碳氮比对低温投加介体生物反硝化脱氮的影响

苑宏英, 王雪, 李原玲, 李琦, 张小亚, 何旭东. 碳氮比对低温投加介体生物反硝化脱氮的影响[J]. 环境工程学报, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025
引用本文: 苑宏英, 王雪, 李原玲, 李琦, 张小亚, 何旭东. 碳氮比对低温投加介体生物反硝化脱氮的影响[J]. 环境工程学报, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025
YUAN Hongying, WANG Xue, LI Yuanling, LI Qi, ZHANG Xiaoya, HE Xudong. Effect of carbon-nitrogen ratio on biological denitrification with redox mediator addition at low temperature[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025
Citation: YUAN Hongying, WANG Xue, LI Yuanling, LI Qi, ZHANG Xiaoya, HE Xudong. Effect of carbon-nitrogen ratio on biological denitrification with redox mediator addition at low temperature[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025

碳氮比对低温投加介体生物反硝化脱氮的影响

    作者简介: 苑宏英(1974—),女,博士,教授。研究方向:污水、污泥处理及资源化。E-mail:yuanhy-00@163.com
    通讯作者: 苑宏英, E-mail: yuanhy-00@163.com
  • 基金项目:
    国家自然科学基金资助项目(51308374);国家重大科技专项(2017ZX07107-002-04);天津城建大学大学生创新创业项目(201810792085, 201810792008)
  • 中图分类号: X703.1

Effect of carbon-nitrogen ratio on biological denitrification with redox mediator addition at low temperature

    Corresponding author: YUAN Hongying, yuanhy-00@163.com
  • 摘要: 污水的生物脱氮效果受低温抑制,投加氧化还原介体有利于反硝化过程。采用规格相同的序批式反应器,使用人工配制硝酸盐废水和经过驯化的活性污泥,考察了不同碳源浓度(碳氮比)对低温(10 ℃)投加氧化还原介体1, 2-萘醌-4-磺酸(NQS)污水生物反硝化脱氮过程的影响。结果表明:当碳源浓度(以COD计)为150~400 mg·L−1 (碳氮比为1.8~4.7)时,脱氮效率随碳氮比的升高而升高;当碳源浓度为400~550 mg·L−1 (碳氮比为4.7~6.5)时,脱氮效率随着碳氮比的升高而降低;当碳源浓度为400 mg·L−1 (碳氮比为4.7)左右时效果最好,总氮去除率最高为64.7%。对于脱氮速率,介体强化脱氮速率随着碳氮比的升高而升高。同时,探讨了投加介体污水生物反硝化脱氮的机理,发现投加介体降低了体系的氧化还原电位(ORP),有利于反硝化脱氮反应的进行。
  • 河流上覆水中的重金属可以通过沉淀、吸附、络合等作用,在河床表层底泥中富集[1-2]。当水体条件发生改变时,底泥中的重金属会通过氧化还原、溶解、解吸等作用,从河床表层底泥中释放,造成上覆水体的污染[3-4]。国内外普遍使用疏浚治理河湖底泥,但是疏浚工程会产生大量含有重金属的疏浚底泥,疏浚底泥含水率高、热值低,不适合传统焚烧方法处理[5-6]。近年来,稳定化技术被用于重金属废水、污染土壤等治理工作,通过加入药剂使沉积物中重金属发生物理化学反应,从而降低重金属的溶解性和迁移性,以达到良好的稳定化效果[7]。传统的稳定化药剂采用水泥、磷灰石等化学药剂,但存在处理后土壤板结、增容等缺点[8]。因此,本研究拟采用壳聚糖、膨润土、生物炭等天然材料,开发处理效果好、价廉易得的重金属稳定剂。

    壳聚糖 (CTS) 是第二大天然线性化合物,具有无毒、无害、生物可降解性以及能通过自身丰富的基团络合重金属等特性,是一种良好的吸附重金属的材料[9]。宋俊颖等[10]利用CTS处理重金属污染土壤,当CTS投加量为7%时,铜离子的稳定化率达到92.36%。YAN等[11]利用CTS处理Cr和Hg复合型重金属污染的土壤,7 d后,土壤中有效态重金属的含量降低明显且残渣态含量升高。我国膨润土矿产资源丰富,价格低廉,具有较大的表面积、良好的吸附性、离子交换性和黏结性等优势,在底泥重金属稳定化技术中广泛应用[12]。杨秀敏等[13]通过等温吸附实验,研究了钠基膨润土对Cu2+、Zn2+、Cd2+的吸附情况,发现钠基膨润土 (NaBent) 对3种金属具有良好的吸附能力,能够降低土壤中有效型重金属的含量。这2种材料在我国产量大且易得,因此,可以使用CTS对NaBent进行改性,得到一种处理底泥重金属能力更高的复合型稳定剂。

    本研究采用壳聚糖改性钠基膨润土稳定剂 (NaBent-CTS) 对底泥中的Cu2+、Zn2+、Cd2+进行单一和复合的重金属稳定化实验,通过改变稳定剂投加量、底泥pH和底泥液固比寻求稳定重金属的最佳工况点;通过毒性特征沥滤方法 (TCLP) 进行重金属浸取,以重金属稳定化率作为处理效果的重要指标,探究实验条件的改变对重金属稳定化效果的影响以及重金属之间存在的竞争吸附关系,旨在为温瑞塘河底泥重金属稳定化处理提供相关的研究基础。

    实验疏浚底泥取自温州市温瑞塘河,使用环保绞吸式挖泥船采集底泥样品。将采集到的样品灌入洁净的聚乙烯桶中,密封后运回实验室自然风干,研磨,过100目筛,分析其各理化指标。疏浚底泥含水率为55.43%,溶解性有机碳 (DOC) 质量分数为265.63 mg·kg−1,pH为7.68,总磷质量分数为1.22 g·kg−1,氨氮质量分数为30.57 mg·kg−1,重金属Cu、Zn、Cd的质量分数分别为188.62、386.89和161.28 mg·kg−1。对疏浚底泥采用TCLP法进行重金属浸取,浸取后重金属Cu2+、Zn2+和Cd2+的质量浓度分别为0.793、0.960 和1.421 mg·L−1

    由测试结果可知,疏浚底泥中的Zn、Cu和Cd的含量均超出《围填海工程填充物质成分限值》 (GB 30736-2014) 的要求,因此将Zn、Cu和Cd3种重金属作为研究对象。

    以未受重金属污染的温瑞塘河底泥为母质,分别添加锌、铜和镉的标准储备液进行实验底泥的配制。保持实验底泥含水率为50%左右,灌入洁净的聚乙烯桶中,在密封、室温的条件下放置14周后,室内自然风干,研磨,过100目筛备用。Cu2+、Zn2+和Cd2+实验底泥重金属浸取液质量浓度分别为1.598、1.714和1.701 mg·L−1

    本实验以无毒无害、价廉易得为标准,选取CTS和NaBent作为稳定药剂的制作材料,实验药剂信息如表1所示。

    表 1  实验药剂信息
    Table 1.  Information of experimental agents
    序号名称种类化学式纯度稳定机理厂家
    1CTS有机(C6H11NO4)N化学纯羟基、氨基等高分子基团与重金属离子螯合配位Adamas
    2NaBent无机Nax(H2O)4(Al2-xMg0.83) (Si4O10) (OH)2分析纯Na+、Al2+、Mg2+等离子与重金属离子发生离子交换反应Adamas
     | Show Table
    DownLoad: CSV

    取6 g CTS (90%+) 溶于150 mL的5%醋酸溶液中,使用折叶式搅拌器将其缓慢充分溶解。向壳聚糖溶液中,缓慢加入30 g NaBent充分浸润3 h,在46 ℃恒温水浴锅中,连续搅拌4 h成糊状,加入一定量的氢氧化钠溶液,调节pH至9,缓慢搅拌10 min,沉淀壳聚糖2 h,用蒸馏水冲洗沉淀至pH为7~8,在转速为3 500 r·min−1的条件下离心分离15 min,取下层沉淀,放入烘箱在85 ℃下烘干,研磨,过100目筛,制得壳聚糖负载率为9.22%的NaBent-CTS。

    称取风干过筛的底泥样品60 g,保持底泥pH为7,底泥液固比为1.5∶1,以稳定剂投加量 (稳定剂与干底泥的质量之比) 为1%、3%、5%、7%、10%进行单一重金属和复合重金属稳定化实验;保持稳定剂投加量为5%,底泥液固比为1.5∶1,以底泥pH为5、6、7、8、9进行单一重金属和复合重金属稳定化实验。保持稳定剂投加量为5%,底泥pH为7,以底泥液固比 (液体体积与干底泥质量之比,单位为mL∶g) 为1∶1、1.3∶1、1.5∶1、1.7∶1、2∶1进行单一重金属和复合重金属稳定化实验,每个样品充分混匀8 h,室温下密封放置7 d,进行稳定化处理,稳定后的底泥放置在实验室,自然风干,研磨,过100目筛,每组实验均设置3个平行,均以未经处理的底泥作为对照。

    稳定化后的底泥采用TCLP法和我国固体废物标准浸取程序 (水平振荡法,HVM法) 进行重金属的浸取[14]。由于各实验底泥pH均大于5,因此选用2号浸取剂 (将5.7 mL冰醋酸溶入去离子水中,定容至1 L,保持溶液pH为2.88±0.05) 。称取12 g实验底泥,置于500 mL锥形振荡瓶中,按照液固比=20∶1加入浸取剂,在25 ℃条件下,恒温水浴水平往复振荡20 h,用稀硝酸淋洗抽滤器,用0.45 μm的滤膜过滤收集浸取液,4 ℃下密封保存,待测。稳定化率计算方法见式 (1) 。

    η=c0c1c0×100% (1)

    式中:η为重金属的稳定化率;c0为加稳定剂前底泥样品的重金属浸取液质量浓度;c1为加稳定剂后底泥样品中重金属浸取液质量浓度。

    针对稳定化14 d后和未经处理的疏浚底泥,采用BCR连续提取法对其中的重金属进行连续提取。测定不同阶段提取的重金属质量分数,计算疏浚底泥中酸可提取态、可氧化态、可还原态和残渣态的重金属占比,稳定性由大到小为残渣态、可还原态、可氧化态、酸可提取态。

    使用XRD、SEM、FT-IR、XPS、BET表征手段,观察NaBent-CTS微观结构及形貌特征,分析其晶相组成、晶面取向和基团结构等表面特性。

    1) FT-IR分析。图1为CTS、NaBent和NaBent-CTS的红外光谱。在CTS红外光谱中,3 438 cm−1处的吸收峰为氨基N—H和羟基O—H的伸缩振动吸收峰,2 926 cm−1处的吸收峰为C—H伸缩振动吸收峰,1 657 cm−1处的吸收峰为酰胺Ⅰ谱带吸收峰,1 593 cm−1处的吸收峰为酰胺Ⅱ谱带吸收峰,1 420 cm−1处的吸收峰为羟基O—H面内弯曲振动吸收峰,1 161 cm−1处为伯羟基O—H的吸收峰,1 072 cm−1处为仲羟基O—H的吸收峰[15]。在NaBent红外光谱中,3 618 cm−1处为NaBent层间Si—Al—OH中羟基O—H伸缩振动峰,3 476 cm−1处为层间水分子的O—H羟基伸缩振动峰,1 632 cm−1处为NaBent层间水分子O—H弯曲振动峰,990 cm−1处为Si—O—Si不对称伸缩振动峰,515 cm−1处为Si—O—Al弯曲振动峰[16]。由NaBent-CTS与CTS和NaBent的红外光谱比较结果可知:3 624 cm−1处的吸收峰显著增强,峰面积变大,说明壳聚糖进入钠基膨润土层间,使层间的O—H羟基基团增多;1 428 cm−1处羟基弯曲振动吸收峰增强,在1 113 cm−1处出现羟基弯曲振动吸收峰,说明壳聚糖成功负载在钠基膨润土上;3 434 cm−1处为钠基膨润土层间水分子O—H羟基伸缩振动峰与壳聚糖中氨基N—H弯曲振动峰的合并峰;507 cm−1处Si—O—Al吸收峰面积和强度增大,表明在Si—O—Al处发生了化学吸附,1 657 cm−1与1 593 cm−1处的酰胺谱带吸收峰消失,因此,壳聚糖上的酰胺与Si—O—Al之间可能发生了化学吸附;994 cm−1处为Si—O—Si与羟基O—H振动峰的合并峰。

    图 1  CTS、NaBent和NaBent-CTS的FT-IR
    Figure 1.  FT-IR spectra of CTS, NaBent and Nabent-CTS

    2) XRD分析。由图2可知,NaBent与NaBent-CTS衍射峰首峰的位置θ分别为3.58°和3.567 5°。层间距可根据Bragg方程[17]计算得出。计算方法见式 (2) 。

    图 2  NaBent和NaBent-CTS的XRD
    Figure 2.  XRD patterns of NaBent and Nabent-CTS
    2dsinθ=nλ (2)

    式中:d为层间距;θ为入射线与反射晶面之间的夹角;λ为波长,Cu靶Ka射线 (λ=0.154 06 nm) ;n为反射级数,n=1。

    由式 (2) 可知,NaBent的层间距为1.233 6 nm,NaBent-CTS的层间距为1.237 9 nm,NaBent层间距在负载CTS前后未发生明显改变,由红外光谱分析结果可知,存在部分CTS进入NaBent层间。

    3) SEM与BET分析。由图3可知,NaBent的外貌发生了明显的变化,NaBent颗粒表面结构较平整,NaBent-CTS颗粒表面更加粗糙。经BET分析,NaBent与NaBent-CTS的比表面积分别为21.036 m2·g−1和14.609 m2·g−1,NaBent改性后比表面积减少,这是因为CTS负载在NaBent表面,堵塞了孔隙,导致比表面积降低[18]

    图 3  NaBent和NaBent-CTS的SEM
    Figure 3.  SEM images of NaBent and Nabent-CTS

    1) 复合前后稳定效果的比较。由图4~图6可知,在pH为7、液固比为1.5:1时,随着3种重金属稳定剂投加量的递增,Cu2+、Zn2+和Cd2+的稳定化率也逐渐递增,达到一定投加量后,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定化率趋于稳定。对比3种稳定剂效果,NaBent-CTS对Cu2+、Zn2+和Cd2+的稳定效果最佳,且在较低的投加量下可达到较好的稳定效果。投加量为5%时,Cu2+的稳定化率达到稳定,浸取液质量浓度由1.714 mg·L−1降至0.213 mg·L−1,稳定化率为87.56%;投加量为7%时,Zn2+的稳定化率达到稳定,浸取液质量浓度由1.598 mg·L−1降至0.226 mg·L−1,稳定化率为85.85%;投加量为7%时,Cd2+的稳定化率达到稳定,浸取液质量浓度由1.701 mg·L−1降至0.277 mg·L−1,稳定化率为83.71%。与NaBent-CTS相比,CTS稳定重金属效果较差,NaBent稳定效果最差,均在投加量为10%时,稳定化率达到最大。

    图 4  3种稳定剂对Cu2+的稳定效果
    Figure 4.  Stabilization effect of three kinds of stabilizer on Cu2+
    图 5  3种稳定剂对Zn2+的稳定效果
    Figure 5.  Stabilization effect of three kinds of stabilizer on Zn2+
    图 6  3种稳定剂对Cd2+的稳定效果
    Figure 6.  Stabilization effect of three kinds of stabilizer on Cd2+

    由此可知,CTS改性NaBent后,NaBent-CTS稳定重金属的能力得到提升,并且在较低投加量的情况下达到较好的稳定效果。虽然NaBent改性后比表面积有一定程度的降低,但NaBent中的CTS中含有大量的羟基和氨基,这2类基团对重金属有极强的螯合能力,通过CTS表面的内扩散作用,重金属离子更易进入NaBent中,与Na+、Al3+等金属离子发生离子交换作用,使NaBent表现出较高的吸附性能[19]

    2) NaBent-CTS投加量对单一重金属稳定化率的影响。图7表明了在pH为7与实验底泥液固比为1.5∶1时,稳定剂投加量的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。随着稳定剂投加量的增加,Cu2+、Zn2+和Cd2+的稳定化率也随之升高,达到一定程度后稳定化率基本保持稳定。Cu2+、Zn2+和Cd2+的稳定化率分别在药剂投加量为5%、7%和7%时达到稳定,稳定化率为87.56%、85.85%和83.71%。

    图 7  稳定剂投加量对实验底泥中单一重金属稳定化率的影响
    Figure 7.  Effects of dosage of stabilizer on stabilization rate of single heavy metal in sediment

    NaBent-CTS中存在氨基官能团与羟基官能团,具有与重金属离子形成配位键的能力,从而螯合重金属,并且稳定剂中含有众多Na+、Al3+离子,可通过离子交换作用来吸附重金属。随着稳定剂投加量的增大,能够提供的配位键的数量与吸附比表面积不断增多,能够吸附更多的重金属离子,使3种重金属离子的稳定化率不断提高;稳定剂投加量继续增大,稳定剂颗粒之间相互黏结,比表面积减少,导致稳定化率增幅变小。

    3) 底泥pH对单一重金属稳定化率的影响。图8表明了在稳定剂投加量为5%与实验底泥液固比为1.5:1时,底泥pH对Cu2+、Zn2+和Cd2+稳定化率的影响。3种重金属稳定化率均随pH的上升呈先升高后降低的趋势,Cu2+、Zn2+和Cd2+稳定化率分别在pH为7、6和7时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.283 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.346 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.433 mg·L−1,稳定化率分别为83.47%、78.35%和74.57%。出现上述现象的原因如下:当pH小于7时,H+的质量浓度较高,占据了稳定剂的吸附位,与重金属离子形成竞争吸附关系,导致重金属稳定化率较低;当pH大于7时,部分OH会与重金属离子形成沉淀,难以被稳定剂吸附,经过TCLP浸取实验,氢氧化物沉淀溶于酸性浸取剂中,导致稳定化率下降。

    图 8  pH对实验底泥中单一重金属稳定化率的影响
    Figure 8.  Effect of pH on stabilization rate of single heavy metal in sediment

    4) 底泥液固比对单一重金属稳定化率的影响。图9表明了在pH为7与稳定剂投加量为5%时,实验底泥液固比的变化对Cu2+、Zn2+和Cd2+稳定化率的影响。液固比对3种重金属稳定化率影响不明显,Cu2+、Zn2+和Cd2+稳定化率分别在液固比为1.3∶1、1.7∶1和1.5∶1时达到稳定,Cu2+浸取液质量浓度由1.714 mg·L−1降至0.260 mg·L−1,Zn2+浸取液质量浓度由1.598 mg·L−1降至0.251 mg·L−1,Cd2+浸取液质量浓度由1.701 mg·L−1降至0.338 mg·L−1,稳定化率分别为84.82%、84.32%和80.13%。出现上述趋势的原因如下,在液固比较小的条件下,溶剂中的重金属质量浓度与底泥孔隙水中的重金属质量浓度在较短的时间内达到平衡,抑制了底泥孔隙水中的重金属向溶剂中扩散的趋势[20]。随着液固比逐渐升高,溶剂与底泥孔隙水中的重金属质量浓度需要在较长的时间内达到平衡,使得扩散作用能够在较长时间内持续进行,释放到溶剂中的重金属也增多,使稳定化率增加。并且含水率不同的实验底泥在7 d稳定化期中内部成分的变化也不同,会间接影响底泥中矿物颗粒与胶体颗粒之间的相互作用,从而改变实验底泥中重金属的存在形态和活性[21]

    图 9  液固比对实验底泥中单一重金属稳定化率的影响
    Figure 9.  Effects of liquid to solid ratio on stabilization of single heavy metal in sediment

    图10可知,在pH为7与疏浚底泥液固比为1.5∶1时,稳定剂投加量对复合重金属的稳定化率存在较大的影响。随着稳定剂投加量的不断增大,Cu2+、Zn2+和Cd2+稳定化率也逐渐升高。在稳定剂投加量为5%时,稳定化率达到了最佳值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.211 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.278 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.591 mg·L−1,稳定化率分别为73.36%、71.00%、58.38%。

    图 10  稳定剂投加量对复合重金属稳定化率的影响
    Figure 10.  Effect of stabilizer dosage on stabilization rate of composite heavy metals

    在稳定剂投加量超过5%时,Zn2+和Cd2+稳定化率呈现下降的趋势。这可能是稳定剂颗粒之间相互黏结,比表面积减少,导致重金属离子之间竞争吸附作用增强。而竞争力较弱的Zn2+和Cd2+脱离吸附位点,导致稳定化率下降。

    图11可知,在稳定剂投加量为5%与疏浚底泥液固比为1.5:1时,底泥pH的变化对复合重金属稳定化率的影响非常明显。在pH为7时,复合重金属稳定化率达到了最大值,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.549 mg·L−1,稳定化率分别为77.24%、75.03%、61.33%。

    图 11  底泥pH对复合重金属稳定化率的影响
    Figure 11.  Effect of pH of sediment on stabilization rate of composite heavy metals

    图12可知,在pH为7与稳定剂投加量为5%时,随着底泥液固比的增大,Cu2+、Zn2+和Cd2+的稳定化率逐渐上升。在液固比为1.5:1时逐渐稳定,Cu2+浸取液质量浓度由0.793 mg·L−1降至0.180 mg·L−1,Zn2+浸取液质量浓度由0.960 mg·L−1降至0.239 mg·L−1,Cd2+浸取液质量浓度由1.421 mg·L−1降至0.592 mg·L−1,稳定化率分别为77.26%、75.11%、58.32%。

    图 12  底泥液固比对复合重金属稳定化率的影响
    Figure 12.  Effects of liquid to solid ratio in sediment on stabilization of composite heavy metals

    Cd2+的稳定化率随着底泥液固比增大出现降低的趋势。原因可能是,随着液固比的增大,含水率升高,释放到溶剂中的重金属也增多,但稳定剂表面的吸附位点数量一定,使竞争能力较差的Cd2+脱离吸附位点,导致稳定化率下降。

    综上所述,在稳定剂投加量为5%、底泥pH为7、底泥液固比为1.5:1时,NaBent-CTS对复合重金属的稳定化率最好,稳定化率分别达到75.95%、73.71%和59.00%。3种重金属离子之间的竞争吸附关系为Cu2+>Zn2+>Cd2+

    图13图14所示,在稳定化处理底泥前,Cu2+、Zn2+、Cd2+的存在形态以酸可提取态和可还原态这两种不稳定形态占比较大,可氧化态和残渣态这两种稳定形态占比较小。经NaBent-CTS稳定化处理14 d后,可氧化态和残渣态这两种形态占比显著提高,表明NaBent-CTS具有良好的稳定重金属的效果。

    图 13  NaBent-CTS处理底泥前后各重金属存在形态变化
    Figure 13.  Changes of each heavy metal forms in sediment before and after NaBent-CTS treatment
    图 14  NaBent-CTS稳定后底泥重金属形态占比
    Figure 14.  Proportion of heavy metal forms in sediment after NaBent-CTS stabilization

    重金属离子与NaBent-CTS结合后,与稳定剂中的羟基和氨基发生螯合配位作用,并且稳定剂中含有Na+、Al3+等可交换离子,将以酸可提取态和可还原态存在的重金属变成了可氧化态与残渣态的存在形态,从而降低底泥中重金属污染生态环境的风险。

    图15为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的XPS全谱图。可以看出,稳定化处理Cu2+、Zn2+和Cd2+后,XPS图谱中出现Cu2p、Zn2p和Cd3d的轨道峰,充分证明Cu2+、Zn2+和Cd2+已吸附在NaBent-CTS上。NaBent-CTS稳定化处理重金属后,XPS图谱中的Na1s谱峰几乎消失,说明稳定化过程中Cu2+、Zn2+、Cd2+与Na+发生离子交换反应,导致稳定剂中Na+含量骤减。

    图 15  稳定化处理单一重金属前后的XPS
    Figure 15.  XPS spectra before and after stabilization treatment of a single heavy metal

    图16为NaBent-CTS在室温条件下,稳定化处理相同质量浓度Cu2+、Zn2+、Cd2+溶液后的FT-IR光谱图。可以看出,NaBent-CTS稳定Cu2+、Zn2+、Cd2+后没有新的峰出现,3 624、3 405、1 636、1 428、1 113、987 cm−1处的羟基与氨基特征峰发生偏移并且峰强度降低,这是由于重金属与基团之间发生了螯合反应;507 cm−1处Si—O—Al特征峰出现波数偏移与强度降低,这是由于重金属与稳定剂中Al3+离子发生了离子交换反应。稳定化处理Cu2+、Zn2+和Cd2+后,特征峰削弱强度不同,说明NaBent-CTS对Cu2+、Zn2+和Cd2+之间出现选择性吸附。由特征峰削弱强度可知,NaBent-CTS对重金属稳定能力由强到弱为Cu2+>Zn2+>Cd2+,这符合稳定剂处理复合重金属污染底泥的实验结果。

    图 16  稳定化处理单一重金属前后的FT-IR
    Figure 16.  FT-IR spectra before and after stabilization of a single heavy metal

    综上所述,NaBent-CTS稳定重金属过程中存在螯合反应与离子交换反应,重金属离子的螯合配位可能是由CTS中的氨基和羟基、Si—Al—OH和层间水分子O—H的互相作用,这样生成的螯合物可能是高交联的结构,稳定性极强。

    1) 由NaBent-CTS表面特性分析结果可知,NaBent和CTS之间存在化学吸附,大量CTS吸附在NaBent表面,稳定剂表面粗糙但比表面积降低。

    2) 经过CTS改性后的NaBent稳定重金属的能力显著提高,在投加量为5%时,可达到较好的稳定效果。在投加量为5%、pH为7、液固比为1.3∶1时,NaBent-CTS对Cu2+重金属污染底泥的处理效果最好。在投加量为7%、pH为6、液固比为1.7∶1时,NaBent-CTS对Zn2+重金属污染底泥的处理效果最好。在投加量为7%、pH为7、液固比为1.5∶1时,NaBent-CTS对Cd2+重金属污染底泥的处理效果最好。

    3) NaBent-CTS投加量为5%、pH为7、液固比为1.5∶1时,NaBent-CTS对复合重金属污染底泥的重金属稳定化效果最好,Cu2+、Zn2+、Cd2+稳定化率分别达到75.95%、73.71%和59.00%;NaBent-CTS稳定化处理复合重金属污染底泥时,Cu2+、Zn2+、Cd2+之间存在竞争吸附作用,竞争力由强到弱为Cu2+>Zn2+>Cd2+

    4) 采用BCR法分析稳定化处理14 d后底泥中Cu2+、Zn2+、Cd2+的存在形态,可以看出,在NaBent-CTS处理后,底泥中Cu2+、Zn2+、Cd2+的存在形态更加稳定,可氧化态与残渣态比例大幅上升。

  • 图 1  实验装置图

    Figure 1.  Diagram of experimental device

    图 2  NOx-N脱氮速率的变化

    Figure 2.  Change of NOx-N denitrification rate

    图 3  样本群落结构情况

    Figure 3.  Structure of sample community

    表 1  实验用水成分

    Table 1.  Compositions of experimental wastewater

    名称 质量分数/% 名称 质量分数/%
    C3H5O2Na 16.230 3 ZnSO4 0.015 7
    KNO3 44.785 9 MnSO4 0.036 2
    KH2PO4 16.230 3 Na2MoO4·2H2O 0.008 0
    MgSO4 12.172 7 CuSO4·5H2O 0.009 1
    CaCl2·5H2O 10.143 9 CoCl2·6H2O 0.008 8
    FeSO4 0.304 3 EDTA 0.054 8
    名称 质量分数/% 名称 质量分数/%
    C3H5O2Na 16.230 3 ZnSO4 0.015 7
    KNO3 44.785 9 MnSO4 0.036 2
    KH2PO4 16.230 3 Na2MoO4·2H2O 0.008 0
    MgSO4 12.172 7 CuSO4·5H2O 0.009 1
    CaCl2·5H2O 10.143 9 CoCl2·6H2O 0.008 8
    FeSO4 0.304 3 EDTA 0.054 8
    下载: 导出CSV

    表 2  碳源浓度(碳氮比)

    Table 2.  Carbon source concentration (carbon-nitrogen ratio)

    碳氮比等级 NQS介体投加量/(μmol·L−1) 碳源浓度/(mg·L−1) 碳氮比(C/N)
    0 250 2.9
    100 150 1.8
    100 250 2.9
    100 325 3.8
    中等 0 475 5.6
    中等 100 400 4.7
    中等 100 475 5.6
    中等 100 550 6.5
    碳氮比等级 NQS介体投加量/(μmol·L−1) 碳源浓度/(mg·L−1) 碳氮比(C/N)
    0 250 2.9
    100 150 1.8
    100 250 2.9
    100 325 3.8
    中等 0 475 5.6
    中等 100 400 4.7
    中等 100 475 5.6
    中等 100 550 6.5
    下载: 导出CSV

    表 3  常规分析项目及检测方法

    Table 3.  Routine analysis items and testing methods

    编号 分析项目 分析方法 所用仪器与设备
    1 MLSS 重量法 烘箱和电子天平
    2 MLVSS 重量法 烘箱、马弗炉和电子天平
    3 NO3-N 紫外分光光度法 T6新世纪紫外可见分光光度计
    4 NO2-N N-(1-萘基)-乙二胺光度法 T6新世纪紫外可见分光光度计
    5 TN 过硫酸钾氧化 紫外分光光度法 T6新世纪紫外可见分光光度计
    6 ORP 铂电极测定 WTW, Multi-340i, 在线监测
    7 SCOD 重铬酸钾法
    编号 分析项目 分析方法 所用仪器与设备
    1 MLSS 重量法 烘箱和电子天平
    2 MLVSS 重量法 烘箱、马弗炉和电子天平
    3 NO3-N 紫外分光光度法 T6新世纪紫外可见分光光度计
    4 NO2-N N-(1-萘基)-乙二胺光度法 T6新世纪紫外可见分光光度计
    5 TN 过硫酸钾氧化 紫外分光光度法 T6新世纪紫外可见分光光度计
    6 ORP 铂电极测定 WTW, Multi-340i, 在线监测
    7 SCOD 重铬酸钾法
    下载: 导出CSV

    表 4  不同C/N各反应器脱氮效率

    Table 4.  Nitrogen removal efficiencies under different carbon-nitrogen ratios

    C/N NQS介体投加量/(μmol·L−1) 硝酸盐氮最大去除率/% 亚硝酸盐氮最大积累率/% 总氮最大去除率/%
    2.9 0 22.2 19.7 13.0
    1.8 100 11.7 10.9 17.4
    2.9 100 33.7 24.0 30.8
    3.8 100 54.0 23.8 53.6
    5.6 0 53.2 10.0 64.4
    4.7 100 64.3 10.7 64.7
    5.6 100 63.0 19.4 64.4
    6.5 100 65.5 13.3 64.2
    C/N NQS介体投加量/(μmol·L−1) 硝酸盐氮最大去除率/% 亚硝酸盐氮最大积累率/% 总氮最大去除率/%
    2.9 0 22.2 19.7 13.0
    1.8 100 11.7 10.9 17.4
    2.9 100 33.7 24.0 30.8
    3.8 100 54.0 23.8 53.6
    5.6 0 53.2 10.0 64.4
    4.7 100 64.3 10.7 64.7
    5.6 100 63.0 19.4 64.4
    6.5 100 65.5 13.3 64.2
    下载: 导出CSV

    表 5  不同C/N各反应器SCOD去除率的变化

    Table 5.  Change of SCOD removal rate under different carbon-nitrogen ratio

    反应时间/min 去除率/%
    C/N=2.9(空白) C/N=1.8 C/N=2.9 C/N=3.8 C/N=5.6(空白) C/N=4.7 C/N=5.6 C/N=6.5
    0.5 0 0 0 0 0 0 0 0
    5 11.8 13.7 22.7 30.8 35.6 43.4 44.0 39.2
    10 22.5 31.4 37.5 41.9 54.8 64.6 64.2 59.5
    30 42.7 45.1 75.0 81.2 60.3 69.9 66.5 78.5
    120 66.3 73.5 82.4 84.6 69.4 77.9 72.0 81.0
    360 68.5 72.5 86.4 85.5 73.5 81.4 77.1 87.3
    660 89.9 78.4 87.5 87.2 75.8 92.9 87.2 94.9
    反应时间/min 去除率/%
    C/N=2.9(空白) C/N=1.8 C/N=2.9 C/N=3.8 C/N=5.6(空白) C/N=4.7 C/N=5.6 C/N=6.5
    0.5 0 0 0 0 0 0 0 0
    5 11.8 13.7 22.7 30.8 35.6 43.4 44.0 39.2
    10 22.5 31.4 37.5 41.9 54.8 64.6 64.2 59.5
    30 42.7 45.1 75.0 81.2 60.3 69.9 66.5 78.5
    120 66.3 73.5 82.4 84.6 69.4 77.9 72.0 81.0
    360 68.5 72.5 86.4 85.5 73.5 81.4 77.1 87.3
    660 89.9 78.4 87.5 87.2 75.8 92.9 87.2 94.9
    下载: 导出CSV

    表 6  不同C/N对ORP的影响

    Table 6.  Effect of different carbon-nitrogen ratio on ORP

    反应时间/min ORP/mV
    C/N=2.9(空白) C/N=1.8 C/N=2.9 C/N=3.8 C/N=5.6(空白) C/N=4.7 C/N=5.6 C/N=6.5
    0.5 40 5 −28 −53 −57 −67 −84 −117
    5 −31 −54 −81 −96 −65 −72 −109 −149
    10 −65 −70 −99 −123 −80 −81 −120 −157
    30 −78 −89 −121 −142 −104 −102 −135 −169
    120 −132 −136 −155 −164 −133 −144 −165 −234
    360 −75 −101 −155 −172 −195 −214 −233 −259
    660 −75 −100 −146 −201 −190 −206 −238 −250
    反应时间/min ORP/mV
    C/N=2.9(空白) C/N=1.8 C/N=2.9 C/N=3.8 C/N=5.6(空白) C/N=4.7 C/N=5.6 C/N=6.5
    0.5 40 5 −28 −53 −57 −67 −84 −117
    5 −31 −54 −81 −96 −65 −72 −109 −149
    10 −65 −70 −99 −123 −80 −81 −120 −157
    30 −78 −89 −121 −142 −104 −102 −135 −169
    120 −132 −136 −155 −164 −133 −144 −165 −234
    360 −75 −101 −155 −172 −195 −214 −233 −259
    660 −75 −100 −146 −201 −190 −206 −238 −250
    下载: 导出CSV

    表 7  样品中微生物群落组成

    Table 7.  Composition of microbial community in samples %

    微生物名称 原污泥L0 低温未加介体L1 低温加介体L2
    黄单胞菌目(Xanthomonadales norank) 3 9 10
    厌氧绳菌科(Anaerolineaceae uncultured) 2 9 11
    丛毛单胞菌科(Comamonadaceae unclassified) 3 8 6
    红环菌科(Rhodocyclaceae uncultured) 1 7 6
    腐螺旋菌科(Saprospiraceae uncultured) 4 1 3
    索氏菌属(Thauera) 1 3 4
    屈挠杆菌属(Flexibacter) 5 6 5
    副球菌属(Paracoccus) 1 0 0
    假单胞菌属(Pseudomonas) 0 1 1
    硫杆菌属(Thiobacillus) 1 0 0
    其他(Others) 79 56 54
    微生物名称 原污泥L0 低温未加介体L1 低温加介体L2
    黄单胞菌目(Xanthomonadales norank) 3 9 10
    厌氧绳菌科(Anaerolineaceae uncultured) 2 9 11
    丛毛单胞菌科(Comamonadaceae unclassified) 3 8 6
    红环菌科(Rhodocyclaceae uncultured) 1 7 6
    腐螺旋菌科(Saprospiraceae uncultured) 4 1 3
    索氏菌属(Thauera) 1 3 4
    屈挠杆菌属(Flexibacter) 5 6 5
    副球菌属(Paracoccus) 1 0 0
    假单胞菌属(Pseudomonas) 0 1 1
    硫杆菌属(Thiobacillus) 1 0 0
    其他(Others) 79 56 54
    下载: 导出CSV
  • [1] 中华人民共和国环境保护部. 2017中国环境状况公报[R]. 北京, 2018.
    [2] KLEINJANS J C, ALBERING H J, MARX A, et al. Nitrate contamination of drinking water: Evaluation of genotoxic risk in human population[J]. Environmental Health Perspectives, 1991, 94(8): 89-193.
    [3] 范彬, 曲久辉, 刘锁祥, 等. 饮用水中硝酸盐的脱除[J]. 环境污染治理技术与设备, 2000, 1(3): 44-50.
    [4] FORMAN D. Nitrate Exposure and Human Cancer[M]. Berlin: Springer, 1991.
    [5] SCHMIDT I, SLIEKERS O, SCHMID M, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews, 2003, 27(4): 481-492. doi: 10.1016/S0168-6445(03)00039-1
    [6] 王阿华, 杨小丽, 叶峰. 南方地区污水处理厂低温生物脱氮对策研究[J]. 给水排水, 2009, 35(10): 28-33. doi: 10.3969/j.issn.1002-8471.2009.10.008
    [7] LETTING A, GATZ E, REBA C, et al. Challenge of psychrophilic anaerobic wastewater treatment[J]. Trends in Biotechnology, 2001, 19(9): 363-370. doi: 10.1016/S0167-7799(01)01701-2
    [8] CERVANTES F J, VELDE S V D, LETTINGA G, et al. Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds[J]. Biodegradation, 2000, 11(5): 313-321. doi: 10.1023/A:1011118826386
    [9] ZEE F P V D, CERVANTES F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review[J]. Biotechnology Advances, 2009, 27(3): 256-277. doi: 10.1016/j.biotechadv.2009.01.004
    [10] LOVLEY D R, FRAGA J L, COATES J D, et al. Humics as an electron donor for anaerobic respiration[J]. Environmental Microbiology, 2010, 1(1): 89-98.
    [11] ARANDA-TAMAURA C, ESTRADA-ALVARADO M I, TEXIER A C, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification[J]. Chemosphere, 2007, 69(11): 1722-1727. doi: 10.1016/j.chemosphere.2007.06.004
    [12] 赵丽君, 马志远, 郭延凯, 等. 氧化还原介体调控亚硝酸盐反硝化特性研究[J]. 环境科学, 2013, 34(9): 3520-3525.
    [13] 李海波, 廉静, 郭延凯, 等. 氧化还原介体催化强化Paracoccus versutus菌株GW1反硝化特性研究[J]. 环境科学, 2012, 33(7): 2458-2463.
    [14] 苑宏英, 孙锦绣, 王小佩, 等. 投加介体强化低温污水生物反硝化脱氮的研究[J]. 环境科学与技术, 2016, 39(11): 90-94.
    [15] 苑宏英, 孙烨怡, 李原玲, 等. 不同碳源对低温投加氧化还原介体污水生物反硝化脱氮过程的影响[J]. 化工进展, 2018, 37(2): 783-788.
    [16] YUAN H Y, SUN Y Y, SUN J X, et al. Improvement in denitrification efficiency at low temperature with addition of redox mediators[J]. Desalination & Water Treatment, 2017, 81: 80-86.
    [17] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [18] MOGENS H. Capabilities of biological nitrogen removal processes from wastewater[J]. Water Science and Technology, 1991, 23: 669-679. doi: 10.2166/wst.1991.0517
    [19] 廉静, 许志芳, 赵丽君, 等. 固定化氧化还原介体加速亚硝酸盐生物反硝化作用[J]. 环境工程学报, 2012, 6(6): 1805-1809.
  • 期刊类型引用(8)

    1. 李航. 渗滤液处理中反硝化碳源的筛选及应用. 路基工程. 2024(03): 192-195 . 百度学术
    2. 王靖霖,苑宏英,赵鑫,赖姜伶. 醌介体在污水生物脱氮领域的研究进展. 中国给水排水. 2023(12): 44-49 . 百度学术
    3. 孙新乐,曹玉红,范景福. 生物流化床A/O处理含盐高氨氮催化剂污水实验研究. 中外能源. 2022(08): 74-78 . 百度学术
    4. 邹笛,石巧晴,杨晔,柳德军,万春炜,谢志军. 反硝化工艺去除废水中硝酸盐氮的碳源可替代性研究. 安徽化工. 2022(05): 94-97 . 百度学术
    5. 刘鹤莹,张嫚,翟中葳,杨鹏,支苏丽,沈仕洲,张克强. 大薸对奶厅废水主要污染物的去除效果研究. 农业环境科学学报. 2022(11): 2525-2538 . 百度学术
    6. 郑力,江鹰,程晓夏. 铁屑耦合固相反硝化对低碳氮比废水中总氮的处理. 环境工程学报. 2022(11): 3716-3727 . 本站查看
    7. 司家济,张静,张辉,鲍韬. 基于污水厂监测数据的反硝化脱氮影响因素分析. 环境监测管理与技术. 2021(02): 56-59 . 百度学术
    8. 尹鑫,何川,魏立娥,赖发英,倪国荣,胡建民,周春火. 氧化还原介体对短程反硝化细菌亚硝氮积累影响研究. 江西农业大学学报. 2020(03): 619-625 . 百度学术

    其他类型引用(9)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.7 %DOWNLOAD: 5.7 %HTML全文: 88.5 %HTML全文: 88.5 %摘要: 5.9 %摘要: 5.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 79.6 %其他: 79.6 %Ashburn: 0.5 %Ashburn: 0.5 %Beijing: 6.4 %Beijing: 6.4 %Beiwenquan: 0.1 %Beiwenquan: 0.1 %Boulder: 0.1 %Boulder: 0.1 %Chang'an: 0.1 %Chang'an: 0.1 %Changsha: 0.1 %Changsha: 0.1 %Chanshan: 0.2 %Chanshan: 0.2 %Chaoyang Shi: 0.1 %Chaoyang Shi: 0.1 %Chengdu: 0.2 %Chengdu: 0.2 %Chongqing: 0.2 %Chongqing: 0.2 %Dongguan: 0.1 %Dongguan: 0.1 %Fangshan: 0.1 %Fangshan: 0.1 %Gaocheng: 0.1 %Gaocheng: 0.1 %Gaoleshan: 0.1 %Gaoleshan: 0.1 %Guangzhou: 0.3 %Guangzhou: 0.3 %Guangzhou Shi: 0.2 %Guangzhou Shi: 0.2 %Guiyang: 0.1 %Guiyang: 0.1 %Haidian: 0.2 %Haidian: 0.2 %Hangzhou: 0.8 %Hangzhou: 0.8 %Harbin: 0.1 %Harbin: 0.1 %Hefei: 0.1 %Hefei: 0.1 %Jiangmen: 0.1 %Jiangmen: 0.1 %Jinan: 0.3 %Jinan: 0.3 %Jinrongjie: 0.8 %Jinrongjie: 0.8 %Kunming: 0.1 %Kunming: 0.1 %Kunshan: 0.2 %Kunshan: 0.2 %Lanzhou: 0.1 %Lanzhou: 0.1 %Liuxiang: 0.1 %Liuxiang: 0.1 %Mountain View: 0.3 %Mountain View: 0.3 %Nanchang: 0.1 %Nanchang: 0.1 %Nanchang Shi: 0.1 %Nanchang Shi: 0.1 %New Taipei: 0.1 %New Taipei: 0.1 %New York: 0.1 %New York: 0.1 %Newark: 0.2 %Newark: 0.2 %Ningbo: 0.1 %Ningbo: 0.1 %Qingdao: 0.3 %Qingdao: 0.3 %Rizhao: 0.1 %Rizhao: 0.1 %Sanmenxia: 0.1 %Sanmenxia: 0.1 %Shanghai: 0.6 %Shanghai: 0.6 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.2 %Shenzhen: 0.2 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Taiyuan: 0.7 %Taiyuan: 0.7 %Taiyuanshi: 0.1 %Taiyuanshi: 0.1 %Taizhou: 0.1 %Taizhou: 0.1 %The Bronx: 0.1 %The Bronx: 0.1 %Tianjin: 0.1 %Tianjin: 0.1 %Tongxiang: 0.1 %Tongxiang: 0.1 %Wuhan: 0.1 %Wuhan: 0.1 %Wuxi: 0.1 %Wuxi: 0.1 %Xi'an: 0.3 %Xi'an: 0.3 %Xiangfan: 0.1 %Xiangfan: 0.1 %Xingfulu: 0.2 %Xingfulu: 0.2 %Xining: 0.1 %Xining: 0.1 %Xintai: 0.1 %Xintai: 0.1 %Xinzhuang: 0.1 %Xinzhuang: 0.1 %XX: 2.0 %XX: 2.0 %Yingchuan: 0.1 %Yingchuan: 0.1 %Zhangjiakou: 0.1 %Zhangjiakou: 0.1 %Zhengzhou: 0.3 %Zhengzhou: 0.3 %上海: 0.2 %上海: 0.2 %上饶: 0.1 %上饶: 0.1 %俄克拉何马城: 0.1 %俄克拉何马城: 0.1 %北京: 1.1 %北京: 1.1 %南京: 0.1 %南京: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %喀什: 0.1 %喀什: 0.1 %天津: 0.1 %天津: 0.1 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %拉萨: 0.1 %拉萨: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.1 %深圳: 0.1 %盘锦: 0.1 %盘锦: 0.1 %西宁: 0.1 %西宁: 0.1 %西安: 0.1 %西安: 0.1 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.6 %郑州: 0.6 %鞍山: 0.1 %鞍山: 0.1 %其他AshburnBeijingBeiwenquanBoulderChang'anChangshaChanshanChaoyang ShiChengduChongqingDongguanFangshanGaochengGaoleshanGuangzhouGuangzhou ShiGuiyangHaidianHangzhouHarbinHefeiJiangmenJinanJinrongjieKunmingKunshanLanzhouLiuxiangMountain ViewNanchangNanchang ShiNew TaipeiNew YorkNewarkNingboQingdaoRizhaoSanmenxiaShanghaiShenyangShenzhenShijiazhuangTaiyuanTaiyuanshiTaizhouThe BronxTianjinTongxiangWuhanWuxiXi'anXiangfanXingfuluXiningXintaiXinzhuangXXYingchuanZhangjiakouZhengzhou上海上饶俄克拉何马城北京南京呼和浩特喀什天津威海宁波拉萨济南深圳盘锦西宁西安贵港贵阳郑州鞍山Highcharts.com
图( 3) 表( 7)
计量
  • 文章访问数:  5464
  • HTML全文浏览数:  5464
  • PDF下载数:  128
  • 施引文献:  17
出版历程
  • 收稿日期:  2019-02-12
  • 录用日期:  2019-04-23
  • 刊出日期:  2020-01-01
苑宏英, 王雪, 李原玲, 李琦, 张小亚, 何旭东. 碳氮比对低温投加介体生物反硝化脱氮的影响[J]. 环境工程学报, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025
引用本文: 苑宏英, 王雪, 李原玲, 李琦, 张小亚, 何旭东. 碳氮比对低温投加介体生物反硝化脱氮的影响[J]. 环境工程学报, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025
YUAN Hongying, WANG Xue, LI Yuanling, LI Qi, ZHANG Xiaoya, HE Xudong. Effect of carbon-nitrogen ratio on biological denitrification with redox mediator addition at low temperature[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025
Citation: YUAN Hongying, WANG Xue, LI Yuanling, LI Qi, ZHANG Xiaoya, HE Xudong. Effect of carbon-nitrogen ratio on biological denitrification with redox mediator addition at low temperature[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 60-67. doi: 10.12030/j.cjee.201902025

碳氮比对低温投加介体生物反硝化脱氮的影响

    通讯作者: 苑宏英, E-mail: yuanhy-00@163.com
    作者简介: 苑宏英(1974—),女,博士,教授。研究方向:污水、污泥处理及资源化。E-mail:yuanhy-00@163.com
  • 1. 天津城建大学环境与市政工程学院,天津 300384
  • 2. 天津市水质科学与技术重点实验室,天津 300384
基金项目:
国家自然科学基金资助项目(51308374);国家重大科技专项(2017ZX07107-002-04);天津城建大学大学生创新创业项目(201810792085, 201810792008)

摘要: 污水的生物脱氮效果受低温抑制,投加氧化还原介体有利于反硝化过程。采用规格相同的序批式反应器,使用人工配制硝酸盐废水和经过驯化的活性污泥,考察了不同碳源浓度(碳氮比)对低温(10 ℃)投加氧化还原介体1, 2-萘醌-4-磺酸(NQS)污水生物反硝化脱氮过程的影响。结果表明:当碳源浓度(以COD计)为150~400 mg·L−1 (碳氮比为1.8~4.7)时,脱氮效率随碳氮比的升高而升高;当碳源浓度为400~550 mg·L−1 (碳氮比为4.7~6.5)时,脱氮效率随着碳氮比的升高而降低;当碳源浓度为400 mg·L−1 (碳氮比为4.7)左右时效果最好,总氮去除率最高为64.7%。对于脱氮速率,介体强化脱氮速率随着碳氮比的升高而升高。同时,探讨了投加介体污水生物反硝化脱氮的机理,发现投加介体降低了体系的氧化还原电位(ORP),有利于反硝化脱氮反应的进行。

English Abstract

  • 《2017中国环境状况公报》显示,以地下水含水系统为单元,以浅层地下水和中深层地下水为对象,监测结果中主要超标物质为“三氮”(亚硝酸盐氮、氨氮和硝酸盐氮),且污染情况较重[1]。氮素作为生物生长的必需元素,是造成缓流水体富营养化的原因之一[2-3]。未经处理或处理不达标的含氮废水排放到水体中,会带来一系列的危害:湖泊、水库等缓流水体的富营养化,河流发黑发臭,水生生物大量死亡;硝态氮在人体肠道中可以被还原成亚硝态氮,对生物体有致癌、致变和致畸的作用[4],严重威胁人体健康。

    从废水中除去氮有多种方法,目前利用生物进行脱氮的技术被公认为是最经济有效的脱氮方法[5],但温度会影响污水脱氮的效果。微生物正常生长的最佳水温为20~35 ℃,当温度≤15 ℃时(即属于低温),反硝化细菌的增殖代谢速率将降低,致使反硝化速率也降低[6]。在我国,由于一些生产工艺流程条件、区域性气候或是季节性等原因,无法避免在低温下排放污水[7]。如东北地区,冰冻期长达6个月,这样会使得污水生物脱氮过程在较长低温时段内效率变差,影响污水的处理达标。

    目前,为了保证我国秋冬季污水中氮的排放达标,寒冷地区低温污水的处理一般采用改良传统工艺[8]、投加药剂[9]、降低污泥负荷、培养硝化细菌[10]或者将构筑物建于室内等措施。还有许多国内外学者对具有醌型结构的氧化还原介体的催化作用进行研究[9, 11-13]。氧化还原介体,也可称为电子穿梭体,具有可逆地被氧化和还原的功能,能够使反应速率成倍增加来加速反应的进行[9]。ARANDA-TAMAURA等[11]研究了二磺酸基蒽醌(AQDS)和1, 2-萘醌-4-磺酸(NQS)同步去除S和N的情况,并得出了NQS对N和S去除效果明显的结论。在低温10 ℃条件下,投加介体NQS时的脱氮效率与不投加介体的空白组对比,提高了1.5倍。赵丽君等[12]研究证明,投加蒽醌-2-磺酸钠(AQS)介体的反硝化过程能够促进亚硝酸盐转化为N2O。李海波等[13]在35 ℃条件下,投加蒽醌-2, 6-二磺酸钠(AQDS)、蒽醌-2-磺酸钠(AQS)、蒽醌-1-磺酸结构(α-AQS)和蒽醌-1, 5-二磺酸钠(1, 5-AQDS) 4种介体,当浓度均为240 μmol·L−1时,可提高硝态氮降解效率1.14~1.63倍。虽然氧化还原介体强化生物脱氮的研究较多,但对于氧化还原介体调控低温反硝化过程的相关研究还比较少。

    课题组前期研究表明,在低温条件下投加氧化还原介体,有利于生物的反硝化脱氮[14],且最佳碳源为丙酸钠,但脱氮效果最好时投加丙酸钠的最佳剂量还尚未明确[15]。本研究投加课题组前期筛选出的浓度为100 μmol·L−1的氧化还原介体1, 2-萘醌-4-磺酸钠(NQS)[16],考察低温条件下碳源浓度(碳氮比)不同时对污水生物反硝化脱氮过程的影响,并利用生物化学手段(分析氧化还原电位的改变及微生物的测定)初步探讨低温引入介体强化污水生物反硝化脱氮过程的影响机制,以期提高实际污水处理的脱氮效率,为寒冷地区冬季低温条件下氮的生物去除提供参考。

    • 采用规格相同的序批式反应器。反应器内径为170 mm,高为360 mm,容积为7.6 L。内部装有数显电动搅拌器,反应时进行搅拌使污泥处于悬浮状态。实验装置如图1所示。

    • 接种污泥为天津市某污水处理厂活性污泥,实验中进行培养驯化,使其运行稳定。初始污泥的特性指标均按照实验室标准方法进行测定,pH为7~8,VSS/SS为0.4~0.5,MLSS为3 500~3 600 mg·L−1,SVI为80~90 mL·g−1

      对活性污泥进行驯化,通过污泥的颜色、形状、气味和测试指标来判断污泥驯化的成效。驯化15 d后,污泥臭味变淡,体积变大,硝酸盐氮、总氮、SCOD的去除率达到15%。驯化25 d后,基本没有臭味,开始成絮状,硝酸盐氮、总氮、SCOD的去除率提高到40%。驯化45 d后,污泥没有臭味,颜色变成土黄色,成颗粒状,硝酸盐氮、总氮、SCOD的去除率提高到70%。驯化60 d后,污泥中带点腥味,颜色变成棕色,污泥成颗粒状,硝酸盐氮、总氮的去除率达到95%,亚硝酸盐氮的生成率达到95%,SCOD的去除率也达到85%以上。通过观察,硝酸盐的去除率可连续1周大于95%,且SCOD的去除率可连续1周大于85%。这说明污泥有了很好的反硝化效果,反硝化细菌已经成为优势菌群,标志着污泥驯化成功。

      将驯化好的活性污泥置于连续搅拌反应器(CSTR)中,并做空白对照实验。反应器由冷却水循环器(上海施都凯仪器设备有限公司生产,型号为IL-008-02)控制水温为10 ℃。反应器用黑色保温材料进行包裹,以保障实验运行的恒温条件。反应器的工作周期包括排水(15 min)、闲置(60 min)、进水(15 min)、反应(420 min)和沉淀(270 min)5个工序。在实验过程中,采用分开配水的方式,进水用计量泵调节控制,反应时间用计时器来控制。采用多次均匀投加的方式,每周期向非空白对照反应器投加1, 2-萘醌-4-磺酸(NQS)介体(浓度为100 μmol·L−1)。进水为人工配制的硝酸盐废水,浓度为70~90 mg·L−1,硝酸钾作为氮源,丙酸钠作为碳源。硝酸盐废水的成分及质量分数见表1

      在其他指标不变的条件下,改变碳源浓度(碳氮比)并与空白反应作对照进行实验。其中碳源浓度已换算成COD。碳源浓度250 mg·L−1和400 mg·L−1分别代表我国典型的生活污水水质中COD的最低浓度和中等浓度。定时从反应器的出水口进行取样,测硝酸盐氮、亚硝酸盐氮、总氮和SCOD等指标,直至反应周期结束。分别选取6个碳源浓度梯度(碳氮比),各反应器中碳源浓度(碳氮比)具体情况见表2

    • 实验过程中采用的分析方法[17]及分析仪器见表3

    • 实验中DNA提取采用土壤DNA试剂盒(Omega Bio-tek,Norcross,GA,U.S.)。在试样中加入干污泥和SLX Mlus缓冲溶液,放置于旋涡混合器裂解样品。之后加入缓冲液和HTR试剂,将其离心、培养,进行多次重复,使DNA完全洗脱。采用细菌16S rRNA通用引物515F(GTGCCAGCMGCCGCGG)和907R(CCGTCAATTCMTTTRAGTTTPCR)对提取的DNA样品进行PCR扩增。采用TransGen AP221-02: TransStart Fastpfu DNA Polymerase,20 μL反应体系。用2%琼脂糖凝胶电泳检测PCR产物,本研究的生物群落DNA片段长度集中在500 bp左右。

    • 通过Miseq测序得到双端序列数据,经处理后的优化数据统计及长度分布表明,DNA片段长度均为395~396 bp。通过对序列进行归类操作,可得到样本测序结果中的菌种、菌属等信息。依据相似度水平,对归类操作后的全部序列进行OTU划分。通常,相似水平在97%的OUT须进行生物信息统计分析。采用单样品多样性分析(Alpha多样性)方法,获取微生物群落丰度和多样性的相关信息。采用对序列进行随机抽样的方法,以抽到的序列数与它们所能代表OTU的数目构建稀疏曲线。如曲线斜率较小,则表明测序数据量合理,继续测序,只会产生较少量新的OUT。

    • 在碳氮比(C/N)不同的条件下,各反应器的脱氮效率见表4。可以看出,当C/N为2.9时,投加介体的反应器与空白对照相比提高了1.5倍,总氮的去除率提高了近2.4倍;当C/N为5.6时,投加介体的反应器与空白对照相比,硝酸盐氮的去除率提高了1.2倍,而总氮的去除率变化不是很明显。由此可知,在相同C/N条件下,投加介体可以改善低温污水生物反硝化脱氮的效果,并且在低C/N条件下,介体的强化作用更明显。当C/N为4.7时,硝酸盐氮的去除率均可以达到63%以上,且随着C/N的大幅变化,去除率的变化不是很明显。亚硝酸盐氮的量先增加后减少,说明在生物反硝化脱氮过程中出现亚硝酸盐氮的积累,然后亚硝酸盐氮不断地转化为N2或N2O。在C/N为1.8和2.9的反应将近结束时,亚硝酸盐氮的量最后呈上升趋势,这对脱氮效果是不利的,说明C/N较低时不利于亚硝酸盐氮的转化。随着反应时间的延长,反应系统中总氮的浓度也逐渐降低。投加相同的介体,当C/N为4.7时,总氮的去除率达到最大。由表4可知,当C/N为1.8~3.8时,总氮的去除率与C/N的大小呈正相关;当C/N为4.7~6.5时,总氮的去除率与C/N的大小无相关性,且介体是否存在也对总氮的去除没有较大意义。

      综上所述,生物反硝化脱氮系统中C/N为4.7~5.6时,NQS介体强化低温污水生物反硝化脱氮效果最好。

    • 随着反应的进行,脱氮速率的变化如图2所示。图2显示了在低温10 ℃条件下,不同C/N对介体强化生物反硝化脱氮速率的影响。当C/N为2.9时,投加介体的反应器与空白对照相比,NOx-N脱氮速率从2.7 mg·(g·h)−1(以VSS计)提高到17.1 mg·(g·h)−1,提高了将近6.3倍;当C/N为5.6时,投加介体的反应器与空白对照相比,脱氮速率从11.0 mg·(g·h)−1提高到33.4 mg·(g·h)−1,提高了3.0倍。可见,在C/N相同的情况下,投加介体可以显著提高脱氮速率,且C/N越低,提高效果越明显,这与脱氮效率得出的结果一致。

      图2表明,与不投加介体的空白对照相比,反应刚开始投加介体的反应器的脱氮速率最高,分别达到了3.6、17.1、27.1、30.1、33.4和51.6 mg·(g·h)−1。当C/N为5.6和6.5时,分别是C/N为4.7脱氮速率的1.1倍和1.7倍。可见,在介体浓度相同的情况下,C/N的大小显著影响脱氮速率,且脱氮速率随着C/N的升高而增大。相关研究表明,由于微生物的自身生长也需要碳源,实际C/N在4.0以上时才可能实现高效脱氮[18]。结合硝酸盐氮的浓度,当C/N为4.7时,可达到较好的脱氮效果。

    • 在不同C/N的条件下,反应器中SCOD的去除率随时间的变化见表5。反应器开始进水的SCOD都稳定在投加值,随着反应的进行,SCOD的去除率在逐渐升高,说明实验期间反硝化脱氮系统运行稳定,对有机质的降解能力良好并且污泥有很好的活性。可以看出,当C/N相同时,投加介体可以提高SCOD去除率的1.1倍和1.2倍。当C/N不同时,投加介体的反应器反应结束时,SCOD最大去除率分别达到了78.4%、87.5%、87.2%、93.0%、87.2%和94.9%。

      投加氧化还原介体后,C/N的不同可以使系统中的活性污泥受到不同程度的影响,但效果不明显。从表5中可以看出,当C/N较高时,SCOD的去除率均较高,且无一定相关性。

    • 1) C/N不同的条件下介体强化低温污水生物反硝化ORP的变化。在投加介体后,改变C/N的大小,反应器中氧化还原电位ORP的变化情况见表6。当C/N为4.7时,投加介体的反应系统相对空白而言,生物反硝化过程中氧化还原电位降低43 mV。廉静等[19]研究表明,当C/N为6时,投加介体可使生物反硝化过程中的ORP降低45 mV左右,同时可显著加快亚硝酸盐的生物降解过程。从表6可以看出,随着反应时间的延长,氧化还原电位逐渐降低;当反应将近结束时,氧化还原电位出现小幅度升高的现象。反应结束时,反应器中的ORP最低值分别达到了−132、−136、−155、−201、−195、−214、−238和-259 mV,随着C/N的增大,ORP值上升幅度更小。

      2) 介体强化低温污水生物反硝化微生物群落分析。取3个活性污泥样品并分别编号。L0代表初始污泥样品,取自未经驯化的天津市某污水厂的剩余污泥;L1、L2为取自低温10 ℃、经一段时间驯化的活性污泥,其中L1为未投加介体,L2为投加NQS介体。在不同分类水平上,通过统计学分析方法,可以检测出样本群落结构。本研究以门和属的水平进行分类,结果见图3。由图3可知,样品的优势菌门包括Proteobacteria(变形菌门)、Bacteroidetes(拟杆菌门)、Chlorobi(绿杆菌门)、Chloroflexi(绿弯菌门)、Planctomycetes(浮霉菌门)、Acidobacteria(酸杆菌门)、Candidate divisionc WS3。与初始污泥相比,培养后出现2个新的优势菌门,分别是Bacteria unclasscfied(未分类细菌门)和Fusobacteria(梭杆菌门)。样品中微生物群落组成情况见表7

      在自然界中,最普遍的反硝化细菌包括Pseudomonaceae(假单胞菌属)、Alcaligenes(产碱杆菌属)、Nitro bacteraceae(硝化细菌科)、Rhodospirillaceae(红螺菌科)、Bacillaceae(芽孢杆菌科)、Spirillaceae(螺菌科)等。

      在低温条件下通过测序分析群落组成情况发现,接种污泥中没有优势菌属;未投加介体的污泥中优势菌属为黄单胞菌目、厌氧绳菌科和丛毛单胞菌科;投加介体的活性污泥优势菌属为厌氧绳菌科和黄单胞菌目。在经过驯化的活性污泥中,红环菌科和索氏菌属增长速率明显。红环菌科在低温下增长5~7倍,索氏菌属在低温下也可增长3~5倍。红环菌科和索氏菌属相似,都具有很好的反硝化功能,这说明经过驯化的活性污泥具有良好的脱氮优势。在低温条件下,投加氧化还原介体有利于索氏菌属的生长。

    • 1)在低温(10 ℃)条件下,投加介体NQS,当C/N为1.8~3.8时,介体强化脱氮效率随C/N的升高而升高;当C/N为4.7~6.5时,介体强化脱氮效率随C/N的升高而降低。

      2)当C/N为1.8~6.5时,介体强化脱氮速率随着C/N的升高而升高;但在低C/N条件时,介体的强化作用更明显。综合考虑脱氮效果并结合经济因素分析,当C/N为4.7左右时,脱氮效果最佳。

      3)介体的投加改变了氧化还原电位的大小,在投加介体的反应系统中,氧化还原电位始终低于空白反应,这有利于反硝化脱氮反应的进行。随着脱氮效率的增加,体系ORP不断下降,推测介体可能通过加速ORP的降低来加快脱氮过程。

      4)经过培养驯化的活性污泥具有良好的脱氮优势。在低温条件下,投加氧化还原介体有利于索氏菌属的生长。

    参考文献 (19)

返回顶部

目录

/

返回文章
返回