-
在装卸、堆取和露天存放过程中,铁矿粉在作业机械的剪切、抛洒以及自然风力作用下容易扬尘,可吸入颗粒物PM10浓度高达182.2 μg·m−3。铁矿粉的无组织排放不仅造成铁矿粉自身的损耗,也危害从业人员健康。钢铁生产企业因此导致的年损耗率高达0.66%[1],直接经济损失巨大。外逸的铁矿粉影响周边的环境空气质量,超标的铁离子及其伴生的镉离子导致水体和土地污染[2],金属含量超标的水源灌溉,植物种子的发芽率降低,影响正常成苗和植物生长。铁是人体的必需微量元素之一,但摄入过量则会引起金属中毒。我国饮用水源地的铁含量整体超标且呈不断上升趋势,超标倍数高达8.80倍,超标率高达86.1%[3]。因此,提高钢铁企业料场和矿区等污染源的控制效率,提高空气、水体和土地安全性的意义重大。
作为洒水抑尘的添加剂,抑尘剂通过润湿、保湿、聚集和固结等方式显著降低了煤炭[4]、渣土[5]和道路扬尘[6]的排放风险。但铁矿粉呈正电性[7],颗粒表面Fe-OH的极性大,这也决定了铁矿粉抑尘剂的特殊性。由于物理化学性质特殊,国内外对铁矿粉抑尘剂的技术研发进展缓慢,研究内容仍然停留在传统品种。表面活性剂可以润湿铁矿粉但无法提高内聚力,对PM10的控制效果不及水[8]。氯化钙和偏硅酸钠对PM10的控制效率达到85%,但这些无机盐腐蚀金属、严重影响植物生长,而且SiO2影响高炉冶炼[9]。制备安全、高效的抑尘剂,改善颗粒之间的相互作用,提高铁矿粉的稳定性和控制效率尤为必要。
铁矿粉是一种特殊的污染源,既影响空气质量、又影响水体和土地安全;铁矿粉扬尘既危害环境,又导致直接经济损失[1];其表面性质不同于常见的颗粒物[7],且矿粉品质容易受抑尘剂影响[9],因此抑尘剂技术研发进展缓慢。本研究从含水率、Zeta电位、表面形貌、化学组成与晶体结构等基本性质出发,探讨铁矿粉与水性聚合物的之间的相互作用,估算装卸过程和露天堆场的湿控制效率、现场测定露天堆场的规模化效果,提高铁矿粉扬尘的控制效率。
水性聚合物对铁矿粉的抑尘性能与现场应用
Dust suppression performance and field application of waterborne polymer on iron ore powder
-
摘要: 为控制扬尘污染,采用水性聚合物抑尘剂将澳洲铁矿粉稳定化,表征了铁矿粉的含水率、Zeta电位、表面形貌、化学组成与晶体结构,研究了聚合物的抑尘性能和现场应用效果。结果表明,抑尘剂可促进铁矿粉聚集、提高内聚力,可在湿润状态下延缓水分挥发、干燥状态下紧密封闭粉体,有效降低风力侵蚀性。在30 ℃、35%相对湿度下的平均含水率比洒水提高了1.2倍,装卸过程和露天堆场估算的扬尘控制效率分别达到67.78%和93.96%。露天料场24 h PM2.5和PM10的控制效率分别为75.0%和80.95%,与估算结果接近;30 d的观察期间,堆体的封闭状态稳定,实现了现场有效抑尘。Abstract: In order to control the dust pollution, the Australian iron ore powder was stabilized by waterborne polymeric dust suppressant. The moisture content (MC), Zeta potential, surface morphology, chemical composition and crystal structure of the iron ore powder were characterized. The dust suppression performance and field application effects of the polymer were investigated. The results show that the dust suppressant could promote the powder aggregation and improve the cohesive force, then delay the evaporation of water in the wet state, tightly seal the powder in the dry state, and thus effectively reduce the wind erodibility. The average MC of iron ore powder at 30 °C and 35% relative humidity was 1.2 times higher than that of watering. The dust control efficiencies (CE) estimated by handling process and open storage yard were 67.78% and 93.96%, respectively. The CEs of PM2.5 and PM10 after 24 hours were 75.0% and 80.95%, respectively, which was close to the estimated results. During the 30 d observation period, the sealed state of the open storage yard was stable, and the effective dust suppression on site was achieved.
-
Key words:
- suspended particulate matter /
- PM2.5 /
- dust suppressant /
- unorganized emissions /
- iron ore powder /
- open storage yard
-
表 1 过200目粒级的化学组成(质量分数)
Table 1. Iron ore composition less than 200 screen mesh (mass fraction)
Fe2O3 SiO2 Al2O3 P2O5 TiO2 82.56 9.22 7.54 0.19 0.17 CaO MnO SO3 Cl K2O 0.13 0.08 0.05 0.03 0.03 表 2 装卸过程扬尘的排放系数
Table 2. Dust emission factors during handling process
样品 Pav/% TSP/(g·t−1) PM10/(g·t−1) PM2.5/(g·t−1) 抑尘铁矿粉 10.77 0.75 0.36 0.05 洒水铁矿粉 4.80 2.33 1.10 0.17 表 3 抑尘剂对铁矿粉XRD参数的影响
Table 3. Effect of suppressant on XRD parameters of iron ore
抑尘铁矿粉 原料铁矿粉 2θ/(°) d/nm 半峰宽/(°) 2θ/(°) d/nm 半峰宽/(°) 24.14 0.368 0.096 24.13 0.369 0.092 33.16 0.270 0.148 33.14 0.270 0.150 35.64 0.252 0.125 35.62 0.252 0.128 40.89 0.221 0.144 40.85 0.221 0.143 49.47 0.184 0.139 49.45 0.184 0.154 54.08 0.169 0.190 54.04 0.170 0.176 62.44 0.148 0.116 62.42 0.149 0.131 64.01 1.450 0.191 63.98 1.450 0.148 表 4 洒水铁矿粉和抑尘铁矿粉的化学组成(质量分数)
Table 4. Compositions of suppressed and watering iron ore (mass fraction)
样品 Fe2O3 SiO2 Al2O3 P2O5 TiO2 洒水铁矿粉 81.85 9.53 7.95 0.18 0.16 抑尘铁矿粉 81.94 9.42 8.0 0.17 0.16 样品 CaO MnO SO3 Cl K2O 洒水铁矿粉 0.13 0.09 0.05 0.03 0.03 抑尘铁矿粉 0.12 0.07 0.06 0.03 0.03 表 5 抑尘现场的悬浮颗粒物浓度
Table 5. Particulate matter concentrations on suppression field
时间/h PM2.5/(μg·m−3) PM10/(μg·m−3) 抑尘区 对比区 抑尘区 对比区 0 44.0 41.5 84.5 81.5 5 10.0 42.0 13.5 83.0 24 12.0 48.0 16.0 84.0 48 24.0 49.5 24.5 86.0 72 25.5 48.0 37.0 89.5 96 35.0 48.5 58.0 87.5 120 37.0 42.5 68.5 82.0 144 43.5 45.5 77.5 80.0 -
[1] 张毅, 李刚. 钢铁企业环保型料场贮存方式的特点及比较[J]. 宝钢技术, 2015(6): 45-49. doi: 10.3969/j.issn.1008-0716.2015.06.009 [2] SARKAR A, SHEKHAR S. Iron contamination in the waters of Upper Yamuna basin[J]. Groundwater for Sustainable Development, 2018, 7: 421-429. doi: 10.1016/j.gsd.2017.12.011 [3] 何静林, 温东辉, 高波. 杭州萧山区饮用水源地铁污染评价及控制对策研究[J]. 中国环境监测, 2017, 33(1): 97-105. [4] HASSAN H A, TSIOURI V K, KONSTANTINOS K E. Developing emission factors of fugitive particulate matter emissions for construction sites in the middle east area[J]. International Scholarly and Scientific Research & Innovation, 2015, 9(2): 51-54. [5] NOBLE T L, PARBHAKAR-FOX A, BERRY R F, et al. Mineral dust emissions at metalliferous mine sites[M]//LOTTERMOSER B. Environmental Indicators in Metal Mining. Switzerland: Springer International Publishing, 2017: 281-306. [6] IYANG H I, BAE S, PANDO M A. Contaminant dust suppression materials: A cost-effectiveness estimation methodology[J]. Measurement, 2016, 93: 563-571. doi: 10.1016/j.measurement.2016.07.024 [7] QUAST K. The use of Zeta potential to investigate the interaction of oleate on hematite[J]. Minerals Engineering, 2016, 85: 130-137. doi: 10.1016/j.mineng.2015.11.007 [8] COPELAND C R, KAWATRA S K. Design of a dust tower for suppression of airborne particulates for iron making[J]. Minerals Engineering, 2011, 24(13): 1459-1466. doi: 10.1016/j.mineng.2011.07.008 [9] SRIVASTAVA U, KAWATRA S K, EISELE T C. Study of organic and inorganic binders on strength of iron oxide pellet[J]. Metallurgical & Materials Transactions B, 2013, 44(4): 1000-1009. [10] 佟云华, 刘永刚, 苏璐璐, 等. VAc共聚乳液对道路浮尘的粘接作用[J]. 中国胶粘剂, 2018(11): 21-23. [11] US EPA. Emission factor documentation for AP-42: Section 13.2.2 unpaved roads[R]. Research Triangle Park, NC: Measurement Policy Group Office of Air Quality Planning and Standards, 2011. [12] CAO Y, LIU T, HE J. Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China[J]. Earth and Environmental Science, 2018, 128(1): 012136. [13] KATRA I, ELPERIN T, FOMINYKH A, et al. Modeling of particulate matter transport in atmospheric boundary layer following dust emission from source areas[J]. Aeolian Research, 2016, 20: 147-156. doi: 10.1016/j.aeolia.2015.12.004 [14] QUAICOE I, NOSRATI A, ADDAI M J. Influence of binder composition on hematite-rich mixed minerals agglomeration behavior and product properties[J]. Chemical Engineering Research and Design, 2015, 97: 45-56. doi: 10.1016/j.cherd.2015.02.021 [15] 中华人民共和国环境保护部. 扬尘源颗粒物排放清单编制技术指南(试行) [EB/OL]. [2019-01-10]. www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594588131490.pdf, 2014. [16] 刘琴. 铁矿粉尘污染的试验研究[J]. 武汉水运工程学院学报, 1986, 10(4): 69-75. [17] NOWAK R. Wet granulation[Z/OL]. [2019-01-10]. www.ipc-dresden.de/agglomeration-59.html. [18] 刘春, 郑洪涛, 梁述廷, 等. X荧光光谱分析技术在测定安徽月山矿床铁铜矿石中Fe、Cu的应用研究[J]. 矿物岩石地球化学通报, 2019, 38(1): 1-7.