-
近年来,工业化的迅速发展造成了许多环境污染问题。染料废水作为一种典型的工业废水因其水量大、色度高、组成成分复杂而导致其处理难度非常高[1]。若未经处理而排放到自然水体,将会污染水源,威胁生态环境,并且其生物毒性通过食物链而最终在人体积累,严重危害人体健康[2]。目前,染料废水的去除方法主要有物理法、化学法及生物法[3-4]。物理法是目前研究染料废水处理最为广泛的一种处理方法,其中吸附法作为一种绿色高效的去除技术被广泛地应用于染料废水的去除。吸附剂的选择对于使用吸附法去除染料废水至关重要。目前,常用的吸附材料有活性炭、焦炭、沸石、壳聚糖以及天然黏土矿物等[5]。但是这些吸附剂的吸附容量不高,或者选择吸附性差。因此,开发一种高效和大吸附量的吸附剂用于染料废水的去除非常必要。
金属有机骨架是通过共价键或者离子共价键自组装金属中心离子和有机配体形成的具有周期性网络结构的配位聚合物[6]。因其高的比表面积和可调的孔径[7]、丰富的结构和组成成分、配位不饱和位点能够结合特定官能团[8]等特点而被广泛应用于储能、气液相分离、催化、光学和磁学等领域[9-11]。沸石咪唑基骨架(ZIFs)作为MOFs材料的一种,具有优异的化学稳定性和吸附性能。张琪颖[12]研究了ZIF-8对硝基苯酚(PNP)的吸附效果,研究表明,ZIF-8在反应最佳条件下能够高效选择性地吸附PNP。同时,磁性纳米复合材料作为吸附剂应用于水处理中也受到广泛关注。孙杨等[13]利用自制Fe3O4磁性材料与MOF-5合成磁性Fe3O4@MOF-5复合材料,被证明Fe3O4@MOF-5复合材料对于刚果红是良好的吸附剂。基于上述研究,本研究采用聚苯乙烯磺酸钠(PSS)处理Fe3O4表面诱导生长ZIF-8壳层,在常温搅拌下,成功合成磁性核壳金属有机骨架Fe3O4@ZIF-8,通过SEM、TEM、XRD、FT-IR及VSM对其进行形貌分析,考察了刚果红初始浓度及接触时间、Fe3O4@ZIF-8用量、pH等因素对Fe3O4@ZIF-8吸附偶氮染料刚果红废水的影响;确定了其吸附动力学和吸附等温线;探讨了Fe3O4@ZIF-8的选择吸附性能以及循环再生性能,研究可为复合金属有机骨架材料在染料吸附去除方面的应用提供参考。
-
仪器:电子天平(AL104,梅特勒-多利多仪器上海有限公司);超纯水机(Ther-mo Scientific Barnstead EasypureⅡ);精密增力电动搅拌器(金坛市新航仪器厂);真空干燥箱(DZF-6020型,上海浦东荣丰科学仪器有限公司);恒温干燥箱(101-1型,上海东星建材实验设备有限公司);pH计(PHB-4型,上海仪电科学仪器股份有限公司);双功能水浴恒温振荡器(SHA-B,金坛市科析仪器有限公司);扫描电镜(Quanta FEG型,美国FEI公司);分光光度计(PhotoLab-7600型,赛莱默中国分析仪器有限公司)。
材料与试剂:六水合硝酸锌(Zn(NO3)2·6H2O)(分析纯,国药化学试剂有限公司);2-甲基咪唑(C4H6N2)(分析纯,阿拉丁试剂有限公司);聚苯乙烯磺酸钠(PSS)(30%,阿拉丁试剂有限公司);甲醇(CH3OH)(分析纯,阿拉丁试剂有限公司);Fe3O4纳米颗粒(99%,成都麦卡希有限公司);氢氧化钠(NaOH)(分析纯,重庆川东化工有限公司);盐酸(HCl)(分析纯,重庆川东化工有限公司);氯化钠(优级纯,阿拉丁试剂有限公司);刚果红(分析纯,阿拉丁试剂有限公司);去离子水,实验室自制。
-
Fe3O4@ZIF-8的合成参照文献中的方法[14]。将1.5 g的聚苯乙烯磺酸钠(PSS)溶解在150 mL去离子水中并超声处理30 min,配制成PSS溶液,将0.25 g的Fe3O4纳米颗粒加入到PSS溶液中并在室温下超声30 min,然后,通过外部磁体将Fe3O4纳米粒子与溶液分离并用水洗涤3次;处理后的Fe3O4纳米微粒投加到ZIF-8的合成液中(1.19 g硝酸锌,2.63 g二甲基咪唑和80 mL甲醇),在50 ℃水浴条件下,机械搅拌8 h,然后通过磁铁把合成的Fe3O4@ZIF-8磁性核壳颗粒与反应体系分离。用甲醇溶液洗涤磁性粒子3次,并在真空干燥箱中60 ℃烘干12 h,最后获取Fe3O4@ZIF-8。
-
采用扫描电子显微镜(SEM,Quanta FEG,FEI公司,美国)和透射电子显微镜(TEM,Tecnai F30,FEI公司,美国)对磁性金属有机骨架Fe3O4@ZIF-8的微观形貌进行分析。采用X射线衍射(XRD,X/Pert PRO MPD,帕纳科分析仪器有限公司,荷兰)对Fe3O4@ZIF-8的晶体结构进行表征。Fe3O4@ZIF-8表面官能团信息采用傅里叶变换红外分光光度计(FT-IR,Nicolet iS50,Nicolet公司,美国)测定。Fe3O4@ZIF-8的磁学性能采用振动样品磁强计(7400型,Lake shore公司,美国)进行测试。
-
本实验选择阴离子偶氮染料刚果红为模拟染料废水,研究磁性金属有机骨架Fe3O4@ZIF-8材料对其去除效果,在一系列规格为50 mL的锥形瓶内,倒进20 mL刚果红染料溶液,准确投加一定质量的Fe3O4@ZIF-8吸附剂,把锥形瓶放入振荡器中,25 ℃下恒温振荡,吸附一段时间后,用磁铁将吸附剂Fe3O4@ZIF-8从溶液中分离出来,取上层溶液用分光光度计测定光度值,然后分别计算Fe3O4@ZIF-8的吸附容量和刚果红去除率。
去除率和单位吸附量的计算方法见式(1)和式(2)。
式中:
η 为去除率;C0为刚果红的初始浓度,mg·L−1;C为刚果红浓度,mg·L−1;q为吸附剂的吸附量,mg·g−1;V为溶液体积,L;m为Fe3O4@ZIF-8质量,g。1)吸附动力学实验。取不同初始浓度的20 mL刚果红溶液,并投加Fe3O4@ZIF-8吸附剂10 mg。在25 ℃下进行恒温振荡,分别吸附5、10、20、30、60、90、120、180和240 min后,离心混合溶液并测定上清液的吸光度。吸附数据由一级动力学方程[15]和二级动力学方程[16]来进行拟合。一级动力学方程见式(3),二级动力学方程见式(4)。
式中:qe为吸附剂的平衡吸附量,mg·g−1;q为吸附剂在t时刻的吸附量,mg·g−1;t为吸附时间,min;K1为一级动力学速率常数,min−1;K2为二级动力学速率常数,g·(mg·min)−1。
2)吸附等温线测定。配置20 mL初始浓度为50~300 mg·L−1的刚果红溶液,加入10 mg的Fe3O4@ZIF-8吸附剂。将混合溶液的pH调节至6,并在25、30、35 ℃下进行振荡,直至吸附达到平衡。吸附数据由Langmuir吸附等温方程[17](见式(5))和Freundlich吸附等温方程[18](见式(6))进行拟合。
式中:qe为吸附剂的平衡吸附量,mg·g−1;Ce为平衡质量浓度,mg·L−1;q为Fe3O4@ZIF-8的最大吸附量,mg·g−1;b为吸附能有关常数;Kf为Freundlich系数;n为Freundlich常数。
3)选择吸附实验。在实验中,使用Fe3O4@ZIF-8作为吸附剂以吸附刚果红、直接蓝86、甲基橙、亚甲基蓝染料,以此来考察Fe3O4@ZIF-8的选择吸附性能。取30 mg·L−1的不同染料20 mL,加入10 mg的Fe3O4@ZIF-8,在恒定温度下吸附12 h,测定吸附后的浓度。
4)循环性能实验。Fe3O4@ZIF-8吸附50 mg·L−1的刚果红溶液后,使用蒸馏水反复冲洗吸附剂,随后采用0.1 mol·L−1的NaOH溶液进行解吸,然后烘干用于下一个周期中。重复5次,考察Fe3O4@ZIF-8的吸附解吸能力。
-
1) SEM和TEM分析。图1(a)~(c)是在不同放大倍数下的SEM图,可以看出,Fe3O4@ZIF-8纳米粒子呈现不规则的立方体结构,并且表面分布了很多ZIF-8晶体。图1(d)~(f)为Fe3O4@ZIF-8在不同放大倍数下的TEM图,可以看出,该复合材料呈现明显的核壳形态,ZIF-8已成功地生长在Fe3O4纳米颗粒表面。这种磁性复合材料的平均粒径在200 nm左右。SEM和TEM表征很好地证明了合成的材料即为核壳结构的Fe3O4@ZIF-8。
2) XRD分析。由图2可知,Fe3O4@ZIF-8材料在2θ为30.16°、35.52°、43.18°、53.52°、57.06°处均出现了特征峰,与实验中Fe3O4的表征图谱比较,特征峰的位置相同,分别对应的是Fe3O4的(220)、(311)、(400)、(422)和(511)衍射晶面。同时,在(011)、(002)、(112)、(022)、(013)、(222)处均出现了与实验表征的ZIF-8 图谱对应一致的衍射峰。所以,可断定Fe3O4@ZIF-8已成功合成,且Fe3O4@ZIF-8中Fe3O4的晶型结构没有遭到破坏。这说明Fe3O4@ZIF-8不仅具备ZIF-8的高效吸附性能,同时还具有Fe3O4的磁性分离性能。
3) FT-IR分析。从图3中的Fe3O4@ZIF-8红外图谱可知,在3 454 cm−1处出现了对应于水分子中的O—H键的特征吸收峰。3 135 cm−1和2 926 cm−1分别归属于ZIF-8结构中咪唑分子芳香族与脂肪族的C—H键的特征峰。咪唑环中C=N键的伸缩振动峰出现在1 565 cm−1处,C—N键的振动吸收峰出现在1 146和993 cm−1处。在420 cm−1处出现了Zn—N官能团振动峰,最重要的是在580 cm−1处出现了属于Fe3O4的Fe—O振动吸收峰[19]。综合上述分析,可以进一步确定成功合成的核壳结构物质就是Fe3O4@ZIF-8。
4) VSM分析。如图4所示,Fe3O4@ZIF-8的磁滞回线为过原点的S型曲线,表明Fe3O4@ZIF-8材料是典型的超顺磁性。Fe3O4@ZIF-8的饱和磁化强度为49.68 emu·g−1,由于ZIF-8在壳层的覆盖,Fe3O4@ZIF-8的磁饱和度相对于Fe3O4有所降低,但是Fe3O4@ZIF-8仍然具有优异的磁学性能。
-
从图5可以看出,在同一浓度下,Fe3O4@ZIF-8的单位吸附容量随着反应时间的增加而增加,在反应的前10 min左右,单位吸附容量已达平衡吸附量的50%。这表明反应最初是快速吸附阶段。当反应时间为180 min时,Fe3O4@ZIF-8的单位吸附量逐渐达到平衡。并且在不同的刚果红初始浓度下,随着初始浓度的升高,Fe3O4@ZIF-8的单位吸附量也逐渐升高。当初始浓度由30 mg·L−1升高到70 mg·L−1时,Fe3O4@ZIF-8的单位吸附量由60 mg·g−1升高到136 mg·g−1。
-
图6为Fe3O4@ZIF-8投加量对吸附效果的影响,当Fe3O4@ZIF-8投加量为5 mg时,吸附除去率达到68.7%,从5 mg变化到10 mg时,Fe3O4@ZIF-8对刚果红染料的去除率升高到95.2%。当Fe3O4@ZIF-8投加量大于10 mg,其去除率约为98%,刚果红的吸附去除率升高幅度不大,并且随着Fe3O4@ZIF-8吸附剂投加量的不断增长,其单位吸附容量是一直减少的,这是因为当染料初始浓度和体积恒定时,单位质量的吸附剂吸附染料的量随着吸附剂投加量的增多而减少。并且过多的吸附剂量将导致吸附剂位点的聚集和重叠,增加了扩散的难度。同时,从经济角度来看,过多的吸附剂投加会造成成本的增加。因此,选择Fe3O4@ZIF-8吸附剂的用量为500 mg·L−1。
-
移取20 mL的 50 mg·L−1的刚果红溶液,通过0.05 mol·L−1的NaOH溶液和0.05 mol·L−1的HCl溶液调节pH从3变化到10,Fe3O4@ZIF-8吸附剂的投加量为10 mg,在 25 ℃条件下以180 r·min−1的速度恒温振荡6 h,利用磁铁将吸附剂与溶液分离,然后通过分光光度计测定溶液的分光度,考察初始的pH对Fe3O4@ZIF-8吸附效果的影响,实验结果如图7所示。如图7(a)所示,当pH<6.0时,Fe3O4@ZIF-8的单位吸附容量随着pH的升高而升高,而且升高幅度很大;在pH=6.0时,单位吸附量达到最大值,这是由于Fe3O4@ZIF-8表面带的正电荷数量增加,与刚果红分子产生静电引力导致吸附量升高;当pH>6.0时,单位吸附量随着pH的升高而减小。这可由图7(b)来解释。实验测得Fe3O4@ZIF-8的等电点为8.37。当pH<8.37时,Fe3O4@ZIF-8表面是带有正电荷的,而刚果红分子带有负电荷,Fe3O4@ZIF-8因为强烈的静电引力而吸附刚果红染料,随后pH的升高,溶液中的OH−逐渐增多并且和阴离子刚果红染料竞争Fe3O4@ZIF-8的吸附位点,从而导致吸附量下降。当pH>8.37时,Fe3O4@ZIF-8表面由原来的正电荷转为负电荷,它与带负电的刚果红分子相互排斥导致其单位吸附容量减少有关。因此,在低pH时,静电引力使刚果红吸附量增加,随着pH的升高,刚果红与Fe3O4@ZIF-8之间产生静电斥力,吸附量逐渐降低。
-
由图8可知,吸附数据的拟合结果是二级动力学模型明显优于一级动力学模型,其线性相关性更高。具体的拟合数据如表1所示,一级动力学模型和二级动力学模型拟合的效果都很好,其中二级动力学模型拟合的可决系数R2均大于0.99,并且在不同初始浓度的刚果红溶液下,通过二级动力学模型计算的Fe3O4@ZIF-8单位吸附容量与通过实验获得的实际单位吸附容量相接近。这与之前报道的ZIF-8吸附刚果红染料的研究[20]一致。因此,偶氮染料刚果红在Fe3O4@ZIF-8上的吸附过程满足二级动力学模型。这表明Fe3O4@ZIF-8吸附刚果红的过程属于化学吸附过程。
-
由图9可知,当反应温度升高时,Fe3O4@ZIF-8对偶氮染料刚果红的单位吸附容量不断增加。温度由25 ℃升到35 ℃时,平衡吸附量由211 mg·g−1升高到385 mg·g−1,说明吸附反应为吸热反应。并且随着刚果红初始浓度C0的增加,吸附达到饱和时的平衡浓度Ce增加,平衡吸附量的变化趋势是先快速增加后逐渐变缓。利用Langmuir吸附等温方程和Freundlich吸附等温方程分别线性拟合吸附等温线中的数据,得到等温方程的模拟结果(如图10所示)。吸附等温方程相关参数见表2。由图10可知,Langmuir等温吸附模型具有更高的线性相关性。由表2可知,Langmuir模型计算得到的可决系数更高(R2>0.99),故Fe3O4@ZIF-8的吸附等温线符合Langmuir模型。这表明Fe3O4@ZIF-8对刚果红染料的吸附行为是单层吸附。同时,RL值均在0~1之间,表明吸附容易进行。因此,Langmuir吸附等温线模型适用于Fe3O4@ZIF-8对刚果红的去除。通过Langmuir吸附等温模型计算得到的Fe3O4@ZIF-8最大单位吸附容量为405 mg·g−1。
-
本实验考察了Fe3O4@ZIF-8对染料的选择吸附性能,结果如图11所示。Fe3O4@ZIF-8对于染料的去除率为刚果红>直接蓝86 >甲基橙>亚甲基蓝。这说明Fe3O4@ZIF-8对染料分子的结合能力有差别,并且可能和染料分子的结构和组成有关系。亚甲基蓝是表面带有正电荷的阳离子类型的偶氮染料,在实验条件下,表面带有正电荷的Fe3O4@ZIF-8和亚甲基蓝染料发生静电互斥,造成亚甲基蓝的吸附容量非常低。而其他3种染料都是表面带负电荷的阴离子型偶氮染料,Fe3O4@ZIF-8对刚果红的去除率接近100%,对直接蓝86的去除率也非常高,甲基橙的去除率就非常低。这可能是因为刚果红和直接蓝86染料分子带有2个—SO3基团,而甲基橙带有1个—SO3基团,造成Fe3O4@ZIF-8对染料分子的静电引力的强弱存在差别[21]。同时,直接蓝86染料的分子质量和分子体积大于刚果红染料,造成直接蓝86的去除率低于刚果红染料。因此,Fe3O4@ZIF-8适用于去除阴离子类型的偶氮染料刚果红。
-
在实验中,对吸附剂Fe3O4@ZIF-8的重复利用效果进行了实验验证。由图12可知,当循环次数增加时,Fe3O4@ZIF-8对刚果红染料的去除率是不断下降的,但是下降的幅度非常小。经过5次循环后,去除率从最开始的98%下降到93%,只下降了5%。显然,Fe3O4@ZIF-8具备非常优异的循环吸附特性,该材料可以重复用于阴离子偶氮染料刚果红废水的去除。
-
1)采用常温机械搅拌法成功将Fe3O4纳米颗粒和金属有机骨架ZIF-8复合,制备出磁性核壳金属有机骨架Fe3O4@ZIF-8。
2) 将Fe3O4@ZIF-8作为新型吸附材料,系统考察了其对刚果红染料的吸附效果。当刚果红初始浓度为70 mg·L−1时,Fe3O4@ZIF-8对刚果红的去除率达到98%。实验表明,Fe3O4@ZIF-8的吸附量随着刚果红初始浓度的增加而增加,同时pH对吸附效果有很大的影响,低pH时,Fe3O4@ZIF-8和刚果红之间产生静电吸引;随着pH的不断升高,刚果红与Fe3O4@ZIF-8之间产生静电斥力,吸附量逐渐降低。
3) Fe3O4@ZIF-8吸附刚果红的动力学符合二级动力学模型,等温线符合Langmuir模型,Fe3O4@ZIF-8对刚果红的吸附是物理吸附与化学吸附并存,静电引力是其主要的吸附机理。
4) Fe3O4@ZIF-8吸附材料展示出优异的循环吸附性能以及对刚果红染料的高效选择性。因此,磁性核壳金属有机骨架Fe3O4@ZIF-8作为新型吸附材料在去除刚果红染料方面有着巨大的潜力。
磁性金属有机骨架Fe3O4@ZIF-8的制备及对偶氮染料刚果红的高效吸附
Preparation of magnetic metal organic framework Fe3O4@ZIF-8 and its high efficient adsorption towards azo dye congo red
-
摘要: 采用常温搅拌法,在聚苯乙烯磺酸钠(PSS)处理过的Fe3O4表面诱导生长ZIF-8壳层,成功合成了磁性核壳金属有机骨架Fe3O4@ZIF-8,并对其吸附去除偶氮染料刚果红的性能进行了探究,考察了刚果红初始浓度和接触时间、Fe3O4@ZIF-8投加量以及pH对刚果红去除的影响。SEM、TEM、XRD、FT-IR及VSM表征结果证明,ZIF-8纳米颗粒已成功负载于Fe3O4表面,形成了典型的核壳结构,并且具有优异的磁学性能。吸附实验结果表明,反应最佳pH为6,吸附剂投加量为500 mg·L−1;当反应时间达到180 min 时,吸附达到平衡。吸附反应的吸附动力学和吸附等温线分析表明,刚果红染料在Fe3O4@ZIF-8上的吸附动力学符合二级动力学方程,吸附等温线符合Langmuir模型。Fe3O4@ZIF-8吸附剂对刚果红具有高效的选择吸附性能并且在循环吸附中展现出良好的循环吸附性能。因此,磁性核壳金属有机骨架Fe3O4@ZIF-8作为吸附剂在去除刚果红染料方面有着广阔的应用前景。
-
关键词:
- 磁性金属有机骨架 /
- Fe3O4@ZIF-8 /
- 刚果红 /
- 吸附动力学
Abstract: The magnetic core-shell metal organic framework Fe3O4@ZIF-8 was successfully synthesized by treating the surface of Fe3O4 with sodium polystyrene sulfonate (PSS) and inducing ZIF-8 shell growth on it under continuous stirring at room temperature. The performance of adsorption and removal of azo dye congo red by Fe3O4@ZIF-8 was investigated. The effects of initial concentration and contact time, Fe3O4@ZIF-8 dosage and pH on congo red removal were investigated. The characterization of SEM, TEM, XRD, FT-IR and VSM showed that ZIF-8 nanoparticles have been successfully loaded on the surface of Fe3O4 to form a typical core-shell structure with excellent magnetic properties. The experimental results showed that the optimum pH was 6, the dosage of adsorbent was 500 mg·L−1, and the adsorption equilibrium was achieved at the reaction time of 180 min. The adsorption kinetics of congo red on Fe3O4@ZIF-8 was in accordance with the second-order kinetic equation, and the adsorption isotherm followed Langmuir model. Fe3O4@ZIF-8 adsorbent had high selective adsorption performance for congo red and presented good reusability in cyclic adsorption. Therefore, magnetic core-shell metal-organic framework Fe3O4@ZIF-8 had broad application prospects in the removal of congo red dyes as adsorbent.-
Key words:
- magnetic metal organic framework /
- Fe3O4@ZIF-8 /
- congo red /
- adsorption kinetics
-
受控生态生保系统(controlled ecological life support system,CELSS)通过对大气控制、温湿度控制、食物供应、水再循环和废物处理等技术整合,可保障航天员在地外环境中健康生活和有效工作,是未来地外星球基地长期稳定运行的必要保证[1]。CELSS依据地球生态圈的基本原理,在有限的密闭空间内构建了“人-植物-微生物-环境”自循环式闭路生态系统[1]。其中,植物作为关键功能部件,能够为航天员提供新鲜食物和氧气、吸收二氧化碳和净化水质。在CELSS中,通常选择小麦作为主要的粮食作物,不可避免地会产生大量的植物不可食部分,这部分固废的积累不仅会造成占用舱体空间、发酵腐败等安全卫生问题,还会造成大量资源(如水分、碳元素、氮元素、无机盐等)的浪费。如何高效处理并回收利用这类固体废物,维持CELSS中较高的物质循环利用率与闭合度,已成为CELSS中迫切需要解决的问题。
针对CELSS中小麦秸秆等固废资源化处理问题,美国和俄罗斯等国采用焚烧[2]和湿式氧化[3]等物化技术进行处理。物化技术稳定可靠、反应速率快,但存在着对设备要求高、能耗高、对系统瞬时冲击负荷大、产生氮氧化物而限制元素循环等缺点。生化处理技术则具有能耗低、反应过程温和以及能够有效实现各元素再生循环等优势。CHYNOWETH等[4]采用干式厌氧发酵工艺处理水稻秸秆、废纸和狗粮(模拟成员粪便)混合物,运行时间为23 d,有机物降解率达到了81.2%;并提出针对固废的预处理、后处理(沼渣好氧堆肥)和营养液植物栽培等方面的研究应作为未来研究的方向之一。欧洲太空局采用湿式厌氧消化工艺[5]将反应控制在水解酸化阶段而抑制产甲烷阶段,将有机底物转化为VFAs、氨氮和CO2用于后续的藻类系统和硝化系统使用。WHITAKER等[6]研制了固体高温好氧反应器用于处理志愿者产生的废物,包括粪便、厕纸、食物残渣和卫生废水等,操作温度为55~70 ℃,总固体降解率可达到74%。TIKHOMIROV等[7]通过蘑菇(真菌)培养和蚯蚓等腐生动物对植物不可食部分进行好氧堆肥处理,得到了类土壤基质并用于作物栽培。上述生化处理技术虽可一定程度上实现固废的稳定减容和资源回收,但也面临着设备尺寸较大、反应周期较长或仍需后续的好氧发酵等无害化处理的局限。而好氧堆肥技术作为无害化和资源化的处理方式,对碳氮等养分有较好的保全,可将固废转化为腐殖质,施用后能对植物生长起到促进作用,符合CELSS中物质循环再生的要求,因而受到广泛关注和研究。好氧堆肥技术是通过多种微生物的协同作用来完成物料的降解,因此,微生物的配比是影响好氧堆肥过程的关键因素[8]。有研究[9]表明,堆肥中接种微生物菌剂能使堆温快速升高,有效杀灭堆肥物料中的病原菌和杂草种子,显著促进堆肥腐熟,提高堆肥质量。另外,在CELSS内,由于微生物受到严格的控制和防护,其主要来自航天员体表和体内,种类及数量都无法满足堆肥启动要求。因此,添加一定的功能菌剂对于启动堆肥反应、促进堆肥腐熟和缩短堆制周期至关重要。目前,以微生物菌剂接种用于禽畜粪便和市政污泥相关方面的研究较多[9-10],通常添加秸秆、木屑等物质起到平衡含水率、调节C/N和通气性等作用[11],市面上也有多种针对这类固废的商业菌剂。然而,针对农业固废小麦秸秆降解处理的商用菌剂并不常见,且对于菌剂接种用于小麦秸秆堆肥降解效果的研究较少。
为实现CELSS中小麦秸秆等固废的资源化处理,提高系统物质闭合度,本研究以小麦秸秆为主要处理对象,添加厨余垃圾作为调整物料C/N比的营养调节剂,选取3种商业菌剂开展小试反应器强制通风好氧堆肥试验,探究接种菌剂对小麦秸秆好氧堆肥一次发酵阶段降解效果的影响;考察堆肥过程中各项参数变化,分析比较3种菌剂对小麦秸秆的处理效果,探讨不同菌剂在小麦秸秆好氧堆肥各个阶段的降解作用,以期为筛选研制高效降解小麦秸秆的微生物菌剂提供理论基础。
1. 材料与方法
1.1 实验原料
小麦秸秆购自江苏某农场,经机械粉碎后选取粒径为0.3~0.5 cm的麦秸待用;厨余垃圾取自某单位食堂,将其中的骨头、卫生纸、塑料袋、玉米棒芯等拣出,用粉碎机将厨余垃圾粉碎至浆糊状。堆肥所用物料的基本性质见表1。
表 1 堆肥原料的理化性质Table 1. Physical and chemical properties of the composting materials堆肥原料 含水率/% 全碳含量/% 全氮含量/% C/N比 小麦秸秆 10.11±0.01 41.54±0.38 0.93±0.03 44.67 厨余垃圾 81.09±0.11 52.64±0.46 3.69±0.08 14.27 1.2 微生物菌剂
针对小麦秸秆特性,选用3种适用于秸秆腐熟的商业菌剂,代号分别为QD、DH、VT。其中,QD菌剂呈液体状,有效活菌数≥109 CFU·mL−1,主要为乳酸菌、木霉菌和芽孢杆菌等;DH菌剂呈固体粉末状,有效活菌数≥5×108 CFU·g−1,主要为枯草芽孢杆菌、米根霉、毕赤酵母菌和戊糖片球菌等;VT菌剂呈固体粉末状,有效活菌数≥5×108 CFU·g−1,主要为酵母菌、乳酸菌和芽孢杆菌等。
1.3 实验装置
本实验采用的堆肥装置如图1所示,主要由带盖塑料桶(桶有效容积为19 L,桶外壁包裹有2层保温棉,桶顶部放置有温度计,桶底部设置有物料托盘)、温度控制系统和通气系统3部分组成。
1.4 实验方法
有别于陆地生态系统,CELSS内没有自然界广泛分布的细菌、放线菌和真菌等微生物,因此,为启动堆肥反应和促进底物腐熟,接种一定的有益菌群是必须的。本实验主要考察不同菌剂对小麦秸秆堆肥过程中一次发酵阶段的降解处理效果,故未设不加菌剂的对照组实验。
实验共分为3组,分别为QD组、DH组和VT组。每组均用小麦秸秆和厨余垃圾按二者干基质量比为4:1的比例均匀混合,混合物料的C/N比控制在30∶1,并调节混合物料的水分含量在65%。接种菌剂时按物料总重的0.5%添加,即QD菌剂接种100 mL,DH菌剂和VT菌剂各接种52 g。每组混合均匀的物料等分装入3个堆肥桶内,每个堆肥桶内均含物料3.50 kg,每组设置3个重复实验。通风量设置为1 L·min−1,持续通风至堆肥结束,堆肥周期设定为30 d。
堆肥开始后分别于第1、5、9、14、19、24和29 d取样,取样前需翻堆,使物料混合均匀。采样时按照5点采样法的原则分别在堆体的上、中、下层采集鲜样共30 g,混合均匀后置于−20 ℃冰箱保存,用于各项指标的测定。
1.5 分析方法
温度采用温度计测定。将温度计插入物料中间及周围3点20 cm处测定温度,取4点温度的平均值作为最终结果,温度每隔24 h测定1次;含水率采用烘干法[12]测定。
浸提液理化性质测定。将5 g鲜样与蒸馏水按质量比1∶10混合并振荡120 min,然后在10 000 r·min−1下离心5 min,过0.45 μm滤膜后,将滤液用塑料小瓶贮存于4 ℃冰箱待用。pH用便携式pH计测定;电导率(EC)用便携式电导率仪测定;在465 nm(E4)和665 nm(E6)下的波长用紫外分光光度计[13]测定。
VS含量和C/N比分别采用灼烧法和元素分析仪法[13]测定。
2. 结果与讨论
2.1 菌剂处理下物料温度的变化特性
3种菌剂处理下物料的温度变化如图2所示。堆肥前3 d,物料中易降解的有机物如可溶性小分子有机物、多糖和脂类等开始降解,该阶段嗜温菌的活性较强,热量快速累积,温度迅速上升至50 ℃以上。3~10 d为高温期,可溶性的中间产物被继续分解转化,耐高温的放线菌数量增加,物料中有机物如淀粉、蛋白质、半纤维素和纤维素等逐步分解。QD、DH和VT处理下的最高温度分别达到了58.2、54.7和53.7 ℃,高温期分别维持了9、6和6 d。第10天后,堆体温度逐渐下降,嗜温细菌和真菌变得活跃,对残留的较难分解的有机物(如木质素)进行分解,物料表面变得疏松且颜色逐渐变为黑褐色,开始形成了腐殖酸等物质[14]。堆肥过程中分别于第5、9、14、19、24和29天对物料进行翻堆,翻堆后物料重新混合均匀,堆体温度稍有上升[15]。最终3组处理下物料的温度均稳定在31 ℃左右,与伴热带温度(发酵环境温度)趋于一致。
3种菌剂处理下的物料均经历了升温、高温和降温期。在高温期维持时间的长短方面表现为QD>DH>VT,只有QD组堆体的高温期维持时间超过了7 d。在温度峰值的高低方面表现为QD>DH>VT,只有QD组堆体的最高温度超过了55 ℃,满足堆肥无害化的要求[16]。综合3组物料温度的变化情况可知,QD菌剂在堆肥过程中能使堆体温度达到55 ℃以上,在高温期持续时间较长,这说明QD菌剂中的微生物可能更多为嗜温菌和高温菌,在升温和高温期的活性更强,对堆体在前期热量的迅速增长和积累有良好的促进作用。
2.2 菌剂处理下物料含水率的变化特性
3种菌剂处理下物料含水率的变化如图3所示。堆肥物料的含水率过高或过低都会影响堆肥的质量,含水率过高会导致堆体局部厌氧,过低会导致微生物活性下降[14]。由图3可知,3组处理下物料含水率总体上均呈现先上升后下降的变化趋势。在升温-高温期物料温度迅速上升,微生物活动剧烈,物料中的有机物被强烈分解,微生物代谢产水的速率大于水分蒸发的速率,导致物料的含水率上升。QD、DH和VT处理下物料的含水率分别在第9、14和9 d达到了最高值,分别为(75.6±1.14)%、(78.9±0.93)%和(79.5±1.55)%。10 d之后,物料的温度下降,微生物活动逐渐减弱,再加上持续的通气及翻堆,物料中的水分被持续带走,微生物代谢产水的速率小于水分蒸发的速率,物料含水率逐渐降低。最终,3组处理下物料的含水率分别降至(59.73±0.13)%、(56.61±2.19)%和(57.42±0.93)%,而有机肥料腐熟的标准要求堆体含水率低于30%[16],这说明3组物料均达到了初步腐熟,完成了好氧堆肥的一次发酵阶段。后续仍需要进行二次发酵,即温度维持在中温,使物料进一步稳定,最终达到深度腐熟。
2.3 菌剂处理下物料浸提液理化性质的变化特性
3组处理下物料浸提液理化性质的变化如图4所示。EC可以表征有机废物发酵产品中的可溶性盐含量;pH可以反映堆体所处的酸碱性环境;E4/E6可表征堆肥过程中腐殖酸的缩合度和芳构化程度[17]。由图4(a)和图4(b)可知,堆肥前期EC逐渐上升,这是由于堆体中可被微生物直接利用的物质较多,物料中易降解的物质如糖类、脂肪等被断链降解产生了VFAs和大量的无机盐离子,如
、HCO−3 和H+等[18],这些游离态离子逐渐累积导致EC逐渐上升。另外,厨余垃圾极易腐败,产生的H+和小分子有机酸导致堆肥初期pH较低,均为4.5左右。随着堆肥的进行,蛋白质等物质开始降解,产生了NO−3 等含氮离子[19],EC和pH均逐渐升高。QD、DH和VT处理下物料的EC均在第24 d达到最大值,分别为(3180±107)、(3473±300)和(3217±363) μS·cm−1,增量分别为85.6%、77.9%和74.6%。QD、DH和VT组的pH均稳定在微碱性的区间内,分别为8.44±0.08、8.42±0.06和8.48±0.07。由图4(c)可知,E4/E6前期数值较高并在前10 d迅速下降,这表明物料中易降解有机物被分解,产生的小分子有机酸等化合物被快速利用;随后,E4/E6在7~8之间波动,这表明此阶段底物的降解过程较前期缓慢,形成了腐殖质但腐殖化程度仍较低。综合浸提液理化性质的变化情况可知,DH处理下堆体中的EC更高,物料中有机物的矿质化程度更高;3种菌剂对小麦秸秆好氧堆肥过程中腐殖质的形成和积累均有一定的促进作用,但堆肥后期堆体的腐殖化进程较为缓慢;3种菌剂处理下的堆体均能维持在中性至微碱性的环境中,为堆体中的微生物提供了一个适宜的生长环境,使得微生物能够高效地降解有机物[20],便于后续二次发酵的开展。NH+4 2.4 菌剂处理下物料VS含量的变化特性
VS含量的变化反映了堆肥过程中物料有机物的降解速度和效率。3组处理下物料的VS含量变化如图5所示。由图5可知,3组处理下物料的VS含量均表现为逐渐降低的趋势,物料的初始VS含量(干基)为90%左右。在升温-高温期时,物料的温度迅速上升,微生物生命活动旺盛,物料中易降解的有机物被大量分解,碳元素主要以CO2的形式被释放,物料的VS含量迅速下降。在降温期时,物料的温度下降,此时物料内的有机物主要为难降解的木质纤维素等,有机物的降解速率变小。最终,QD、DH和VT处理下物料的VS含量分别稳定在(71.96±0.89)%、(65.84±1.19)%和(68.16±0.93)%。
3种菌剂处理下物料VS含量的减少情况如表2所示。3组处理下物料中有机物的降解效率表现为DH>VT>QD;QD、DH和VT处理下物料VS的减少量分别为(18.87±0.89)%、(24.48±1.60)%和(22.08±0.72)%。升温-高温期时,QD、DH和VT处理下物料的VS减少含量分别为(15.04±0.42)%、(10.99±1.28)%和(15.54±0.71)%,分别占VS减少总量的79.7%、45.2%和70.4%。VS含量的减少情况表明,QD和VT处理下物料中有机物的降解主要发生在升温-高温期,而DH处理下物料有机物的降解主要发生在降温期。这是因为,QD和VT菌剂中的乳酸菌和酵母菌等对糖类等物质有较强的利用能力,而DH菌剂中的枯草芽孢杆菌和米根霉能分泌纤维素酶从而对物料中的木质纤维素有着较好的降解作用[21],这说明3种菌剂对物料中有机物降解效果的差异性与菌剂中微生物的组成配比密不可分。
表 2 堆肥前后VS含量的减少情况Table 2. Reduction of VS content before and after composting% 处理组 初始VS含量 终点VS含量 升温-高温期VS减少量 VS减少总量 QD 90.83±0.18 71.96±0.89 15.04±0.42 18.87±0.89 DH 90.12±0.44 65.84±1.19 10.99±1.28 24.48±1.60 VT 90.24±0.26 68.16±0.93 15.54±0.71 22.08±0.72 2.5 菌剂处理下物料C/N比的变化特性
C/N比的变化可以反映堆肥过程中物料有机物矿质化和腐殖化的进程[22]。有研究[23]表明,适合微生物生长的物料C/N比范围为25∶1~30∶1。3组处理下物料C/N比的变化如图6所示,可见,3组物料的C/N比均呈现下降的趋势,变化曲线的斜率随堆肥过程的持续而逐渐降低,这与VS含量的变化情况一致。物料的初始C/N比均在30∶1左右,是适宜微生物生长的环境。堆肥前10 d堆体温度上升,微生物迅速生长繁殖。其中,易分解的含C有机物被微生物分解吸收利用,并通过呼吸作用变为CO2等气体排出堆肥系统,因而C含量逐渐变低。N素被微生物利用会以NH3的形式散失,但其下降幅度低于有机物总干物质的下降幅度,故干物质中全N含量会相对增加[22],总体则表现为C/N比迅速降低。10 d之后,物料的温度降低,微生物生命活动减弱,物料达到初步稳定腐熟,C/N比下降趋势变缓并趋于稳定。3组处理下物料的C/N比均由初始的30∶1降至12∶1以下,分别为11.71±0.16、11.67±0.20和11.45±0.16,终点C/N比与初始C/N比的比值分别为0.39、0.38和0.37,尽管满足堆肥腐熟时终点C/N比与初始C/N比的比值不超过0.5的要求[24],然而在实际应用中应该参照其他指标,如生物活性和植物毒性等,对堆肥的腐熟程度进行综合评价。
3. 结论
1) QD菌剂可以提高堆肥温度至58.2 ℃,堆体的高温期为9 d,满足堆肥无害化要求;DH菌剂可以促进物料中有机物的降解,降解率可达24.48%;3种菌剂对堆肥中腐殖质的形成和积累均有一定的促进作用。
2) 3组处理下的堆体进入降温期后均开始形成腐殖质,物料达到初步腐熟,即完成了一次发酵。后续仍需要进行二次发酵处理,使堆体达到完全腐熟,即可作为土壤改良剂或有机肥施用。
3)微生物配比不同是导致小麦秸秆好氧堆肥降解效果存在差异的重要因素。后续需分析堆肥过程中的微生物种群,进一步明确功能菌群和功能基因,考察微生物在小麦秸秆堆腐过程中的作用机理。
-
表 1 Fe3O4@ZIF-8对刚果红染料的动力学拟合参数
Table 1. Parameters of kinetic models for CR onto Fe3O4@ZIF-8
初始浓度/(mg·L−1) qe, exp/(mg·g−1) 一级动力学模型 二级动力学模型 qe, cal/(mg·g−1) K1 R2 qe, cal/(mg·g−1) K2 R2 30 60 26 0.021 0.947 61 0.002 25 0.999 50 98 71 0.024 0.978 104 0.000 63 0.995 70 136 124 0.023 0.963 145 0.000 32 0.993 注:qe,exp和qe,cal为平衡吸附量实验值和拟合值。 表 2 Langmuir和Freundlich常数及可决系数
Table 2. Langmuir and Freundlich adsorption constants and correlation coefficients
温度/℃ Langmuir模型 Freundlich模型 qmax /(mg·g−1) b/(L·mg−1) RL R2 Kf /(L·g−1) n R2 25 211 0.135 0.024 0.992 101.21 7.44 0.881 30 327 0.184 0.018 0.998 105.81 4.12 0.934 35 405 0.192 0.017 0.996 112.78 3.39 0.944 -
[1] 龚正君, 周文波, 陈钰. 花生壳活性炭对水中荧光素钠的吸附及动力学[J]. 环境工程学报, 2013, 7(1): 221-225. [2] 叶琳. 改性豆渣对污水中染料物质的吸附研究[D]. 重庆: 西南大学, 2014. [3] GREENWALD M J, REDDING A M, CANNON F S. A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions[J]. Water Research, 2015, 68: 784-792. doi: 10.1016/j.watres.2014.10.022 [4] LIU F, GUO Z, LING H, et al. Effect of pore structure on the adsorption of aqueous dyes to ordered mesoporous carbons[J]. Microporous & Mesoporous Materials, 2016, 227: 104-111. [5] YANG R, LI H J, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment[J]. Water Research, 2016, 95: 59-89. doi: 10.1016/j.watres.2016.02.068 [6] CHAMPNESS N R, SCHRODER M. Extended networks formed by coordination polymers in the solid state[J]. Current Opinion in Solid State & Materials Science, 1998, 3(4): 419-424. [7] LU W G, WEI Z W, GU Z Y, et al. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews, 2014, 43(16): 5561-5593. doi: 10.1039/C4CS00003J [8] EVANS J D, SUMBY C J, DOONAN C J. Post-synthetic metalation of metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5933-5951. doi: 10.1039/C4CS00076E [9] LEE J Y, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459. doi: 10.1039/b807080f [10] KRENO L E, KIRSTY L, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2011, 112(2): 1105-1125. [11] LI J R, JULIAN S, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. doi: 10.1021/cr200190s [12] 张琪颖. 基于金属有机骨架材料的高效吸附剂研发[D]. 济南: 济南大学, 2016. [13] 孙杨, 陆广明, 唐祝兴. 磁性纳米材料Fe3O4@MOF-5的制备及其对刚果红吸附性能的研究[J]. 辽宁化工, 2017, 46(11): 12-14. [14] 张通. ZIF-8包覆的核-壳结构材料的合成及其应用[D]. 大连: 大连理工大学, 2015. [15] ZHOU L C, MENG X G, FU J W, et al. Highly efficient adsorption of chlorophenols onto chemically modified chitosan[J]. Applied Surface Science, 2014, 292(1): 735-741. [16] MOGHADDAM H K, PAKIZEH M. Experimental study on mercury ions removal from aqueous solution by MnO2 /CNTs nanocomposite adsorbent[J]. Journal of Industrial & Engineering Chemistry, 2015, 21: 221-229. [17] LORENC-GRABOWSKA E, RUTKOWSKI P. High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: Kinetics and mechanism[J]. Applied Surface Science, 2014, 316(1): 435-442. [18] YANG G, CHEN H L, QIN H D, et al. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups[J]. Applied Surface Science, 2014, 293(3): 299-305. [19] LI B J, CAO H Q, SHAO J, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices[J]. Journal of Materials Chemistry, 2011, 21(13): 5069-5075. doi: 10.1039/c0jm03717f [20] 顾兵. 沸石咪唑酯骨架结构材料(ZIF-8)对染料废水中刚果红的吸附效果和特征分析研究[D]. 南京: 南京农业大学, 2015. [21] 张湛杭, 张景丽, 刘建明. 金属有机骨架ZIF-67对刚果红的吸附性研究[J]. 天津城建大学学报, 2017, 23(4): 267-272. -