对TP的去除上,好氧状态下活性污泥中的聚磷菌吸收正磷酸盐,但在厌氧状态下会向水体中释磷[25]。而短带鞘藻利用外加的碳酸氢钠作为碳源,持续吸收水体中的氮磷和有机物来合成自身细胞,相比于活性污泥外加碳酸氢钠的实验组其对TN和TP的去除率分别提高了11.5%和42.4%。相较于其他实验组,短带鞘藻外加碳酸氢钠实验组达到一级A排放标准的时间更短且效果更好。如图7(d)所示,各实验组在对COD的去除效果上未表现出明显差异。2.4 Monod动力学评价外加碳酸氢钠对短带鞘藻和活性污泥脱氮除磷效果的影响
采用Monod动力学方程(式(3))计算拟合,获得外加碳酸氢钠后短带鞘藻和活性污泥生长动力学参数。短带鞘藻和活性污泥都能较好的拟合Monod模型(R2分别为0.943和0.862),此外 ,短带鞘藻的比生长速率(μm)为0.276 d−1,大于活性污泥(0.144 d−1);而半饱和常数(Ks)为0.77 mg·L−1,远低于活性污泥的15.28 mg·L−1,这表明短带鞘藻对碳酸氢钠的亲和性要优于活性污泥。因此,该体系外加碳酸氢钠后更多地促进了短带鞘藻的生长,提升了脱氮除磷的效果。
2.5 外加碳酸氢钠对藻菌共生生物膜反应器处理实际城镇污水的影响
将某城镇污水厂进水加入到课题组研究设计的藻菌共生生物膜反应器中连续运行30 d。以脱氮除磷效果为评价指标,初步评价了该体系在反应器中对实际城镇污水的处理效果。在反应器运行的0~10 d里,设置水力停留时间(HRT)为8 h,如图8所示,
NH+4 -N、TP的浓度波动较大,均不能达到一级A标准。因此,在11~20 d,将HRT调整为12 h,NH+4 -N、TP及COD的出水波动明显较前10 d平稳,但出水中NH+4 -N、TP和TN仍无法稳定达标。虽然继续延长反应器的HRT可有效增加反应器对污染物的去除效率[26],但HRT过长会增加污水处理的成本,因此,在反应器运行的最后10 d中设置HRT为12 h,另投加前期实验中筛选出的最佳外加碳源碳酸氢钠100 mg·L−1来提高反应器的处理效率。结果表明,出水中的NH+4 -N、TP、TN和COD分别为3.7、13.0、0.4和34.2 mg·L−1,均达到一级A排放标准。3. 结论
1)构建了短带鞘藻-活性污泥共生体系,并确定了最佳工艺条件为初始藻菌干重比3∶1、初始生物量0.3 g·L−1、曝气量0.2 L·min−1和曝气间歇时间6 h∶6 h,在此条件下,对
NH+4 -N、TN、TP和COD的去除率分别为83.7%、67.6%、64.7%和100%。2)筛选出最适宜的外加碳源为碳酸氢钠。在12 h的实验周期中,3 h往短带鞘藻-活性污泥共生体系投加100 mg·L−1的碳酸氢钠,该体系对
NH+4 -N、TN和TP的去除率分别提高了15.6%、6.3%和10.0%,实验周期结束时出水中NH+4 -N、TN、TP和COD分别为0.14、6.54、0.43和0 mg·L−1,各污染物浓度均达到一级A排放标准。3)外加碳酸氢钠主要促进了共生体系中短带鞘藻的生长。
4)当投加碳酸氢钠为100 mg·L−1、HRT为12 h时,固定化藻菌共生反应器出水中的氮、磷及COD均能达到一级A排放标准且运行稳定。
-
表 1 吸附等温线模型拟合参数
Table 1. Adsorption isotherm parameters for phosphate adsorption
温度/℃ Langmuir Freundlich qm/(mg·g−1) KL/(L·g−1) R2 n KF/(L·g−1) R2 25 99.305 0.031 67 0.934 08 1.317 1 3.297 0 0.947 57 35 99.701 0.037 29 0.951 96 1.348 0 3.789 2 0.943 01 45 102.56 0.044 52 0.964 86 1.428 9 3.609 2 0.915 82 表 2 吸附动力学模型拟合参数
Table 2. Kinetic parameters for phosphate adsorption
温度/℃ 准一级动力学 准二级动力学 k1/min−1 qe/(mg·g−1) R2 k2/(g·(mg·min)−1) qe/(mg·g−1) R2 25 0.505 16 0.263 70 0.873 42 1.649 71 0.326 50 0.930 91 35 0.570 99 0.289 43 0.893 24 1.802 26 0.352 28 0.953 54 45 0.631 57 0.318 02 0.949 80 1.891 19 0.382 24 0.986 28 -
[1] 姜登岭, 张晓健. 饮用水中磷与细菌再生长的关系[J]. 环境科学, 2004, 25(5): 57-60. doi: 10.3321/j.issn:0250-3301.2004.05.012 [2] KOOIJ D V D, VISSER A, HIJNEN W A M. Determining the concentration of easily assimilable organic carbon in drinking water[J]. Journal American Works Association, 1982, 74(10): 540-545. doi: 10.1002/j.1551-8833.1982.tb05000.x [3] MIETTINEN I T, VARTIAINEN T, MARTIKAINEN P J. Contamination of drinking water[J]. Proceedings of the Academy of Natural Sciences of Philadelphia, 1996, 29(6584): 19-20. [4] MIETTINEN I T, VARTIAINEN T, MARTIKAINEN P J. Phosphorus and bacterial growth in drinking water[J]. Applied & Environmental Microbiology, 1997, 63(8): 3242-3245. [5] 孟顺龙, 胡庚东, 宋超, 等. 镧改性吸附剂废水除磷技术研究进展[J]. 环境科学与技术, 2012, 35(S2): 194-199. [6] 杨金梅, 吕建波, 李莞璐, 等. 壳聚糖载纳米羟基氧化铁对水中磷的吸附[J]. 环境工程学报, 2018, 12(5): 14-22. [7] LIU T, CHEN X, WANG X, et al. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3[J]. Chemical Engineering Journal, 2018, 335: 443-449. doi: 10.1016/j.cej.2017.10.117 [8] 雷行, 杨雪, 刘婷, 等. 锆改性铝氧化物对水中磷的吸附特性[J]. 环境工程学报, 2018, 12(5): 117-124. [9] HE J J, WANG W, SHI W X, et al. La2O3 nanoparticles polyacrylonitrile nanofibers for bacterial inactivation based on phosphate control[J]. RSC Advances, 2016, 6: 99353-99360. doi: 10.1039/C6RA22374E [10] HAGHSERESHT F, WANG S B, DO D D. A novel lanthanum-modified bentonite, phoslock, for phosphate removal from wastewaters[J]. Applied Clay Science, 2009, 46(4): 369-375. doi: 10.1016/j.clay.2009.09.009 [11] COPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review[J]. Water Research, 2016, 97: 162-174. doi: 10.1016/j.watres.2015.11.056 [12] 于岩. 新型水相吸附材料[M]. 北京: 科学出版社, 2016. [13] ZHU H T, QIU S S, JIANG W, et al. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup[J]. Environmental Science & Technology, 2011, 45(10): 4527-4531. [14] LIU C, WU L L, ZHANG C C, et al. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine[J]. Applied Surface Science, 2018, 457: 695-704. doi: 10.1016/j.apsusc.2018.06.131 [15] 杜涛, 王莹, 高超, 等. 离子色谱法测定饮用水中无机阴离子[J]. 沈阳师范大学学报 (自然科学版), 2011, 29(2): 260-263. 期刊类型引用(2)
1. 樊克玉,何琴琴,张伟杰,王林涛,季骁楠,郭亚丽,胡伟,李敏. 镧基MOF/聚丙烯腈电纺纤维材料的制备及其对磷的吸附性能. 环境工程学报. 2025(01): 91-102 . 本站查看
2. 白润英,张儒壮,吴博,孔小敏,王帅霖. 金属化合物及其复合材料用于吸附去除水中磷的研究进展. 水处理技术. 2022(09): 1-5+15 . 百度学术
其他类型引用(2)
-