电阻加热条件优化及其对污染土壤中苯并(a)芘的去除

田垚, 杨永刚, 韩自玉, 胡健, 焦文涛. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
引用本文: 田垚, 杨永刚, 韩自玉, 胡健, 焦文涛. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
TIAN Yao, YANG Yonggang, HAN Ziyu, HU Jian, JIAO Wentao. Optimization of electrical resistance heating conditions and its removal performance from BaP contaminated soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
Citation: TIAN Yao, YANG Yonggang, HAN Ziyu, HU Jian, JIAO Wentao. Optimization of electrical resistance heating conditions and its removal performance from BaP contaminated soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176

电阻加热条件优化及其对污染土壤中苯并(a)芘的去除

    作者简介: 田垚(1995—),男,硕士研究生。研究方向:土壤污染修复。E-mail:dtysxu@163.com
    通讯作者: 焦文涛(1978—),男,博士,副研究员。研究方向:土壤及地下水污染修复。E-mail:wtjiao@rcees.ac.cn
  • 基金项目:
    国家重点研发计划资助项目(2018YFC1802106);中国科学院STS项目(KFJ-STS-ZDTP-039);山西省“1331工程”重点创新团队建设计划(PY201806)
  • 中图分类号: X53

Optimization of electrical resistance heating conditions and its removal performance from BaP contaminated soil

    Corresponding author: JIAO Wentao, wtjiao@rcees.ac.cn
  • 摘要: 电阻加热(electrical resistance heating, ERH)是处置挥发性、半挥发性有机污染土壤极具应用潜力的技术之一。基于实验室模拟电阻加热和热传导加热(thermal conductive heating, TCH)小试装置,研究了土壤电阻加热的优选条件及其对土壤中苯并(a)芘(benzo(a)pyrene,BaP)去除率的影响以及土壤中BaP在电阻加热和热传导加热过程中的热脱附动力学。结果表明:土壤水分、盐分、电场强度显著影响土壤ERH升温速率与最高加热温度;在ERH最优条件为8 V·cm−1的电场强度下,添加6 mL的0.1% NaCl溶液,每30 min须补水6 mL,最终BaP去除率为51.56%;在ERH过程中温度变化与电流变化基本同步,土壤水分和持温时间是去除土壤中BaP的重要影响因素;BaP在土壤中去除过程符合抛物线扩散模型,说明BaP在土壤中的去除以微孔扩散为主,去除率受加热时间影响大。本实验结果可为电阻加热技术修复BaP污染土壤提供参考。
  • 在众多的污水处理方法中,活性污泥法受到人们的广泛关注,活性污泥法作为重要的处理污水方法之一,具有很多优势. 但是随着国内外对污水治理的日益重视和城市污水处理厂的不断建设,大量的剩余污泥作为活性污泥法处理污水的副产物排出[1]. 污泥因其含水率高、含有大量病原体和微生物等有害生物、重金属及有机物含量高等特点,容易对环境造成二次污染[2],污泥的有效处理处置是亟待解决的重要问题. 污泥脱水是常规的污泥处理方法,在污泥脱水之前需要经过一定的调理使其满足后续脱水要求,所以,选择合适的污泥调理方法对改善污泥脱水性能尤为重要.

    过氧化钙(CaO2)作为一种热稳定性好的环境友好型材料,被广泛应用于农业种植、水产养殖、食品保存、医疗以及环境领域[3]. CaO2具有高能的过氧化物共价键,当CaO2与水接触时,能够缓慢释放过氧化氢(H2O2),同时还会生成羟基自由基、过氧化氢自由基等具有强氧化性的自由基(反应式见式(1—5))[4]. 近年来,因其具有稳定的氧化性,CaO2在污泥处理方面的应用成为一个新的研究热点. Wang 等研究发现,通过CaO2预处理污泥后,难降解有机物可以转化为可生物降解,促进污泥中可生物降解基质的水解和分解代谢,进而增强污泥厌氧消化效果[5]. 有研究表明,CaO2可以破解污泥EPS结构,释放污泥中的束缚水[6]. Wang等的研究表明,通过联合CaO2和微波预处理污泥,预处理后污泥的CST值相较于原泥下降52% [7]. 通过热处理与CaO2联合调理,可以提升污泥脱水性能[8].

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    除了直接使用CaO2对目标物进行氧化,对CaO2进行活化也是一种常用的技术[8]. 有研究认为,通过微波活化CaO2,能促进CaO2产生更多的HO·和·O2-[7]. 通过过渡金属(Fe2+/Fe3+和Ag+)活化CaO2分解是常用的活化方法[9]. 利用Fe2+活化CaO2可以形成类芬顿反应,但如果不进行pH调节, Fe2+易于被氧化成Fe3+,限制了芬顿反应的效率. 有研究指出,利用含铁矿物对H2O2进行活化可以克服这一缺陷[10]. 黄铁矿(FeS2)是一种常见的脉石矿物,与矿床中的有价矿物伴生,可通过常规浮选方法轻松处理[11]. 最近有研究发现,利用黄铁矿活化CaO2降解磺胺,相比常规的芬顿反应,磺胺的氧化效率从30%提升至80%,(主要反应见式(6—9))[12]. Zhou等研究表明利用黄铁矿活化CaO2处理邻苯二甲酸二乙酯(DEP),78%的DEP在24 h内被降解[13]. 这些结果说明,通过黄铁矿活化CaO2能有效促进HO·产生,但目前尚未发现关于利用黄铁矿活化过氧化钙调理污泥的研究,其对污泥脱水性能的影响及机理尚未清晰,因此本研究利用黄铁矿-CaO2作为一种新型的芬顿法对污泥进行调理,以期达到破解EPS从而释放结合水的效果,并通过EPS性质及污泥絮体性质变化探究其对污泥脱水性能的影响机理.

    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)
    stringUtils.convertMath(!{formula.content}) (8)
    stringUtils.convertMath(!{formula.content}) (9)

    本研究对不同污泥样品进行EPS的提取,并对提取出来的EPS样品进行含量测定、三维荧光光谱检测,以表征调理前后污泥EPS性质变化. 同时对不同污泥样品的粒径分布进行检测,探究调理方法对污泥絮体团聚性能变化的影响.

    本研究中污泥取自于广州市某污水处理厂二沉池,污泥取至实验室后,先过20目筛,去除大颗粒杂质和毛发,之后置于冰箱在4 ℃下保存. CaO2采购于上海麦克林生化科技有限公司. 黄铁矿采购于佛山市大昌顺材料科技有限公司,黄铁矿在使用之前对其进行研磨,并过100目筛,利用0.1 mol·L−1HNO3 洗去表面杂质及氧化层,干燥后备用[14].

    为了探究不同调理条件对污泥脱水性能的影响,本研究对黄铁矿单独调理、CaO2单独调理以及两者复合调理污泥进行实验室规模的污泥脱水性能实验,250 mL的烧杯作为污泥调理容器,在调理容器中加入100 mL污泥样品进行实验. 利用重量法对污泥总固体(TS)进行测定[15]. 在黄铁矿单独调理实验中,设置6组不同黄铁矿调理剂量实验组,各组黄铁矿投加量分别为0、1、2、4、6 g·L−1. CaO2单独调理实验中,设置6组不同CaO2调理剂量实验组,各组CaO2投加量分别为10、30、50、80、100 mg·g−1 TS. 为了研究单独调理与复合调理以及不同复合调理方法之间的污泥脱水性能变化,设置了两组复合调理实验,第一组:CaO2投加量30 mg·g−1 TS,黄铁矿投加剂量1 g·L−1,第二组:CaO2投加量100 mg·g−1 TS,黄铁矿投加剂量1 g·L−1. 将单独调理和复合调理的实验组分别设置为A30、A100和B30、B100. 其中,A30为30 mg·g−1 TS CaO2单独调理,B30为30 mg·g−1 TS CaO2 +1 g·L−1黄铁矿复合调理,A100为100 mg·g−1 TS CaO2单独调理,B100为100 mg·g−1 TS CaO2 +1 g·L−1黄铁矿复合调理.

    本研究中利用毛细吸水时间(CST)作为评价污泥脱水性能的指标. CST利用CST测定仪进行测定(HDFC-10A),利用测定后CST数据进行标准化CST(SCST)计算[16],计算公式如下:

    stringUtils.convertMath(!{formula.content})

    其中,CSTa为调理后污泥样品的CST值,CST0为原泥的CST值.

    在本研究中,EPS根据其存在形态分类为溶解性EPS(S-EPS)、松散束缚EPS(LB-EPS)和紧密束缚EPS(TB-EPS)[17],本研究采用一种改进的热提取方式对EPS进行提取,具体方法参照文献[18]. EPS中的多糖含量利用硫酸-蒽酮法测定,蛋白质含量利用福林酚法进行测定[19].

    本研究中利用荧光光谱仪(Hitachi F-4600)对提取出的EPS进行3D-EEM的测定,光谱数据的发射波长(Em)以及激发波长(Ex)范围从220 nm到450 nm,采集间隔为10 nm. 光谱数据的利用5 nm的发射和激发狭缝带宽以及1500 nm·min−1的扫描速度进行收集.

    本研究利用激光粒度仪(Mastersize 3000)对污泥絮体粒径分布及絮体粒径D50D90值的测定. 其中,D50D90分别定义为颗粒直径的第50和第90百分位数[20].

    图1可见,单独投加CaO2之后,污泥SCST值随着CaO2的投加量的增加呈现先下降再上升的趋势,单独投加CaO2,投加量为30 mg·g−1 TS的实验组SCST值最低为0.61. 在投加剂量不高于80 mg·g−1 TS时,CaO2单独调理有利于提升脱水性能,但当CaO2投加量增加至100 mg·g−1 TS时,SCST值增加至1.39,说明过量的CaO2不仅不会提升污泥脱水性能,反而会使得原污泥脱水性能下降. 随着黄铁矿投加量增加,黄铁矿单独调理的SCST值也表现出先下降再上升的,最优黄铁矿单独调理剂量为1 g·L−1,SCST值为0.70. 但当投加量继续增加时,黄铁矿单独调理对污泥脱水性能的提升效果变弱,在投加量为6 g·L−1的单独调理下,SCST值为0.92,污泥脱水性能提升不明显. 这说明过量的过氧化钙投加,带来过强的氧化性能,会使得污泥的脱水性能下降,这一趋势与Chen等的研究结果相似,过强的氧化性可能会导致过量的EPS释放,降低污泥脱水性能[6]. 但在CaO2投加量为30 mg·g−1 TS复合调理时,虽然氧化性能更强,但污泥有更佳的脱水性能,SCST值下降至0.55,这说明利用黄铁矿活化过氧化钙对污泥进行复合调理能有效提升污泥的脱水性能.

    图 1  过氧化钙(a)、黄铁矿(b) 单独调理和复合调理(c)污泥样品的SCST值
    Figure 1.  SCST values of calcium peroxide (a), pyrite (b) single conditioning and composite conditioning (c) sludge samples

    不同结构的EPS对剩余污泥的脱水性能影响程度可能不同,Dai等认为S-EPS中有机物含量较高或LB-EPS中有机物含量较低,具有较好的脱水性能[21]. He等指出污泥脱水性与S-EPS中有机物浓度呈正相关,而与LB-EPS中生物聚合物含量呈负相关[22]. 剩余污泥脱水性能除了和EPS的组成结构有关,还与EPS的组成成分相关,Wei等研究发现,污泥脱水性能与EPS中蛋白质含量呈负相关性[23],而且蛋白质含量是决定污泥脱水性能的关键因素[24],为了进一步探究污泥调理过程中污泥性质的变化,本研究对提取出的EPS样品进行蛋白质和多糖含量的测定. CaO2调理后污泥EPS结构发生明显的变化(图2a),在30 mg·g−1 TS的CaO2投加量下,S-EPS蛋白质含量略有下降,而内层EPS(LB-EPS、TB-EPS)蛋白质含量增加,相较于单独调理,CaO2/黄铁矿复合调理由于其更强的氧化性能,在CaO2投加量为30 mg·g−1 TS时的复合调理污泥样品中,内层EPS蛋白质含量增加幅度更大. 当CaO2投加量增加至100 mg·g−1 TS后,所有层EPS中蛋白质含量均增加,与低CaO2投加量相似,复合调理因其更强的氧化性,内部EPS含量较单独调理增加更多. 调理后污泥的总EPS(T-EPS)蛋白质含量均增加,高剂量CaO2导致更多的蛋白质释放,而复合调理对蛋白质含量的提升高于单独调理.

    图 2  原泥以及调理后污泥EPS中蛋白质含量(a),多糖(b)蛋白质-多糖含量比率(c)变化
    Figure 2.  The concentration of protein (a), polysaccharide (b) and the ratio of protein to polysaccharide (c) in EPS of raw sludge and conditioned sludge

    调理前后EPS多糖含量的变化见图2b,随着CaO2投加量增加,内外层EPS多糖含量均增加. 值得注意的是,高CaO2投加剂量的复合调理样品中,S-EPS和LB-EPS的多糖含量较单独调理均下降. T-EPS中多糖的变化趋势与蛋白质不同,T-EPS中多糖含量随着氧化性能的增强表现出先增加后下降的趋势,这可能是低CaO2剂量调理下,EPS结构被破解,内层EPS释放至外层. 但在高剂量CaO2的复合调理下,多糖类物质可能被分解为更小的有机分子或直接被矿化,导致T-EPS中多糖含量下降.

    有研究认为,LB-EPS中蛋白质/多糖比率(PN/PS)与脱水性有负相关性[25]. 本实验中,B30样品LB-EPS的PN/PS最小(图2c),且无论高剂量或低剂量,在同一剂量下复合调理得到的LB-EPS样品,其PN/PS值均小于单独调理. 但当用高剂量过氧化钙对污泥进行调理后,LB-EPS中的PN/PS上升,污泥脱水性能下降. 但本实验发现,高剂量的过氧化钙调理后虽然PN/PS上升,但仍然低于原泥,这与脱水性能变化不一致,这是因为污泥脱水性能的变化影响十分复杂,并不能只靠EPS中的PN/PS进行指示.

    从EPS含量变化可以看出,使用CaO2单独调理以及CaO2/黄铁矿复合调理都可以改变EPS原有结构,破解EPS结构. 在同一CaO2投加量下,复合调理得到的EPS破解效果更加明显. 结合污泥脱水结果分析,污泥调理方法在一定范围内对EPS结构进行破解,可能有利于污泥脱水性能的提升,但对EPS结构的过度破解可能会使得大量有机质的释放,进而使得污泥脱水性能下降.

    为了更深入地了解调理前后以及各调理方法对各层EPS的性质以及其含量的影响,本研究利用三维荧光光谱对各层EPS的有机成分进行表征,各样品EPS的三维荧光光谱见图3. 本研究中EPS的荧光光谱峰主要有两个,分别为A峰(Em/Ex:340 nm/225 nm)和B峰(Em/Ex:350 nm/280 nm). 根据Wen等提出的三维荧光光谱分区方法,A峰位于区域Ⅱ,归类为芳香类蛋白物质,B峰位于区域Ⅳ,归类为色氨酸和类蛋白物质[26].

    图 3  原泥(a)、A30(b)、B30(c)、A100(d)、B100(e)EPS样品三维荧光光谱图
    Figure 3.  3D-EEM spectra of EPS samples of raw sludge(a); A30(b); B30(c); A100(d); B100(e)

    A峰在原泥S-EPS中强度较低,但经过调理后,A峰强度上升,芳香类蛋白含量增加. 在A100中,S-EPS中的A峰出现最强的荧光强度,说明在此调理方法下内层EPS和胞内的芳香类蛋白向外释放,聚集在外层EPS中. 但经过氧化性更强的B100调理后,A峰强度下降,这可能是由于芳香类蛋白的分解导致含量下降. S-EPS中B峰的荧光强度在A30和B30调理下均下降,当CaO2投加量增加后,S-EPS的B峰强度增加,S-EPS中B峰最强峰强度出现在B100调理下. 原泥中LB-EPS中A峰和B峰强度稍强于S-EPS,经过预处理后污泥LB-EPS中A、B峰强度增加,且两峰强度的增加幅度明显大于S-EPS. 不同调理方法对LB-EPS的荧光光谱图影响与S-EPS相似,A、B峰在B100调理下均出现最强荧光强度. 原泥TB-EPS中的芳香类蛋白和色氨酸含量明显高于S-EPS和LB-EPS,这一结果与EPS含量一致. 不同调理手段下B峰强度在TB-EPS中的变化与在S-EPS、LB-EPS中的变化相似,B峰在A100调理下出现最大荧光强度,随后下降. 但与 S-EPS、LB-EPS 变化趋势不一致的是,TB-EPS 中 A 峰的最大荧光强度出现在 B30 调理下, 这一结果说明,芳香类蛋白比色氨酸更易于从胞内和内层 EPS 释放至胞外和外层 EPS.

    荧光峰强度变化趋势可以说明,在一定条件下,随着调理方法的氧化性的增强,EPS中物质被分解,EPS结构破解程度增加,胞内物质向TB-EPS转移,同时TB-EPS中的物质向外层的LB-EPS和S-EPS转移. 当调理方法氧化性能过强,各层EPS中物质被分解甚至矿化,导致各层EPS中荧光峰强度下降,同时还发现,各层EPS中不同物质对于不同调理方法的变化趋势并不完全相同.

    图4a可以看出,经过调理后的污泥絮体粒径分布曲线均向左移动,同时图4b中看到原泥有最大的D90以及D50值,调理后污泥的D50以及D90均有明显的下降,说明调理后污泥的絮体粒径下降. 这是由于强氧化性的调理方法将EPS结构破解后,会使得污泥絮体分解,形成尺寸更小的絮体[27]. 随着调理方法的氧化性能增强,污泥的粒径分布曲线左移程度越大,且有更小的D50D90值,可以认为氧化性能越强的调理方法能够更高效、更彻底地破坏原有污泥絮体结构,使得原有稳定的大颗粒絮体失稳进而形成众多小尺寸的絮体. 这一现象与Ling等研究结果一致,通过对污泥絮体的破解,可以有效地释放束缚水,提升污泥脱水性能[28]. 在本研究中,在同一CaO2投加量下,复合调理后的污泥样品相较于单独调理后的污泥样品有更小的粒径,这也再次说明本研究中复合调理有更高效的EPS破解性能,但高剂量的过氧化钙投加量可能会过度破解絮体结构,过度破解絮体使得絮体粒径下降可能会增加小颗粒污泥对过滤介质的堵塞作用,降低污泥的脱水性能[29].

    图 4  原泥以及调理后污泥样品的絮体粒径分布(a)和粒径 D50、D90 变化(b)
    Figure 4.  Floc particle size change distribution (a) and particle size D50, D90 change (b) of raw sludge and conditioned sludge samples

    本研究提出一种利用黄铁矿活化CaO2的污泥调理技术,结果表明,单独利用CaO2或者黄铁矿对污泥进行调理,随着CaO2或黄铁矿投加量的增加,污泥脱水性能呈现先上升后下降的趋势,在30 mg·g−1 TS CaO2和1 g·L−1黄铁矿的投加量下分别得到过氧化钙和黄铁矿的最优单独调理效果,同时发现,当CaO2和黄铁矿投加量为30 mg·g−1 TS和1g L−1时,复合调理后的污泥样品脱水性能优于单独调理. 但实现污泥脱水性能的提升需要对调理药剂投加量进行控制,过多的药剂投加可能会带来污泥脱水性能的下降.

  • 图 1  电阻加热实验装置示意图

    Figure 1.  Schematic diagram of electricalresistance heating device

    图 2  热传导加热实验装置示意图

    Figure 2.  Schematic diagram of thermal conductive heating device

    图 3  电解质溶液对土壤电阻加热过程的影响(电场强度6 V·cm−1)

    Figure 3.  Effect of electrolyte solution on soil ERH process (6 V·cm−1 electric strength)

    图 4  电解质溶液对土壤电阻加热过程的影响(电场强度8 V·cm−1)

    Figure 4.  Effect of electrolyte solution on soil ERH process (8 V·cm−1 electric strength)

    图 5  电解质溶液对土壤电阻加热温度和电流的影响

    Figure 5.  Effect of electrolyte solution on temperature and electric current of ERH for soil

    图 6  土壤BaP残留率随ERH和TCH持温时间的变化

    Figure 6.  Changes in residual rates of BaP in soils with temperature duration of ERH and TCH

    表 1  供试土壤基本性质

    Table 1.  Basic characteristics of tested soils

    粒径分布/%pH
    1~0.05 mm0.05~0.005 mm< 0.005 mm
    93.494.661.857.7
    有机质含量/%N含量/%P含量/%K含量/%
    0.970.840.320.33
    粒径分布/%pH
    1~0.05 mm0.05~0.005 mm< 0.005 mm
    93.494.661.857.7
    有机质含量/%N含量/%P含量/%K含量/%
    0.970.840.320.33
    下载: 导出CSV

    表 2  苯并(a)芘的理化性质及供试土壤的污染情况

    Table 2.  Physicochemical properties of BaP and contamination analysis of tested soils

    环数相对分子质量熔点/℃沸点/℃lgK
    5252.01794755.91
    环数相对分子质量熔点/℃沸点/℃lgK
    5252.01794755.91
    下载: 导出CSV
    毒性当量参数(TEFs)理论浓度/(mg·kg−1)实测浓度/(mg·kg−1)建设用地筛选值(SL)/(mg·kg−1)
    11.51.390.55
    毒性当量参数(TEFs)理论浓度/(mg·kg−1)实测浓度/(mg·kg−1)建设用地筛选值(SL)/(mg·kg−1)
    11.51.390.55
    下载: 导出CSV

    表 3  土壤中BaP脱附动力学拟合方程和R2

    Table 3.  BaP desorption kinetics equation from soils and R2

    动力学方程热传导加热BaP电阻加热BaP
    拟合方程R2拟合方程R2
    一级动力学方程lnC=0.989−0.006t0.989**lnC=1.003−0.004t0.957**
    Elovich方程C=1 688.732−143.677lnt0.583*C=1 233.1−75.633lnt0.677*
    抛物线扩散方程C=71.864t0.5+1 641.620.823**C =37.413t0.5+1 205.9380.869**
    Freundlich动力学方程lnC=7.497−0.125lnt0.627*lnC=7.144−0.079lnt0.653*
      注:*表示P < 0.05,**表示P < 0.01。
    动力学方程热传导加热BaP电阻加热BaP
    拟合方程R2拟合方程R2
    一级动力学方程lnC=0.989−0.006t0.989**lnC=1.003−0.004t0.957**
    Elovich方程C=1 688.732−143.677lnt0.583*C=1 233.1−75.633lnt0.677*
    抛物线扩散方程C=71.864t0.5+1 641.620.823**C =37.413t0.5+1 205.9380.869**
    Freundlich动力学方程lnC=7.497−0.125lnt0.627*lnC=7.144−0.079lnt0.653*
      注:*表示P < 0.05,**表示P < 0.01。
    下载: 导出CSV
  • [1] 骆永明. 中国污染场地修复的研究进展、问题与展望[J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002
    [2] KINGSTON J L T, DAHLEN P R, JOHNSON P C. State-of-the-practice review of in situ thermal technologies[J]. Groundwater Monitoring & Remediation, 2010, 30(4): 64-72.
    [3] 钟宇驰. 城市周边工业区土壤多环芳烃源汇机制及修复技术[D]. 杭州: 浙江大学, 2011.
    [4] 蔡武. 不同氧化剂对炼钢厂土壤中多环芳烃的修复效果研究[D]. 杭州: 浙江大学, 2016.
    [5] 韩玲, 高照琴, 白军红, 等. 城市化背景下珠江三角洲典型湿地土壤多环芳烃(PAHs)的含量、来源与污染风险评价[J]. 农业环境科学学报, 2019, 38(3): 609-617. doi: 10.11654/jaes.2018-1535
    [6] 张惠灵, 王宇, 周杨, 等. 某焦化厂PM2.5中多环芳烃的排放特征及其对周边环境影响[J]. 环境工程学报, 2017, 10(10): 5571-5576. doi: 10.12030/j.cjee.201611095
    [7] 代文娟, 黄海燕, 胡恭华. 苯并芘致肺癌的研究进展[J]. 毒理学杂志, 2018, 32(6): 489-493.
    [8] 康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势[J]. 化工进展, 2017, 36(7): 2621-2631.
    [9] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036.
    [10] HEGELE P R, MUMFORD K G. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene[J]. Journal of Contaminant Hydrology, 2014, 165(9): 24-36.
    [11] MCGEE B C W, VERMEULEN F E. The mechanisms of electrical heating for the recovery of bitumen from oil sands[J]. Journal of Canadian Petroleum Technology, 2007, 46(1): 28-34.
    [12] VERMEULEN F E, MCGEE B C W. In situ electromagnetic heating for hydrocarbon recovery and environmental remediation[J]. Journal of Canadian Petroleum Technology, 2000, 39(8): 25-29.
    [13] ZUTPHEN M V, HERON G, ENFIELD C G, et al. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil[C]//Forschungszentrum Karlsruhe, Technik und Umwelt. The 6th International FZK/TNO Conference on Contaminated Soil(ConSoil 98). Edinburgh, 1998: 561-570.
    [14] MARTIN E J, KUPPER B H. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions[J]. Journal of Contaminant Hydrology, 2011, 126(3/4): 291-300.
    [15] 岳昌盛, 刘诗诚, 吴朝昀, 等. 焦化污染土壤低温热解析实验研究[J]. 环境工程, 2018, 36(5): 193-197.
    [16] TSE K K C, LO S L. Desorption kinetics of PCP-contaminated soil: Effect of temperature[J]. Water Research, 2002, 36(1): 284-290. doi: 10.1016/S0043-1354(01)00191-9
    [17] GEORGE C E, AZWELL D E, ADAMS P A, et al. Evaluation of steam as a sweep gas in low temperature thermal desorption processes used for contaminated soil clean up[J]. Waste Management, 1995, 15(5/6): 407-416.
    [18] MARTIN E J, MUMFORD K G, KUEPER B H. Electrical resistance heating of clay layers in water-saturated sand[J]. Groundwater Monitoring & Remediation, 2016, 36(1): 54-61.
    [19] FRIIS A K, HERON G, ALBRECHTSEN H J, et al. Anaerobic dechlorination and redox activities after full-scale electrical resistance heating (ERH) of a TCE-contaminated aquifer[J]. Journal of Contaminant Hydrology, 2006, 88(3): 219-234.
    [20] MUNHOLLAND J L, MUMFORD K G, KUEPER B H. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating[J]. Journal of Contaminant Hydrology, 2016, 184: 14-24. doi: 10.1016/j.jconhyd.2015.10.011
    [21] 夏天翔, 姜林, 魏萌, 等. 焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J]. 化工学报, 2014, 65(4): 1470-1480. doi: 10.3969/j.issn.0438-1157.2014.04.043
    [22] 中华人民共和国生态环境部. 土壤环境质量建设用地土壤污染风险管控标准(试行): GB 36600-2018[S]. 北京, 2018.
    [23] SIMON M, CABEZAS O, GARCIA I, et al. A new method for the estimation of total dissolved salts in saturation extracts of soils from electrical conductivity[J]. European Journal of Soil Science, 2010, 45(2): 153-157.
    [24] 中华人民共和国住房和城乡建设部. 低压配电设计规范: GB 50054-2011[S]. 北京: 中国计划出版社, 2012.
    [25] 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究, 2018, 31(4): 70-75.
    [26] JENNIFER L, POUL R, POUL C J. Assessment of groundwater quality improvements and mass discharge reductions at five in situ electrical resistance heating remediation sites[J]. Groundwater Monitoring & Remediation, 2014, 34(1): 27-28.
    [27] 孙磊, 蒋新, 周健民, 等. 五氯酚污染土壤的热修复初探[J]. 土壤学报, 2004, 41(3): 462-465. doi: 10.3321/j.issn:0564-3929.2004.03.021
    [28] 陈星, 宋昕, 吕正勇, 等. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844. doi: 10.12030/j.cjee.201804029
    [29] 吴嘉茵, 方战强, 薛成杰, 等. 我国有机物污染场地土壤修复技术的专利计量分析[J]. 环境工程学报, 2019, 13(8): 2015-2024.
    [30] 张羽, 高春阳, 陈昌照, 等. 零价铁活化过硫酸钠体系降解污染土壤中的多环芳烃[J]. 环境工程学报, 2019, 13(4): 955-962. doi: 10.12030/j.cjee.201810110
    [31] 李永涛, 罗进, 岳东. 热活化过硫酸盐氧化修复柴油污染土壤[J]. 环境污染与防治, 2017, 39(10): 1143-1146.
    [32] 王飞. 土壤多环芳烃污染修复技术的研究进展[J]. 环境与发展, 2019, 31(2): 55-58.
    [33] 高国龙, 蒋建国, 李梦露. 有机物污染土壤热脱附技术研究与应用[J]. 环境工程, 2012, 30(1): 128-131.
    [34] 鲁垠涛, 向鑫鑫, 张士超, 等. 不同土地利用类型的土壤中多环芳烃的纵向迁移特征[J]. 环境科学, 2019, 40(7): 1-11.
    [35] 黄擎, 李发生, 陈洪. 多环芳烃在黑土有机-矿质复合体中的老化行为[J]. 北京理工大学学报, 2007, 27(10): 937-940. doi: 10.3969/j.issn.1001-0645.2007.10.021
    [36] YANG Y, ZHANG N, XUE M, et al. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils[J]. Environmental Pollution, 2010, 158(6): 2170-2174. doi: 10.1016/j.envpol.2010.02.019
    [37] 蔡婷, 张枝焕, 王新伟, 等. 有机碳含量对土壤剖面中多环芳烃纵向迁移的影响[J]. 环境科学学报, 2019, 39(3): 880-890.
    [38] 许端平, 何依琳, 庄相宁, 等. 热解吸修复污染土壤过程中DDTs的去除动力学[J]. 环境科学研究, 2013, 26(2): 202-207.
    [39] 于颖, 邵子婴, 刘靓, 等. 热强化气相抽提法修复半挥发性石油烃污染土壤的影响因素[J]. 环境工程学报, 2017, 11(4): 2522-2527. doi: 10.12030/j.cjee.201510158
    [40] KITHOME M, PAUL J W, LAVKULICH L M, et al. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite[J]. Soil Science Society of America Journal, 1998, 62(3): 622-629. doi: 10.2136/sssaj1998.03615995006200030011x
  • 期刊类型引用(12)

    1. 黄海,周广东,张靖其,尹立普,於进,闫松,杨柳. 电阻热脱附修复土壤的运行参数调控与效果评估. 环境污染与防治. 2024(10): 1421-1428 . 百度学术
    2. 叶春梅. 草木灰协同热脱附修复多环芳烃污染土壤. 广东化工. 2023(11): 128-131+210 . 百度学术
    3. 朱煜. 原位热脱附修复技术节能降耗措施研究进展. 能源与环保. 2023(10): 186-193+200 . 百度学术
    4. 余锦涛,张长波,徐剑锋,宋盘龙,盛健,陆锟,廖志强,商照聪. 长三角某石油烃污染场地地下水原位电阻加热修复技术工程应用. 应用技术学报. 2022(01): 83-90 . 百度学术
    5. 杨顺美,焦文涛,刘峰,陈芒,王安宇,李烜桢,蒲生彦. 电阻加热修复佳乐麝香污染土壤的工艺优化. 环境工程学报. 2022(04): 1284-1293 . 本站查看
    6. 陈智康,刘柳君,尹立普,岳瑞,毛旭辉. 用于场地土壤修复的电阻加热技术研究进展. 环境工程. 2022(04): 224-234+243 . 百度学术
    7. 陈智康,岳瑞,刘柳君,尹立普,毛旭辉. 原位电阻加热修复热传递模型构建及数值模拟. 环境工程学报. 2022(08): 2653-2662 . 本站查看
    8. 乔双雨,龙明华,赵体跃,张会敏,孙俏建,何嘉楠,熊华澍,梁勇生. 蔬菜对多环芳烃的吸收富集特性及清洗剂筛选. 食品工业科技. 2021(03): 191-200 . 百度学术
    9. 仲冉,杨凤,丁克强,刘廷凤,郭光,史葆珍,周君. 苯并(a)芘污染土壤现状及修复技术研究进展. 环境科技. 2021(01): 76-81 . 百度学术
    10. 滕青,王春,林炫洁,谢梅冰,程璐思. 土壤多环芳烃污染修复技术研究进展. 中国农学通报. 2021(23): 138-143 . 百度学术
    11. 许丹芸,张亚宁,朱玲,桑义敏. 基于COMSOL模拟的有机污染土壤ERH修复工艺优化. 环境工程学报. 2021(11): 3642-3650 . 本站查看
    12. 杨康,韩雪,王亚飞. 三种热源下轻油组分脱附规律的研究. 北京石油化工学院学报. 2020(04): 49-54 . 百度学术

    其他类型引用(10)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.5 %DOWNLOAD: 6.5 %HTML全文: 85.8 %HTML全文: 85.8 %摘要: 7.6 %摘要: 7.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 81.1 %其他: 81.1 %Ashburn: 0.6 %Ashburn: 0.6 %Beijing: 5.2 %Beijing: 5.2 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chaoyang Shi: 0.1 %Chaoyang Shi: 0.1 %Dafeng: 0.1 %Dafeng: 0.1 %Gainesville: 0.1 %Gainesville: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Hangzhou: 0.6 %Hangzhou: 0.6 %Hefei: 0.1 %Hefei: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jilin City: 0.1 %Jilin City: 0.1 %Jinan Shi: 0.1 %Jinan Shi: 0.1 %Jinrongjie: 1.3 %Jinrongjie: 1.3 %Kunming: 0.1 %Kunming: 0.1 %Kunshan: 0.1 %Kunshan: 0.1 %Luoyang: 0.1 %Luoyang: 0.1 %Nanjing: 0.3 %Nanjing: 0.3 %Natal: 0.1 %Natal: 0.1 %New Haven: 0.1 %New Haven: 0.1 %Newark: 0.3 %Newark: 0.3 %Orange: 0.1 %Orange: 0.1 %Pittsburgh: 0.1 %Pittsburgh: 0.1 %Qinnan: 0.1 %Qinnan: 0.1 %Shanghai: 0.7 %Shanghai: 0.7 %Shaoxing Shi: 0.1 %Shaoxing Shi: 0.1 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shizishan: 0.1 %Shizishan: 0.1 %Suzhou: 0.3 %Suzhou: 0.3 %Taiyuan: 0.2 %Taiyuan: 0.2 %Taiyuanshi: 0.1 %Taiyuanshi: 0.1 %The Bronx: 0.1 %The Bronx: 0.1 %Tianjin: 0.7 %Tianjin: 0.7 %Wuhan: 0.2 %Wuhan: 0.2 %Xi'an: 0.4 %Xi'an: 0.4 %Xingfeng: 0.1 %Xingfeng: 0.1 %Xuchang: 0.1 %Xuchang: 0.1 %Xuhui Qu: 0.1 %Xuhui Qu: 0.1 %XX: 3.6 %XX: 3.6 %Yangpu: 0.1 %Yangpu: 0.1 %Yuncheng: 0.1 %Yuncheng: 0.1 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %丽水: 0.1 %丽水: 0.1 %保定: 0.1 %保定: 0.1 %北京: 0.9 %北京: 0.9 %北海: 0.1 %北海: 0.1 %南京: 0.1 %南京: 0.1 %崇左: 0.1 %崇左: 0.1 %广州: 0.1 %广州: 0.1 %成都: 0.1 %成都: 0.1 %杭州: 0.1 %杭州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %深圳: 0.1 %深圳: 0.1 %漯河: 0.1 %漯河: 0.1 %贵港: 0.1 %贵港: 0.1 %郑州: 0.4 %郑州: 0.4 %其他AshburnBeijingChang'anChangshaChaoyang ShiDafengGainesvilleGuangzhouHangzhouHefeiHyderabadJilin CityJinan ShiJinrongjieKunmingKunshanLuoyangNanjingNatalNew HavenNewarkOrangePittsburghQinnanShanghaiShaoxing ShiShenyangShenzhenShizishanSuzhouTaiyuanTaiyuanshiThe BronxTianjinWuhanXi'anXingfengXuchangXuhui QuXXYangpuYunchengZhengzhou上海丽水保定北京北海南京崇左广州成都杭州沈阳深圳漯河贵港郑州Highcharts.com
图( 6) 表( 4)
计量
  • 文章访问数:  6101
  • HTML全文浏览数:  6101
  • PDF下载数:  139
  • 施引文献:  22
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-07-03
  • 刊出日期:  2019-10-01
田垚, 杨永刚, 韩自玉, 胡健, 焦文涛. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
引用本文: 田垚, 杨永刚, 韩自玉, 胡健, 焦文涛. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
TIAN Yao, YANG Yonggang, HAN Ziyu, HU Jian, JIAO Wentao. Optimization of electrical resistance heating conditions and its removal performance from BaP contaminated soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176
Citation: TIAN Yao, YANG Yonggang, HAN Ziyu, HU Jian, JIAO Wentao. Optimization of electrical resistance heating conditions and its removal performance from BaP contaminated soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176

电阻加热条件优化及其对污染土壤中苯并(a)芘的去除

    通讯作者: 焦文涛(1978—),男,博士,副研究员。研究方向:土壤及地下水污染修复。E-mail:wtjiao@rcees.ac.cn
    作者简介: 田垚(1995—),男,硕士研究生。研究方向:土壤污染修复。E-mail:dtysxu@163.com
  • 1. 山西大学环境与资源学院,太原 030006
  • 2. 中国科学院生态环境研究中心,城市与区域国家重点实验室,北京 100085
基金项目:
国家重点研发计划资助项目(2018YFC1802106);中国科学院STS项目(KFJ-STS-ZDTP-039);山西省“1331工程”重点创新团队建设计划(PY201806)

摘要: 电阻加热(electrical resistance heating, ERH)是处置挥发性、半挥发性有机污染土壤极具应用潜力的技术之一。基于实验室模拟电阻加热和热传导加热(thermal conductive heating, TCH)小试装置,研究了土壤电阻加热的优选条件及其对土壤中苯并(a)芘(benzo(a)pyrene,BaP)去除率的影响以及土壤中BaP在电阻加热和热传导加热过程中的热脱附动力学。结果表明:土壤水分、盐分、电场强度显著影响土壤ERH升温速率与最高加热温度;在ERH最优条件为8 V·cm−1的电场强度下,添加6 mL的0.1% NaCl溶液,每30 min须补水6 mL,最终BaP去除率为51.56%;在ERH过程中温度变化与电流变化基本同步,土壤水分和持温时间是去除土壤中BaP的重要影响因素;BaP在土壤中去除过程符合抛物线扩散模型,说明BaP在土壤中的去除以微孔扩散为主,去除率受加热时间影响大。本实验结果可为电阻加热技术修复BaP污染土壤提供参考。

English Abstract

  • 近年来,随着我国“退二进三”、“退城进园”和“产业转移”等政策的实施,全国几乎所有大中城市都面临着重污染行业的企业关闭和搬迁问题,导致城市及周边地区出现大量遗留、遗弃有机污染场地[1]。这些污染场地已对人体健康和生态环境造成严重危害,且面临着急切的二次开发利用的难题,制约了城市的建设与发展[2]。多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是石化、焦化行业污染场地土壤中典型有毒、有害有机污染物,具有“三致效应”及生物毒性[3]。人类活动(如化石燃料不完全燃烧、工业生产、垃圾焚烧等)是环境中PAHs的主要来源[4],PAHs水溶性差且易与土壤有机质结合,进入土壤微孔不易释放出来,在土壤中的积累对环境形成威胁[5]。美国环境保护署已经将萘、菲、苯并(a)芘(benzo(a)pyrene,BaP)等16种PAHs列为优先控制污染物[6],其中BaP是PAHs代表性致癌物,可诱发多种癌症,在2006年,国际癌症研究机构(IARC)已将BaP归为Ⅰ类致癌物[7]

    目前,可用于修复PAHs污染土壤的原位修复技术主要包括热脱附、化学氧化、土壤洗涤、生物降解等[8]。原位热脱附技术自20世纪70年代开始应用于有机污染场地的修复,包括蒸汽强化提取技术、电阻加热技术、热传导技术和射频加热技术等[9]。原位热脱附技术的优点在于无须挖掘和运输污染土壤,二次污染相对可控,能够节约修复成本,对低渗透、不均质污染区域具有较强的适用性和较高的修复效率[8]。原位电阻加热修复技术(electrical resistance heating,ERH)基于欧姆定律,将电能转化为热能,提高土壤温度,即电场加速自由电荷载体转移动能引起能量转换[10-11]。ERH将土壤加热后,增加了土壤蒸汽压,并使部分污染物与水溶液发生共沸从而分离[12],最终通过气相抽提将污染物转移并处置。

    已有研究证实,ERH对土壤中有机污染物具有很高的去除率。ZUTPHEN等[13]利用二维沙箱实验研究了电阻加热强化土壤气相抽提对土壤中三氯乙烯(TCE)的修复,结果表明,TCE的去除率较气相抽提提升了19倍,最终去除率为99.87%。MARTIN等[14]使用ERH对土壤中TCE进行修复,最终达到去除96.96%的修复目标。国内原位热脱附修复技术的研究和应用起步较晚。岳昌盛等[15]的研究证实,低温热解析通过增加保温时间能促进焦化场地中苯和多环芳烃解吸分离,表明在低温加热条件(<200 ℃)下,通过延长热脱附时间可以促进污染物的解析分离,达到工业/商服工地筛选值(0.4 mg·kg−1),类似的研究还有针对土壤中的五氯酚[16]、有机氯溶剂[17]等的解析分离。

    ERH的主要影响因素包括土壤质地[18]、电导率、水分[10]以及电场强度[14]等。与砂土相比,黏土能优先加热,整体加热速率更高[17];高土壤导电性有助于电流的输送,从而产生较高的加热速率[17];土壤水分可以提供离子传输通道,促进加热[19],但地下水通量可能限制加热[20]。然而,基于实验室规模的ERH装置对这些因素的研究较少,难以筛选出最优条件。

    鉴于BaP筛选值较低、难降解、毒性当量参数(TEFs)[21]大的特点,本研究以BaP为目标污染物,利用自制电阻加热小试装置,研究了土壤水分、盐分含量和电场强度对土壤电阻加热的影响,并结合热传导加热装置,在低温条件下,比较了2种加热方式对BaP的去除效果,为电阻加热技术修复BaP污染土壤提供参考。

  • 实验土壤取自张掖市某未污染场地,其BaP含量为43 μg·kg−1。破碎干燥后,在混料机中混匀,然后进行研磨,在烘干机中烘干。取多环芳烃溶液100 mL,与100 g土壤充分搅拌混合,自然干燥后,在混料机中混匀,过200目筛后,密封避光,冷藏保存。供试土壤的基本理化性质见表1,BaP理化性质及供试土壤污染情况见表2。建设用地筛选值(SL)为《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)[22]中的第一类用地筛选值。

    多环芳烃标准溶液、多环芳烃萃取溶剂二氯甲烷、正己烷以及5种回收率指示物(Nap-d8、Ace-d10、Phe-d10、Chr-d12和Pyr-d12)均为分析纯试剂,购自上海安谱实验科技股份有限公司。以BaP试剂对供试土壤进行模拟污染,取150 mg·L−1的BaP标准溶液1 mL,用5%乙腈溶液于100 mL容量瓶中定容,将市售标准溶液稀释为浓度1.5 mg·L−1的缓冲溶液。

  • 电阻加热装置如图1所示。加热系统为自制坩埚装置,由带盖坩埚、绝缘层、排气孔、电极组成,固定于支架上,接通交流电进行加热。坩埚中每次实验放入15 g实验土壤。热传导加热装置如图2所示。主要由载气系统、加热系统、尾气处理系统组成。载气系统采用标准氩气,加热系统采用管式炉加热装置,尾气处理系统由装有纯正己烷溶液的吸收瓶和活性炭吸附器串联组成。管式炉中的石英管长1 m,内径80 mm。将15 g实验土壤置于瓷船中,推入加热区,在选定的ERH温度条件下,对石英管进行同阶段加热。

  • 根据MARTIN等[14]的研究以及前期实验,确定在6 V·cm−1和8 V·cm−1的电场强度下,分别设置4组土壤水分、盐分实验(纯水、0.1%、0.5%和1% NaCl溶液,每组添加量分别为2、4、6、8 mL),研究电解质溶液对土壤电阻加热的影响。

    设置6个持温时间梯度(0、3、15、30、60、90 min),TCH温度设置多段式加热方式,升温、降温区间与ERH处理基本同步,研究并比较不同持温时间对去除率的影响,每组实验设置3个平行样。加热结束后,取3份平行土壤样品,每份3 g,分别装入聚四氟离心管中,加入1.8 g无水硫酸钠、3片铜片,然后加入200 μL回收率指示物。3次二氯甲烷和正己烷超声提取,离心后合并提取液,旋蒸并氮吹定容至1 mL,使用气相色谱质谱联用仪测定其中的多环芳烃含量。

  • 气相色谱质谱联用仪为安捷伦三重串联四级杆气相质谱仪(Agilent 7000B,安捷伦,美国),配备DB-5MS色谱柱(30 m×0.25 mm×0.25 μm)。进样口和检测器的温度分别为275 ℃和280 ℃,不分流进样,样品体积1 μL。升温程序为:以18 ℃·min−1速度升至140 ℃,再以12 ℃·min−1速度升至240 ℃,保持1 min,后以5 ℃·min−1速度升至280 ℃,保持10 min。气相色谱检测信号采用安捷伦EZ Chrome软件收集和处理。采用SPSS 22软件,对不同时间处理后土壤中BaP残留浓度进行热脱附动力学拟合,比较处理之间的差异显著性。

  • 在电场强度为6 V·cm−1条件下,NaCl溶液浓度及添加量对土壤电阻加热的影响见图3。结果表明,水分是土壤电阻加热的基本条件,有足够的水分(>2 mL)提供离子传输通道,土壤才能被有效加热,水分较高的土壤升温速率高于干燥土壤[19]。与纯水相比,不同浓度NaCl溶液(图3(b)~(d))对土壤电阻加热升温明显,最高温度均远高于纯水条件下的温度,表明土壤盐分也是土壤电阻加热的重要因素。因为土壤电导率(σ)是ERH的重要影响因素之一,是目标加热区域内孔隙水饱和度、矿物成分、温度和溶解离子在时间和空间上变化的函数[10],而离子浓度是土壤电导率的基本参数,土壤盐分是离子的主要来源[23]。加入NaCl溶液可以增加土壤离子浓度,从而增加土壤电导率和土壤电阻加热功率,致使土壤加热效率增加[10],这与电流温度变化结果一致。水或NaCl溶液添加量增加时,土壤加热速率和所测温度均升高,温度保持时间增加。当添加量为8 mL时,土壤加热速率最大,所测温度最高,分别达到43、51、79和97 ℃,对应的持温时间最长,这表明土壤水分影响持温时间。在ERH实际应用中,水分是维持ERH动态平衡的重要条件[19]。当NaCl溶液浓度增大时,土壤加热速率和最高加热温度明显升高,表明增加土壤盐分含量对ERH有促进作用。添加1% NaCl溶液,升温速率最快,可以达到最高温度。当0.5%和1% NaCl溶液添加量分别达到4 mL之后,加热效率差别不明显,其最高温度接近(分别为80 ℃和94 ℃),这可能是由于水和离子浓度达到饱和状态,之后出现降温是由于孔隙水蒸发,离子传输通道不足以进行加热。

  • 在电场强度为8 V·cm−1条件下,NaCl溶液浓度及添加量对土壤电阻加热的影响见图4图4再次证实水分是土壤电阻加热的基本条件。随水分和盐分含量的增加,土壤加热效率和最高温度逐渐增加,当水或NaCl溶液添加量为8 mL时,土壤加热速率最大,加热温度最高,分别达到70、95、95和97 ℃。这些结果与图3一致。当添加0.1%、0.5%和1% NaCl溶液达到4 mL之后,加热效率差别不明显。

    在8 V·cm−1的电场强度条件下,添加纯水可以达到70 ℃,高于6 V·cm−1电场强度下的43 ℃;添加0.1% NaCl溶液可以达到95 ℃,远高于6 V·cm−1电场强度下的51 ℃,表明电场强度是土壤电阻加热的重要因素。由于添加0.1% NaCl溶液2 mL后加热效果较差,因此,由实验确定的ERH最优条件为:在8 V·cm−1的电场强度下,0.1%的NaCl溶液最小添加量为4 mL,最优添加量为6 mL。该电场强度略低于MARTIN等[18]的最高电场强度(8.57 V·cm−1),且符合GB 50054-2011[24]。添加6 mL的0.1% NaCl溶液可以达到ERH的要求,且其盐分含量(4×10−4)远低于盐碱化土壤0.1%的标准[25],不会造成土壤盐渍化等问题。

  • 图5所示,根据ERH条件筛选实验,选取电场强度8 V·cm−1、添加6 mL的0.1% NaCl溶液为本研究污染土壤处置ERH条件。随电流的升高,温度也开始升高,13 min时,电流达到最高值0.52 A,温度达到最高值97 ℃。随后电流急剧下降,温度开始缓慢降低,这可能是因为大部分水分沸腾蒸发,离子传输通道不足以进行加热,而温度由于土壤比热容的存在缓慢下降[10]。之后在30 min和60 min时,加入6 mL纯水保持土壤水分含量。因为加入常温纯水,温度明显降低,补充水分后电流与土壤加热功率回升,随后2~5 min土壤加热温度升高,分别再次出现电流和温度的峰值。整个ERH过程的温度变化与电流变化基本同步,这与HEGELE等[10]的ERH模拟温度和气体饱和度随电流的变化结果一致。由于电导率随温度和气体饱和度的变化而变化,在场地规模的ERH应用中,只有将电流测量与温度测量相结合,才能从温度效应中分离出气体饱和度效应,从而推断出气体产量。离电极较近的土壤更容易干燥,使土壤电阻增大,热修复效率降低,因此,在土壤电阻加热过程中,须补水保持ERH动态平衡[10, 26]。实验得到的补水点等相关工艺参数,可以为场地实际工程提供数据支撑。

  • 为验证ERH去除污染土壤BaP的可行性,在电场强度为8 V·cm−1条件下,添加6 mL的0.1% NaCl溶液,TCH温度设置多段式加热方式,升温、降温区间与ERH处理基本同步。分别对污染土壤进行ERH和TCH处置,研究了不同加热方式对土壤BaP去除效果的影响。土壤BaP残留率与持温时间关系见图6。土壤BaP残留率为加热处理后污染物检出浓度与原始土壤实测浓度的比值。ERH处置的BaP去除率在持温时间为3 min时明显增加,脱附过程先快速后慢速。当持温时间在30 min和60 min后,去除率也明显增加。在补水点(补水点为30、60、90 min)后,土壤BaP残留率明显下降,再次验证了土壤水分是ERH去除污染物的基本条件。

    ERH和TCH处置60 min和90 min后的土壤BaP残留率相近。经过90 min的ERH处置后,土壤BaP残留率为48.44%,低于TCH处置后的50.62%。结果表明,持温时间是土壤中BaP去除率的重要影响因素,随持温时间的增加,土壤BaP残留率降低,去除率增加,即在低温条件下,通过延长加热时间可以达到较好的修复效果。这与孙磊等[27]研究低温对五氯酚(pentachlorophenol,PCP)的热修复结果一致,PCP熔点190 ℃,沸点为310 ℃,在125 ℃持温一段时间后,使一定量的PCP从土壤中逸出。在ERH过程中,有机物的亨利常数、蒸汽压和扩散系数都会随着温度的升高而升高,从而增加污染物在气相的分布,促进污染物的挥发[27]。ERH处置90 min后,土壤中BaP残留量略高于GB 36600-2018第一类用地筛选值[22](0.55 mg·kg−1),而陈星等[28]在400 ℃条件下,热修复8 h后,重污染土壤中BaP浓度仍然超过这一筛选值,这表明达标去除土壤中残留的BaP,须继续优化持温时间等关键参数。

    近年,有研究[21]表明,可以通过提高真空度以及添加碳酸盐类物质来促进PAHs残留量的进一步降低。此外,化学氧化修复技术能高效快速地降解有机污染物,具有广阔的应用前景[29],且应用过硫酸盐进行修复的案列越来越多,其中通过热活化产生具有强氧化能力的硫酸根自由基(SO4)能无选择性地与有机物进行反应[30]。李永涛等[31]采用热活化过硫酸盐法修复柴油污染土壤的温度条件为70 ℃,ERH可满足该条件,因此,可以在处置过程中通过添加过硫酸盐,促进BaP解析分离。已有研究[32]表明,热脱附处理后,土壤有机质成分的变化以及低氮条件尤其适合真菌的生长繁殖,土壤中的PAHs存在进一步生物降解的可能。采用高温热修复,会使土壤中水分甚至有机成分和无机成分破坏[33],且须投入大量能源,对土体持续加热,成本相对较高,同时造成能耗增加[28]

    本研究中采用同一种土壤,而不同类型土壤剖面层中PAHs的纵向分布规律不同[34]。在实际污染场地土壤中,PAHs进入土壤后与有机质结合,发生老化反应,即随着时间的延长,PAHs进入有机质内部孔隙而不易释放出来,可提取性降低[35]。本研究中土壤BaP老化时间仅为7 d。PAHs在有机质含量较高的土壤中老化更明显,因为PAHs的吸附主要依赖于土壤有机质[36]。此外,蔡婷等[37]的研究表明,总有机碳(total organic carbon,TOC)与PAHs总量之间呈正相关关系,TOC越高,PAHs残留量越高,纵向迁移量相对减少。TOC对中、高环PAHs(如BaP)迁移的影响高于低环PAHs。因此,须进一步加强关于ERH对不同类型和不同老化时间土壤中的有机质与TOC含量及其如何影响污染物去除率的研究。

  • 原位热脱附过程一般分为低温和高温脱附2个阶段。在低温加热条件下,土壤中多环芳烃的热分解的可能性很小,热脱附是其去除的主要机制,因此,可以用热脱附动力学描述其脱附过程。常见的热脱附动力学方程包括5种。

    一级动力学方程见式(1),Elovich方程见式(2),抛物线扩散方程见式(3),Freundlich动力学方程见式(4),二级动力学方程见式(5)。

    式中:Ct时刻土壤污染物浓度,mg·kg−1C0为土壤污染物初始浓度,mg·kg−1t为时间,min;k1为一级动力学常数,h−1D为总扩散系数,m2·s−1k2为抛物线型扩散动力学方程常数,mg·(g·h1/2)−1k3为二级动力学常数,g·(mg·h) −1AB均为动力学方程常数。

    一级动力学方程描述了扩散机制控制的动力学过程,涉及的主要机制单一且能量变化不大;抛物线扩散方程模型描述的是由多个扩散机制控制的过程,最适合描述物质在颗粒内部扩散过程的动力学过程[38];Elovich方程和Freundlich动力学方程皆为经验式,对于单一反应机制的过程不适合,描述的是一系列反应机制的过程,Elovich方程常用于描述反应过程中活化能变化较大的过程,Freundlich动力学方程主要用于描述吸附能随表面饱和度的增加呈指数衰减的过程[39]。对于抛物线扩散模型,无论是颗粒内扩散还是表面扩散都可能是速率受限的。当颗粒阻力决定吸附速度时,表面扩散通常是速率控制机制[40]

    本研究中土壤BaP的热脱附分别采用上述方程拟合,拟合结果见表3。BaP的热脱附过程同时符合一级动力学方程以及抛物线扩散方程,且这2种动力学方程相关系数均能达到显著水平(P=0.01)。由抛物线扩散方程计算结果可知,TCH和ERH条件下土壤中BaP的C0分别为1.64 mg·kg−1和1.21 mg·kg−1,而实测的C0则为1.39 mg·kg−1,表明抛物线扩散方程拟合效果更佳,且ERH理论值更接近实测值。这说明在ERH过程中,土壤BaP的热脱附过程更符合抛物线扩散方程,BaP在污染土壤中的去除以微孔扩散为主,其去除率受加热时间影响大,即随ERH的进行,土壤中BaP会进行有效脱附。在对污染土壤进行热修复时,并不是在土壤温度达到污染物沸点时直接促进其挥发,当土壤温度远低于污染物沸点时,污染物就已被大量提取。

  • 1)土壤水分、盐分、电场强度是决定土壤ERH升温速率与最高加热温度的关键因素。在电场强度为8 V·cm−1的条件下,添加6 mL的0.1% NaCl溶液是实验室规模ERH的最优条件。

    2)土壤水分是维持ERH动态平衡的重要条件。在ERH过程中,须加入纯水保持土壤水分含量,实验中每30 min须补充水分6 mL,其温度和电流变化基本同步。

    3)土壤水分与持温时间是去除土壤中BaP的关键因素。污染物去除率在补水点后明显增加,并随持温时间的增加而增加,且须延长持温时间以达到修复目标值。

    4)电阻加热对污染土壤中BaP的去除过程符合抛物线扩散模型,表明BaP在土壤中的去除是以微孔扩散过程为主的,去除率受加热时间影响较大,ERH对土壤中BaP可进行有效脱附。在对污染土壤进行热修复时,可以无须将土壤温度加热到污染物沸点,但须根据污染土壤的修复目标优化补水量和持温时间等关键参数。

参考文献 (40)

返回顶部

目录

/

返回文章
返回