-
近年来,药物和个人护理品(pharmaceutical and personal care products,PPCPs)在地下水、地表水和饮用水中被广泛检出,引起研究者们关注。双氯芬酸钠(diclofenac sodium,DCF)是一种典型的PPCPs,作为一种消炎止痛类药物已被广泛使用,因其具有难生物降解和生物积累性的特点,故给生态环境和人类健康带来极大的威胁。常规的处理技术无法有效地去除DCF,传统的生物处理技术对DCF的去除率只能达到30%左右[1]。因此,亟需寻找一种新型有效的处理方法去除水中的DCF。
近年来,基于硫酸根自由基(
SO⋅−4 )的高级氧化技术受到研究者们的广泛关注[2-3]。与·OH相比,SO⋅−4 具有氧化还原电位高、pH适用范围广及半衰期长等优点,有利于污染物的降解。过硫酸盐(persulfate,PS)可在紫外光、热、碱、过渡金属离子(Mn2+)和零价铁等活化下产生SO⋅−4 。然而,不同的方法具有各自的优点和缺点,如:热活化不产生二次污染,但在使用过程中会消耗很多能量;过渡金属离子可以在室温下活化PS,但是易受溶液pH影响而产生沉淀。零价铁可以在室温下活化PS产生SO⋅−4 ,其主要反应如式(1)和式(2)所示。零价铁的化学性质活泼,在制备和存储的过程中与氧气接触,会形成氧化膜覆盖在零价铁表面,从而影响其在反应过程中的活性。为了解决零价铁钝化问题,研究者们提出了一些改进方法,如利用纳米零价铁[4]、酸洗[5]、制备零价铁双金属[6]和氢气还原等[7]。这些方法可以在一定程度上改善零价铁去除污染物的活性,但是在实际应用方便仍然会存在一定的问题,如增加使用的成本、操作复杂等。有关磁场效应影响零价铁去除污染物的研究是近几年来新兴的研究方向,受到了研究者的广泛关注。KIM等[8]研究发现,在零价铁降解4-氯酚的过程中加入磁场时,可以提高4-氯酚的去除效率。研究者认为磁场可以加速零价铁的腐蚀作用,并促进氧气扩散到零价铁的表面,使其相互作用生成·OH降解污染物。一些研究对磁场强化零价铁降解污染物进行了一系列的探讨,证明了在不同的反应体系中,磁场均可以促进零价铁的腐蚀和Fe2+的溶出,可以不同程度地提高污染物的降解速率[9-13]。综上所述,磁场可以明显改善零价铁的反应活性,且操作简单、成本低、无二次污染。因此,将磁场与其他污染物处理技术相结合具有非常广泛的应用前景。由于零价铁是铁磁性物质,在磁场中磁化后离开磁场仍能保持剩磁,具有“磁记忆性”。因此,本研究利用零价铁的磁记效应来提高其反应活性,以DCF为模型污染物,采用预磁化零价铁活化PS体系对DCF进行降解,考察了零价铁投加量、PS投加量、pH等因素对DCF降解的影响,并探讨了DCF的降解机理,为DCF实际废水的降解提供了科学依据。
-
过硫酸盐(K2S2O8,PS)、氢氧化钠(NaOH)、硫酸(H2SO4)购于天津科密欧试剂有限公司;盐酸羟胺(NH2OH·HCl)、邻菲啰啉(C12H8N2.H2O)购于天津博迪化工有限公司;双氯芬酸钠(C14H10Cl2NNaO2)购于北京百灵威科技有限公司;甲醇(CH3OH)、5,5-二甲基-1-吡咯啉-氮-氧化物(DMPO)均为色谱纯并购于上海阿拉丁生化科技股份有限公司,实验用水为超纯水。
BS124S电子天平(赛多利斯科学仪器有限公司);PHS-3C型pH计(上海仪电科学仪器股份有限公司);VI-1501可见分光光度计(天津港东科技发展有限公司);D2004W搅拌器(上海司乐仪器有限公司);DH101-3BS型电热鼓风干燥箱(天津中环实验电炉有限公司);EMX-6/1电子自旋共振波谱仪(德国Bruker公司);FL2200液相色谱仪(浙江福立分析仪器有限公司)。
-
实验采用1 000 mL的烧杯为反应器,以2片圆形钕-铁-硼永久磁铁提供磁场,用特斯拉计测定并调整所需磁场强度。将零价铁置于磁场中磁化2 min,磁化过程中以机械搅拌器搅拌使零价铁均匀悬浮于烧杯中。磁化后,将调节好pH的DCF溶液加入反应器中,然后加入一定量的PS开始计时,每隔一定的时间取样,最后加入叔丁醇终止反应,过0.22 μm滤膜后待测。同时,在其他条件相同的情况下,以非磁化零价铁作对照组。实验在常温常压下进行。
-
DCF采用液相色谱法测定,流动相为甲醇∶水=75∶25(体积比),流速为1 mL·min−1,检测波长为278 nm,柱温为40 ℃,进样量为10 μL;铁离子浓度采用邻菲啰啉分光光度法测定;pH采用玻璃电极法测定;利用电子自选共振波谱法(electron spin resonance,ESR)测定体系中自由基产生情况。
-
DCF的去除率计算方法如式(3)所示。
DCF氧化分解的反应符合动力学一级反应的特征,拟一级动力学方程如式(4)所示。
式中:R为DCF的去除率;C0为DCF的初始浓度,mg·L–1;Ct为t时间的DCF浓度,mg·L–1;k为DCF降解的一级动力学速率常数,min−1。
-
实验对比了DCF在PS、零价铁、预磁化零价铁、Fe0/PS和Pre-Fe0/PS几种体系中的去除效果,结果如图1所示。在零价铁体系中,反应60 min仅有6.8%的DCF被去除;Pre-Fe0体系在60 min内可以去除9.8%的DCF;在PS体系中,反应60 min,DCF的去除率为29.3%。这3种体系对DCF去除率较低的原因是零价铁和预磁化零价铁在溶液中无法参与反应,对DCF有较低的去除可能是由于吸附作用,预磁化零价铁比表面积有所增加[14],对DCF的吸附作用比零价铁稍强。而PS体系中尽管其氧化还原电位较高[15],但仍无法有效降解DCF。当向零价铁体系中加入PS时,DCF的降解率可在60 min达到99%,说明零价铁可以有效活化PS氧化降解DCF。值得注意的是,Pre-Fe0/PS体系中,反应5 min时,DCF的降解率可达99.7%。前期研究[14]表明,预磁化可以加速体系中Fe2+溶出,因此,预磁化零价铁可以更快的催化PS产生更多的
SO⋅−4 ,使污染物更快降解。 -
体系中PS的浓度决定了产生
SO⋅−4 的量,进而影响DCF的降解率。为了研究不同PS投加量对DCF的降解,实验考察了PS浓度分别为0.125、0.25、0.5、1.0 mmol·L−1时,Pre-Fe0/PS和Fe0/PS体系对DCF的降解情况,结果如图2所示。由图2可知,随着PS浓度的增加,2种体系对DCF的去除率都呈升高趋势,Pre-Fe0/PS体系对DCF的去除率和去除速率均大于Fe0/PS体系。当PS投加量为0.125、0.25、0.5和1.0 mmol·L−1时,在反应30 min后,Fe0/PS体系对DCF的去除率分别为58.5%、70.2%、75.8%和96.8%;在Pre-Fe0/PS体系中,PS投加量为0.125 mmol·L−1和0.25 mmol·L−1时,反应30 min后,DCF的去除率为81.9%和98.1%;当PS的投加量为0.5 mmol·L−1时,反应进行10 min时,DCF的去除率可达98.2%,继续增加PS的量为1.0 mmol·L−1时,Pre-Fe0/PS体系对DCF的去除率在5 min达99.3%。这是因为随着PS的量增加,会有更多的SO⋅−4 产生,故2种体系中DCF的去除速率均会升高。在Pre-Fe0/PS体系中,由于零价铁的腐蚀速率加快,会促进PS的分解加速产生SO⋅−4 ,进而使DCF的降解速率更快。利用拟一级动力学反应方程对2种体系在不同PS投加量时的实验结果进行拟合。当PS投加量由0.125 mmol·L−1增加到1.0 mmol·L−1时,Fe0/PS体系降解DCF的反应速率常数由0.029 min−1增加到0.152 min−1,在实验条件范围内,任一浓度过硫酸钾条件下,Pre-Fe0/PS体系降解DCF的反应速率常数均高于Fe0/PS体系,可从0.063 min−1提高到0.898 min−1。 -
零价铁在反应过程中释放的铁离子对
SO⋅−4 的产生起着非常重要的作用[16],因此,零价铁的浓度对污染物的降解有较大影响。为了研究不同零价铁投加量对DCF去除过程的影响,实验选取了0.125、0.25、0.5、1.0 mol·L−1零价铁投加量,在DCF初始浓度为20 mg·L−1,初始pH为7,PS投加量为0.5 mol·L−1时,同浓度的零价铁体系中DCF的反应速率如图3所示。可以看出,随着零价铁投加量的增加,2种体系对DCF的去除率有很大提升,且在相同零价铁投加量时,Pre-Fe0/PS体系的去除速率远大于化Fe0/PS体系。当零价铁投加量为0.125 mmol·L−1时,反应60 min后,Fe0/PS体系对DCF的去除率分别为80%;当零价铁投加量为1.0 mmol·L−1时,DCF在30 min的去除率可以达到99%。其原因是因为随着零价铁投加量的增加,体系中能产生更多的铁离子,进而活化PS产生SO⋅−4 ,最终加速DCF的去除。而Pre-Fe0/PS体系中零价铁投加量为0.125 mmol·L−1时,反应20 min时,对DCF的去除率为83.3%;随着零价铁投加量的增加,Pre-Fe0/PS体系对DCF的去除速率迅速增加,当零价铁投加量为0.25 mmol·L−1时,反应20 min后DCF的降解率接近100%。原因可能是因为在Pre-Fe0/PS体系中零价铁腐蚀速率较快,当零价铁为0.25 mmol·L−1时,溶出的铁离子能够在短时间内将体系中DCF完全去除,当零价铁的投加量继续增大时,对Pre-Fe0/PS体系的影响较小。2种体系的反应速率常数如图3(c)所示。2种体系对DCF降解的表观速率常数随零价铁投加量的增加而升高,在Pre-Fe0/PS体系中,反应速率常数由0.132 min−1增大到0.719 min−1;Fe0/PS体系由0.034 min−1增加到0.209 min−1。为了更好地表明零价铁投加量在Pre-Fe0/PS体系中对DCF去除率的影响,本研究增加了DCF浓度(40 mg·L−1),结果如图4所示。由图4可知,当零价铁浓度由0.125 mmol·L−1增加到0.5 mmol·L−1时,DCF的去除率随着零价铁投加量的增加而升高;当零价铁浓度继续增加,DCF去除率基本不变,这是因为当零价铁投加量过大时,体系中产生过多的铁离子会与
SO⋅−4 发生反应[17]。 -
实验考察了当DCF初始浓度为20 mg·L−1,零价铁投加量为0.5 mmol·L−1,PS投加量为0.5 mmol·L−1,初始pH分别为3,5,7,9和10时DCF的降解效果,结果如图5所示。由图5可知,在Fe0/PS体系中,在初始pH为3~10时,DCF的去除率随初始pH值的升高而下降,特别是初始pH为10时下降尤为明显。当初始pH为3,反应20 min时,DCF的去除率为99%;初始pH为10时,DCF在60 min的去除率为50%左右。在Pre-Fe0/PS体系中,当初始pH为3、反应15 min时,对DCF的去除率可达100%;初始pH为10时,DCF在60 min时的降解率可达90.4%。
与Fe0/PS体系相比,在相同的pH下,Pre-Fe0/PS体系中DCF的去除率均有较大的提升,特别是在pH较低时,2种体系中DCF的降解较快。分析其原因可能是:零价铁在储存和运输过程中被氧化形成一层钝化膜覆盖其表面,当反应体系pH较低时,零价铁表面的氧化膜更容易被溶解[18]。因此,零价铁在体系pH较低时的腐蚀速率和反应活性较高,在反应过程中会产生更多的氢参与加成反应[19]。由图5(b)可知,随着体系初始pH的升高,Fe0/PS体系对DCF的去除率急剧下降;而Pre-Fe0/PS体系对DCF的去除率仍能保持在较高的水平,当pH为10时,对DCF的降解率在60 min时仍可达到90.4%,是Fe0/PS体系的2倍左右。
由图5(c)可知,2种体系的反应速率常数随初始pH的升高而迅速减小,Pre-Fe0/PS体系的反应速率常数是Fe0/PS体系的2.1~6.2倍,Pre-Fe0/PS体系对反应速率常数提升的倍数并没有因初始pH的升高而下降,其原因为当体系的初始pH较高时,零价铁在参与反应时会形成铁氧化物或铁氢氧化物钝化膜覆盖其表面阻止反应的进行。然而,目前有研究显示,预磁化可以加速零价铁的腐蚀,阻止钝化膜的形成[20],从而提高DCF的降解。因此,Pre-Fe0可以在一定程度上使该体系pH适用范围增大,减少其在应用过程中pH调节剂的使用,降低污染物的降解成本。
-
1)铁离子的产生。在Fe0/PS体系中,零价铁可以与体系中的氧气、水和H+反应生成Fe2+,活化PS生成
SO⋅−4 ,而本身被氧化为Fe3+,为了研究体系中零价铁、Fe2+和Fe3+的作用,实验测定了在近中性条件下,体系中亚铁离子和铁离子的变化。2种体系的反应过程中都没有测出Fe2+(测定方法的最低检测限为0.03 mg·L−1),这一现象与XIONG等[21]的研究结果吻合,即Fe2+的溶出是反应活化PS的限速步骤。实验研究了当DCF初始浓度为20 mg·L−1,零价铁投加量为0.5 mmol·L−1,PS投加量为0.5 mmol·L−1,自然初始pH下,体系中铁离子浓度和pH变化情况。图6为2种反应体系中总铁离子浓度的变化。由图6可见,Pre-Fe0/PS体系在反应过程中铁离子浓度高于Fe0/PS体系,说明在Pre-Fe0/PS体系中铁离子的快速溶出导致了DCF的降解效率的升高。此外,我们还测定了反应过程中体系pH的变化,随着反应的进行,2种体系的pH都呈降低的趋势。其原因可能是在反应过程中生成的Fe3+会发生水解作用产生H+(式(5)),另外,在部分
SO⋅−4 转化为·OH(式(6))的过程中也会产生H+,从而使体系pH下降。由于Pre-Fe0/PS体系中能产生更多的的Fe3+和SO⋅−4 ,因此,Pre-Fe0/PS体系中的pH下降较Fe0/PS体系更为明显。2)自由基的产生。自由基是降解污染物重要的活性物质,其在体系中的产生量决定了污染物的降解率。电子自旋共振波谱法(ESR)是测定短寿命自由基非常有效的手段,其信号可以半定量地反映自由基的产生量。由于自由基的寿命非常短暂,在水溶液中存在的时间小于10−4 s[22],实验过程中以5,5-二甲基-1-吡咯啉-氮-氧化物(DMPO)为捕获剂,生成寿命较长的自旋加合物进行测定。由图7可知,2种体系中均出现了DMPO-
SO−4 和DMPO-OH加合物的典型特征峰[23]。对比图7(a)和图7(b)可以看出,当反应条件相同时,Pre-Fe0/PS体系在任一取样时间点的加合物对应的峰高均大于Fe0/PS体系,即产生的SO⋅−4 和·OH量比Fe0/PS体系中多。由图7还可以看出,Pre-Fe0/PS体系在2 min时产生的SO⋅−4 和·OH比Fe0/PS体系在5 min时产生的量还要多,而且能在相当长的时间内保持较高的浓度水平,当取样时间为5 min时,DMPO-SO−4 和DMPO-OH加合物的信号峰仍然很强。然而,Fe0/PS体系中SO⋅−4 和·OH产生速度相对较慢,DMPO-SO−4 和DMPO-OH加合物的信号峰衰减较快。这一结果解释了Pre-Fe0/PS体系对DCF的去除率大于Fe0/PS体系的原因。 -
1)预磁化后的零价铁能够显著提升其对PS活化作用,进而提高其降解DCF的能力。
2) PS浓度、零价铁投加量及初始pH对Pre-Fe0/PS和Fe0/PS体系降解DCF均有较大影响。其中,在零价铁投加量为0.125~1.0 mmol·L−1、PS浓度为0.125~1.0 mmol·L−1条件中,反应速率常数均呈升高趋势,而DCF可在Fe0为 0.5 mmol·L−1,PS为0.5 mmol·L−1条件下几乎被完全去除;2种体系的反应速率常数随初始pH的升高而迅速减小,Pre-Fe0/PS体系的反应速率常数是Fe0/PS体系的2.1~6.2倍,在pH为6~8的条件下有利于反应进行。
3) Pre-Fe0/PS体系中铁离子溶出和pH下降趋势均比Fe0/PS体系快。
4) ESR结果表明,2种体系中都会产生
SO⋅−4 和·OH,且其对污染物的降解起主要作用,预磁化可以加速SO⋅−4 和·OH的产生,并能使其在较长的时间保持较高的浓度水平。
预磁化零价铁活化过硫酸盐体系降解双氯芬酸钠
Degradation of diclofenac sodium by premagnetized zero-valent iron-catalyzed persulfate
-
摘要: 双氯芬酸钠(diclofenac sodium,DCF)是一种常用的消炎止痛药,已在地下水、地表水和饮用水中被广泛检出,成为一种新型微量污染物,具有潜在危害,基于此,采用预磁化零价铁/过硫酸盐(Pre-Fe0/PS)和零价铁/过硫酸盐(Fe0/PS)2种体系对DCF进行降解。考察了过硫酸盐(PS)投加量、零价铁投加量、初始pH对2种体系降解DCF的影响,探究了2种体系中铁离子的产生情况和pH的变化,并利用ESR技术检测了体系中生成的自由基。结果表明,与Fe0/PS体系相比,在不同PS量(0.125~1.0 mmol·L−1)、Fe0量(0.125~1.0 mmol·L−1)和初始pH 3.0~10.0下,Pre-Fe0/PS体系对DCF的降解速率常数提高了2.1~6.2倍;Pre-Fe0/PS体系中会产生更多的铁离子,且在反应过程中pH下降更快;Pre-Fe0/PS体系比Fe0/PS体系产生更多的
SO⋅−4 和·OH,且能在较长的时间保持较高的浓度。Pre-Fe0/PS体系降解DCF可以适用更宽的pH范围,是DCF废水处理的有效途径。Abstract: Diclofenac sodium (DCF), a commonly used anti-inflammatory painkiller, has been widely detected in groundwater, surface water and drinking water. As an emerging pollutant, it can cause potential hazards. Based on this, the pre-magnetized Fe0 (pre-Fe0/PS) and Fe0/PS systems were used to degrade DCF. The effects of influencing operational parameters, including initial PS dosage, Fe0 dosage and pH, on the DCF degradation were investigated. The iron ions yield and pH changes in the both of systems were determined, and the generation of free radicals was also studied by using ESR. The results showed that pre-Fe0/PS process had 2.1~6.2 folds higher rate constant than Fe0/PS process for DCF degradation at different PS dosages (0.125~1.0 mmol·L−1), Fe0 dosages (0.125~1.0 mmol·L−1) and initial pH (3.0~10.0). More iron ions were generated and faster drop in pH occurred in pre-Fe0/PS process. EPR confirmed that stronger signals of DMPO-OH and DMPO-SO−4 adduct illustrated more and fasterSO⋅−4 and ·OH radicals produced in pre-Fe0/PS system than those of Pre-Fe0/PS system, and could keep relative high content for a long duration. The pre-Fe0/PS process presents wide pH range to degrade DCF, and it is a promising approach to remove DCF.-
Key words:
- pre-magnetization Fe0 /
- persulfate /
- diclofenac sodium /
- degradation mechanism
-
随着人类社会的发展和工业化进程的加快,环境污染问题已经严重影响到人类正常的生活和生产. 解决环境污染问题主要在于如何高效地处理污染物从而达到环境修复的目的. 吸附法作为一种操作简单、经济成本低且高效迅速的技术,是去除环境污染物的重要方法之一. 应用吸附法的关键主要在于对吸附剂的选择. 活性炭[1 − 2]、沸石[3 − 5]、生物炭[6 − 7]、氮化碳材料[8 − 9]、金属有机框架材料[10-11]、石墨烯基材料(graphene-based materials) [12 − 13]、层状双金属氢氧化物(layered double hydroxide,LDHs) [14 − 15]以及有机多孔材料[16 − 17]等均是应用于环境污染物去除的吸附剂.
共价有机框架(covalent organic frameworks,COFs)材料作为一种新型有机多孔材料,具有如密度低、良好的热稳定性和化学稳定性、大比表面和丰富的组成单元等众多优良特性,使得其自Yaghi等[18]报道后就引起了科研工作者的广泛关注. 经过众多科研工作者十几年来的努力,COF材料的构筑单体、拓扑结构、合成方法、功能应用等方面得到了瞩目的发展. 在这其中,COF通过引入带电基团可以为后续修饰带来更多的可操作性,因此离子型共价有机框架(ionic covalent organic frameworks,iCOFs)材料进入科研工作者的视野. iCOF除了具有COF材料的优良特性外,关键在于其含有数量众多的离子基团,能与客体分子的特定结构产生较强静电作用. 另外,通过改变离子基团的类型也可对其表面积、孔隙孔径以及性质进行调控,从而进一步扩充其应用领域.
自2015年Peng等[19]首次报道了具有电负性的磺酸基iCOF以来,iCOF材料已被广泛应用于分离[20 − 21]、质子传导[22 − 23]、催化[24 − 25]、生物医学[26 − 27]等诸多领域. 本文从iCOF的结构、合成方法以及在环境修复中的应用等角度综述了近年来离子型共价有机框架材料的研究进展,并对其目前存在的挑战和应用前景进行展望.
1. iCOF的结构(Structure of iCOF)
iCOF是晶体多孔结构与电离特性结合的产物,对其结构的探究能更好的解释其性能特征,这对功能性材料的设计也具有重要意义. 根据iCOF框架的离子性质,一般将iCOF分为带正电的阳离子型COF和带负电的阴离子型COF. 阳离子型COF具有的正电荷框架通常是通过引入的杂环化合物或脂肪族化合物中的氮原子来实现. 为了保持电中性,同时需要引入如F−、Cl−、Br−、I−等负离子组成的抗衡离子(如图1a所示). 此外,根据正电荷框架中离子部分所处的位置的不同,阳离子COF又可以分为三类(离子部分位于主链上、侧链上或者节点处). 相反,阴离子型COF由负电荷框架以及如H+、Li+、Na+、K+等抗衡阳离子构成(如图1b所示). 此外,2021年Fu等[28]合成出一种框架内部同时具有阴离子和阳离子的COF. 这种两性离子型COF的框架内分布有大量的正负电荷(如图1c所示),特殊的拓扑结构使其具有良好的结晶度和较高的比表面积,为COF的性能改进和机理探索等多个层面带来了深远的影响.
2. iCOF的合成方法(Synthesis Method of ICOF)
构建iCOF通常有两种方法:直接合成法和合成后修饰法. 直接合成法顾名思义就是指直接使用离子单体合成. 预先选择离子单体作为核心结构单元,将其与中性连接剂进行聚合反应,两者通过共价键连接成预设的拓扑结构,从而得到最终产物. 直接合成法的优势在于能够预设离子位置以及控制最终产物的电荷密度. 此外,直接合成法所得的iCOF结构孔道较为完整,且产率比较高. 但由于离子单体之间固有的静电排斥作用限制,用于直接合成法的离子单体种类较少.
不能通过直接合成法合成的iCOF可以用合成后修饰法(post-synthesis modification,PSM)来合成.通常有两种合成思路,除了直接将带电的离子基团引入中性框架外,另一种方法是将中性活性基团引入框架后再将其转化为离子基团,后者最大的优势在于赋予COF新功能特性的同时不改变共价有机框架材料的基本框架结构,但也存在中性活性基团转化率较低,导致最终产物电荷密度较低的缺点.
2.1 直接合成法
常用的直接合成法主要包括热溶剂合成法、机械化学合成法以及微波合成法. 热溶剂合成法作为最主要的合成方法,已经广泛用于多种iCOF的合成. 在密闭且高温的条件下,将离子单体和中性连接剂放入容器内,经过3 d或者更长的反应时间,从而得到最终产物. 在合成过程中,密封容器内的压力、温度、反应时间、溶剂的比例、催化剂用量等都会对最终产物的结晶度有影响. 因此,想要通过热溶剂合成法来合成iCOF需要大量的前期工作来寻找最佳的反应条件和适宜的溶剂. 此外,由于iCOF对合成条件异常敏感,通过热溶剂合成法合成出的不同批次的iCOF之间也存在差异.
机械化学合成法作为一种简单、环保、经济的方法,具体操作是将离子单体和中性连接剂放在研钵内,不加溶剂或者加入少量溶剂,在室温下通过不断研磨从而得到最终产物. 2016年,Peng等[29]将1,3,5-三甲酰基间苯三酚(1,3,5-triacylphloroglucinol,Tp)分别与两种不同的磺酸基单体在均三甲苯/二氧六烷/乙酸混合溶剂下混合研磨,合成出两种iCOF材料(NUS-9和NUS-10). 通过此法合成出的iCOF材料孔隙度和结晶度一般较低.
微波合成法是指通过微波辐射来实现对反应体系温度的均匀升高,从而提高能量传导效率,最终使反应速率明显提高的一种方法. 利用微波合成法制备的iCOF材料往往具有较高的纯度、更窄的粒径分布和更为均匀的形态等优异特性. 2009年,Campbell等[30]首次采用微波合成法制备出两种iCOF(COF-5和COF-102). 与传统的热溶剂合成法的产物相比,COF-5和COF-102这两种iCOF材料表现出更高的表面积. 除此之外,微波合成法还具有节省能源的优点,能极大地缩短反应时间.
2.2 直接合成法中常见单体及其应用
直接合成法中常用的离子单体如图2所示,包括磺酸基类离子单体(图2a),氨基胍盐酸盐类离子单体(图2b),联吡啶类离子单体(图2c)以及溴化乙啶类离子单体(图2d).
2015年Peng等[19]以2,5-二氨基苯磺酸为离子单体,Tp为中性连接剂,在120 ℃条件下通过热溶剂合成法得到了一种含有磺酸基的离子型COF(TFP-DABA),如图3(a)所示. 这种具有电负性的磺酸基COF成为近年来研究的热点. 2016年,Chandra等[31]在无水条件下证实TFP-DABA具有超高的质子导电性,为质子的高效传递提供了可能. 同年,Peng等[29]以2,5-二氨基-1,4-苯二磺酸为单体,得到另一种含有磺酸基的离子型COF(NUS-10),如图3(b)所示. 与TFP-DABA的合成单体相比,NUS-10的合成单体拥有两个磺酸基,因此NUS-10在导电性方面也更胜一筹. Chen等[32]将TFP-DABA结构中磺酸基所含的H+置换为Na+,得到了阴离子COF膜材料(TpPa-SO3Na). 这种膜材料在吸附有机染料方面展现出极强的性能,进一步扩展了磺酸基COF的应用范围. Yan等[33]以2,2'-双磺酸联苯胺为单体,制备出另一种磺酸基离子型COF(TFP-BDSA COF),如图3(c)所示. 由于2,2'-双磺酸联苯胺含有两个苯环结构,与TFP-DABA和 NUS-10相比,其孔径进一步扩大,可达2.3 nm. 大孔径使其对多种阳离子染料展现出优异的选择性吸附和分离功能.
氨基胍盐类离子单体主要包括二氨基胍盐和三氨基胍盐(图2b所示),通常与含有醛基的连接剂用于合成iCOF. Mitra等[34]用三氨基胍盐(TGx)和Tp通过热溶剂合成法合成出一种具有自剥离性质的iCOF(TpTGx, x=Cl-、Br-、I-),该材料能与带负电荷的细菌膜磷脂双分子层产生静电相互作用从而破坏细胞结构,因此对细菌具有良好的抑制效果. 2019年,Da等[35]用TGCl和2,5-二羟基对苯二甲酸(Dha)合成出的DhaTGCl具有高稳定性、有序的疏水孔通道和密度极高的阳离子位点等独特优势,能有效去除放射性离子.
杂环和脂肪族化合物中的氮原子稳定性好且易于合成,是将阳离子引入COF框架的良好候选物质. 作为常见的富氮杂环化合物,含有4,4'-联吡啶结构的离子单体(图2c所示)在iCOF合成中得到了十分广泛的应用. Hao等[36]以1,1’-双(4-甲酰基苯基)-4,4’-二氯化联吡啶作为核心框架,制备出PS-COF-1具有大量的联吡啶结构,对99TcO4−展现出优异的吸附性能. 探究发现,吸附驱动力主要来源于联吡啶基团与99TcO4−的静电吸引力. Yu等[20]报道了一种二维阳离子型COF材料(PC-COF),含有丰富的联吡啶基团,因此能够在极低浓度条件下从水中吸收甲基橙、酸性绿25等有机染料并使其浓度降低至10−8 M以下. Buyukcakir等[37]制备出离子型共价三嗪骨架(cCTF)具有联吡啶结构,独特的产物选择性能快速地将CO2转化为对应的环状碳酸盐,为解决CO2造成的温室效应提供了可能.
溴化乙啶(ethidium bromide,EB)具有易于调节的溴离子结构(图2d所示),常直接被用于合成iCOF. 2016年,Ma等首次[38]用EB和Tp得到一种离子型COF材料(EB-COF). EB-COF结构中的Br-可通过离子交换作用置换为F-、Cl-和I-等,通过控制抗衡离子来控制孔道孔径,该材料能用于新型释放载体的制备. 2021年,Deng等[39]将EB-COF制备成2D纳米片材料,通过机械分层加载技术能将其用于二氯喹啉酸(QNC)的释放,有望成为一种新型高效的农药制剂. 除了能用于制备2D材料外,EB也可用于3D阴离子COF的合成. Li等[40]将EB和一种四面体中性连接剂制备出一种具有高结晶度和孔隙度的正电荷三维COF材料,该材料对核废料和有机染料具有极强的吸附能力.
2.3 合成后修饰法
随着对iCOF的深入研究,科研工作者发现直接合成法并不能合成所有的目标产物. 某些活性基团由于自身与COF的整体框架不相匹配或反应条件较为苛刻,不能通过简单的“自下而上”直接合成法引入框架中. 因此需要通过合成后修饰法(post-synthesis modification,PSM)来合成. PSM是指通过化学转化或修饰COF框架内预先建立的官能团,不改变其基本拓扑结构却能赋予COF新特性的一种方法.
常用的PSM合成思路是直接在中性COF材料中引入带电基团. Hu等[41]通过离子交换先后将Mn2+和2,2-联吡啶基团直接引入到一种COF材料内(DhaTab),分别设计合成出两类iCOF([Mn(bpy)2]-DhaTab、[SO3Mn]-DhaTab). Mu等[42]在中性COF中引入甜菜碱基团从而制备出一种特殊的两性离子COF([BE]X%-TDCOFs),这种材料可精确控制CO2的还原,具有较高的产率和选择性. 除引入离子基团外,具有多功能性和高活性的离子液体(ionic liquids,ILs)也常被选择引入至中性COF内. Dong等[43]通过将离子液体引入COF通道壁上从而构建出一种具有催化活性的iCOF([Et4NBr]50%-Py-COF). 该材料对CO2具有极高的吸附量,是将CO2转化为甲酰胺的催化剂. 此外,Li等[44]在前人合成磺酸基离子型COF的基础上将其与离子液体浸渍,通过结合蚕丝纳米纤维(silk nanofibrils,SNFs)制备出一种COF/SNF复合膜材料,该复合膜具有极高的电导率.
除了直接引入带电基团外,将COF本身的活性基团活化成离子基团也是常用的思路. 活性基团的转化率一般较低,因此合成出的iCOF电荷密度通常较低. 联吡啶结构具有易电离的特性,Aiyappa[45]将中性COF浸泡在甲醇醋酸钴溶液中,搅拌后使联吡啶活化,从而生成了一种iCOF(Co-TpBpy). 该材料具有极强的催化性,经多次循环使用后仍旧具有极高活性. Mi等将含有联吡啶结构的中性COF与1,2-二溴乙烷进行季胺化反应,将联吡啶结构转化为更稳定的顺式构型,此举增加了该COF的稳定性. 随后用连二亚硫酸钠(Na2S2O4)进一步还原该产物,生成的iCOF(Py-BPy+·COF)可用于医学中的光声成像和光热治疗.
除了上述的两种合成后修饰思路外,预先设计出具有缺陷的COF,随后引入带电的活性基团填补缺陷,这也是一种PSM思路. 这种方法最初是在MOF合成中实现的,预设缺陷的MOF材料在引入新的活性基团后获得了许多新的功能. 基于此,Li等[46]以1,3,5-三(4-氨基苯基)苯(TAPB)为连接剂,2,5-二羟基对苯二甲醛(DHTA)和2,5-二羟基苯甲醛(DHA)为单体,通过DHA缺失的一个醛基预留出缺陷,将一种含咪唑基的离子引入得到dCOF-ImTFSI-Xs,如图4所示. 该材料不仅具有完整的孔通道,能为离子传输提供途径,而且还拥有咪唑基等阳离子和TFSI−等阴离子能进行更好的离子传导,在303 K-423 K内均可作为一种良好电解质.
3. iCOF在环境修复中的应用(Ionic Covalent Organic Frameworks Application in Environmental Remediation)
有机污染物如甲基橙、刚果红等有机染料以及抗生素和有机氟化物等,放射性核素如235,238U(Ⅵ)、232Th(Ⅳ)以及99Tc(Ⅶ)等,重金属如Cr(Ⅵ)、Pb(Ⅱ)和Hg(Ⅱ)等这些有毒有害物质均易通过食物链在生物体内积聚,从而对人体健康构成威胁. iCOF作为吸附剂去除环境污染物的相关进展及其相互作用机理总结于表1中.
表 1 iCOF去除环境污染物及其影响吸附因素Table 1. Removal of environmental pollutants by iCOF and its influence on adsorption factorsiCOF 材料iCOF 污染物Pollutants 相互作用机理Interaction mechanism 参考文献Reference TpPa-SO3Na MB,EB,MO 静电相互作用和COF材料的孔径大小 [32] ImI@TpBd-(SO3)2 MB、碱性橙2 静电相互作用 [47] Tp-Bpy RhB,CR,BB 与含氮活性位点之间的静电相互作用 [48] PC-COF MO, DFBM, AG-25, IC 与结构中联吡啶基团之间的静电相互作用以及阴离子交换选择性 [20] Tp-MTABs FQs 与含氮基团之间的静电相互作用和π-π 相互作用 [49] Fe3O4 @TpBD BPA π-π 相互作用和氢键 [50] TFPT-TGCl-iCOF 2,4-dichlorophenol 与含氮基团之间的配位相互作用 [52] COF1 GenX, HFPO-TA 静电相互作用和疏水作用 [53] [[NH4]+[COF-SO3]−] U(Ⅵ)、Th(Ⅳ) 与-SO3H基团之间的配位相互作用以及 阴离子交换选择性 [54] JUC-505-COOH U(Ⅵ) 与-COOH基团之间的配位相互作用 [55] PS-COF-1 Tc(Ⅶ) 与联吡啶基团之间的配位相互作用以及阳离子交换选择性 [56] PS-COF-1 Tc(Ⅶ) 与联吡啶基团之间的配位相互作用以及氢键 [36] SCU-CPN-1 Re(Ⅶ) 与联吡啶基团之间的配位相互作用以及氢键 [57] SCU-CPN-2 Tc(Ⅶ) 与联吡啶基团之间的配位相互作用以及氢键 [58] QUST-iPOP-1 Tc(Ⅶ) 与COF框架之间的静电相互作用 [59] BT-DGCl Cr(Ⅵ) 与COF框架之间的静电相互作用和阴离子交换选择性 [60] Tp-DGCl Cr(Ⅵ) 与COF框架之间的静电相互作用和氢键 [61] COF-TP、COF-TE Pb(Ⅱ) 与-NHR 基团之间的配位相互作用和静电相互作用 [62] iCOF-1 Pb(Ⅱ) 与COF框架之间的静电相互作用和阳离子交换选择性 [63] TpODH Hg(Ⅱ) 与-NH 基团和-CO基团之间的配位相互作用以及氢键 [64] 3.1 iCOF对有机污染物的去除
水、土壤、湖泊中的有机染料在含量较低的水平下也能对人体健康构成巨大威胁. 有机颜料在水中通常以离子形式存在,因此可以通过静电吸引将其吸附,从而达到去除的目的. Chen等[32]用制备出具有磺酸基团的二维共价有机框架膜材料(TpPa-SO3Na)用来吸附MB、碱性橙2等有机染料. 阳离子有机污染物通过其微孔通道时,除了会受到与负电荷通道产生的静电作用力外,在进入微孔通道前还会受到刚性孔径大小的影响(图5a所示). 这两种因素使得该阴离子共价有机框架膜对阳离子有机染料具有较好的分离特性. 将亚甲基蓝(MB)和对硝基苯胺(NA)混合后通过该膜材料,选择性吸附效果如图5b所示,正电的MB基本完全被吸附,而中性的NA仍存在溶液中. 除MB外,该膜材料对溴化乙啶(EB)等阳离子有机染料也具有高拦截率,同时能保持良好的溶剂渗透性. Dang等[47]通过在COF中引入咪唑基来增强与有机染料的静电吸引,从而提高吸附量. 该材料对阴离子及中性染料表现出极低的吸附量,而对MB、碱性橙2等阳离子染料吸附量分别达到2865.3 mg·g−1和597.9 mg·g−1. 实验结果证明其具有的电荷选择性是选择性吸附的关键.
Dey等[48]合成出4种具有不同孔径大小的阳离子型COF膜材料(Tp-Tta、Tp-Ttba、Tp-Bpy、Tp-Azo). 这4种材料均具有类似半透膜的性质,对水等溶剂表现出优异的渗透性,对刚果红(CR)、亮蓝G(BB)等阴离子有机染料产生静电吸引将其拦截,从而达到去除分离的目的. Yu等[20]以1,1’-双(4-甲酰苯基)-4,4’-二氯化联吡啶(BFBP2+•2Cl−)为单体制备出一种二维阳离子型COF(PC-COF),其在处理有机污染物的过程中表现出了优良的特性. 由于富含大量联吡啶结构,PC-COF能与有机染料产生强烈的静电相互作用. 在低浓度条件下依旧能够从水中吸收如甲基橙(MO)、酸性绿25(AG-25)、直接红棕M(DFBM)、靛蓝胭脂红(IC)等多种阴离子有机染料,并使其浓度降低至10−8 mol·L−1. 对其吸附机理的探讨表明吸附驱动力主要来源于COF材料中阳离子联吡啶基团与有机染料阴离子的静电吸引力. 此外,所含的“硬碱”氯离子与有机染料之间的离子交换也增强了吸附作用.
除有机染料外,水体环境中还存在着如抗生素、有机氟化物、双酚A等其他有机污染物. 这些物质对人体具有很高的毒性,很容易通过食物链在生物体内积累,从而对人体造成伤害. 氟喹诺酮类药物(fluoroq-uinolones,FQs)在人体内代谢不完全导致在水环境中能检测出其残余物. Jiang等[49]合成出一种离子型COF(Tp-MTABs)将其用于吸附FQs,30 s内就能达到吸附平衡. 实验证明在多种竞争离子和高盐度天然海水的复杂环境中,Tp-MTABs对FQs仍具有较高的选择性. Tp-MTABs能进行自剥离从而形成二维离子共价有机纳米片材料,促使其暴露更多的离子结合位点,因此能增强与目标离子间的静电相互作用和π-π相互作用,达到更好的吸附效果. Li等[50]使用Fe3O4@TpBD去除双酚A(BPA),在5 min内就能达到吸附平衡,吸附量可达161 mg·g−1. 实验探究发现,BPA与Fe3O4@TpBD的苯环结构之间存在π-π相互作用和氢键作用,是导致BPA吸附的主要原因. 类似机理如Liu等[51]用醛基和肼基对COF进行功能化后应用于废水中BPA的去除,去除率达到97%. Da等[52]通过使用不同的中性连接剂来提高层之间的π-π堆积效率,减少层之间强烈的电荷排斥,从而实现提高材料结晶度的目的. 根据此策略合成出的阳离子型COF(TFPT-TGCl-iCOF)对农药中间体2,4-二氯苯酚的最高吸附量可达893 mg·g−1. 除了静电相互作用、π-π堆积和氢键作用外,疏水相互作用也能影响吸附过程. Wang等[53]通过亚胺缩合反应制备的COF1具有疏水性,对同样具有疏水性的六氟环氧丙烷二聚酸(GenX)和六氟环氧丙烷三聚酸(HFPO-TA)具有特异的选择吸附. 在疏水作用和静电吸引的双重作用下,对GenX和HFPO-TA吸附量分别为684 mg·g−1和1214 mg·g−1,表现出优异的吸附能力.
总的来说,iCOF吸附有机污染物的能力不仅与材料的结构性质和孔径通道大小有关,也和污染物分子的结构和大小有关. 通过密度泛函计算可以有效探究有机污染物与iCOF之间的相互作用机制,两者之间的作用主要以静电相互作用、π-π相互作用和氢键作用为主. 但如何尽可能地提高这些相互作用力从而扩展iCOF在处理有机污染物的应用仍旧是一个挑战.
3.2 iCOF对放射性核素的去除
核工业的快速发展伴随着大量核废料的产生. 核废料中常见的放射性核素主要包括235,238U(Ⅵ)、232Th(Ⅳ)以及99Tc(Ⅶ)等. 放射性核素流动性高,易溶于水,可以对人体的中枢神经和内分泌系统造成伤害,大剂量或长时间接触会对人体造成明显伤害,增加患癌风险. 从废水中高效捕获和去除放射性核素是解决核废料造成的环境问题的主要途径之一. 近年来,众多iCOF广泛地应用于放射性核素.
根据硬软酸碱(HSAB)理论,含氧基团对放射性核素的亲和力一般较好,可以用于放射性核素的去除. Xiong[54]将一种离子型COF材料([NH4]+[COF-SO3]−)用于吸附铀酰,该材料的合成步骤如图6所示. 将2,5-二氨基苯磺酸和Tp合成的COF-SO3H经氨水氨化后,磺酸基(−SO3H)失去H成为−SO3−基团,−SO3−基团能与U(Ⅵ)、Th(Ⅳ)等放射性离子产生配位作用,与此同时NH4+可以与放射性离子进行离子交换. 在两种作用下,该材料对铀酰的吸附量最高可达851 mg·g−1. 其同时对232Th(Ⅳ)也具有极强的吸附效果. [[NH4]+[COF-SO3]−]具有选择性高、pH适用范围广、循环性能好等优点,有望成为处理核废料中放射性核素的高效吸附材料. 此外,Li等[55]合成出一种含有羧基(−COOH)的离子型COF(JUC-505-COOH),羧基与废水中的铀离子能产生较强的配位键,在较短的时间内就能吸附大部分铀离子. 由于该材料在低pH条件下表现的极强耐酸性,其在实际铀污染修复方面展现出巨大潜力.
除含氧基团外,具有含氮基团的COF也能对放射性核素产生极强的吸附效果. 吡啶结构作为一种常用的富氮配体,结构中的N原子能与99Tc(Ⅶ)形成稳定的配位键. 因此含有吡啶结构的COF可用于吸附高锝酸根离子. 99Tc(Ⅶ)主要以高锝酸根(99TcO4−)的形态存在于核废料中. Hao等[36]合成出具有丰富联吡啶基团结构的PS-COF-1,对99TcO4−的吸附驱动力主要来源于联吡啶基团与99TcO4−的静电吸引力. 此外联吡啶中的“硬碱”氯离子与99TcO4−的离子交换也起到重要的作用. He等[56]以1,1’-双(4-氨基苯基)-4,4’-二氯化联吡啶(Viologen-NH2)作为核心框架,制备出的SCU-COF-1与PS-COF-1的结构相比,吡啶结构的数量相似,但增加了大量的亚氨基(—NH—)和羟基(—OH). 这两类官能团促使其吸附能力得到了提升. 由于99TcO4−具有极高的辐射性,因此在实验中通常用电荷密度相同、阴离子交换性能相似且不具备放射性的铼酸根(ReO4−)替代. Li等[57]报道的另一种富含吡啶结构的阳离子COF(SCU-CPN-1)对ReO4−具有极快的吸附速率,在30s内就能去除溶液中超过99%的ReO4−. 与之对比的两种商用交换树脂(A532E、A530E)在5 min内分别只能去除32%和38%的ReO4−,且至少需要120 min才能达到吸附平衡.
含氮基团中除吡啶外,咪唑基团与99TcO4−之间的结合能也很高,咪唑基团也是该类型COF常选择的基团之一. 通过引入咪唑基团增强材料中的正电荷密度,增大材料与目标离子之间的静电作用力,相应地能使吸附量提高. 考虑到电荷排斥和空间位阻的影响,Li等[58]将吸附能力最强的1,3,5-三(咪唑基)苯与空间位阻较小的1,3,5-三(溴甲基)苯制备得到SCU-CPN-2. 该材料同时具有极高的正电荷密度和极强的抗辐射性能,对ReO4−的最高吸附量可达1467 mg·g−1. Jiao[59]用三(4-咪唑基苯基)胺合成出QUST-iPOP-1,该材料在利用咪唑基团拉高电荷密度的同时,还具有高孔隙率和宽孔径分布的特点,对水中ReO4−表现了极高的吸附性能.
使用iCOF作为吸附剂来处理放射性核素的污染已经得到广泛研究. 科研人员往往通过iCOF的官能团来实现其目的. —COOH、—OH、—CHO等含氧官能团对放射性核素具有很好的亲和力,但由于其选择性不如含氮官能团,因此实际效果并不理想. 而吡啶和联吡啶、酰胺肟基团等含氮官能团对放射性核素具有很好的选择性,因此常用于萃取U(Ⅵ)、Tc(Ⅶ)在内的多种核素. 除此之外,核废水通常具有高酸性或高碱性、强辐射性等,因此在极性条件下COF的稳定性以及可重复利用性也需考虑.
3.3 iCOF对重金属离子的去除
工业发展会导致大量重金属离子排入水体. 这些重金属离子会通过食物链转移到动植物体内. 重金属离子不仅影响动植物的生长发育,而且还会给人类健康带来一系列负面影响. Cr(Ⅵ)对人的呼吸道和皮肤均有刺激,对人体具有致癌和致突变的作用. 氨基胍盐类离子单体中存在的胍基与Cr(Ⅵ)之间会产生静电吸引,而结构中存在的羟基、氨基等能与Cr(Ⅵ)产生氢键,这两种因素使得含氨基胍盐的COF对Cr(Ⅵ)有极强的吸附能力,因此氨基胍盐常用于制备吸附Cr(Ⅵ)的iCOF材料. Li等[60]以1,3-二氨基胍盐酸盐为单体合成出一种具有二氨基胍基团的iCOF材料(BT-DGCl),将该材料用于吸附Cr2O72−. 对Cr2O72−的理论吸附量为BT-DGCl中总氯化物含量的一半. 因为在与Cr2O72−交换的过程中,每2个Cl−与1个Cr2O72−进行交换. 在多种离子共存的条件下该材料依具有良好的选择性和快速吸附动力学,几分钟内能使Cr2O72−的浓度降低多个数量级. Zhuang等[61]以1,3-二氨基胍盐酸盐为单体合成出含有β-酮烯胺键的iCOF(Tp-DGCl). 通过提高材料中二氨基胍的密度,使其对目标离子具有更高的负载能力和亲和力. Tp-DGCl对Cr(Ⅵ)的最大吸附量可达336.04 mg·g−1. 如图7所示,通过Cl−与Cr(Ⅵ)的离子交换作用和氢键相互作用来实现对Cr(Ⅵ)的快速高效吸附. 5 min内该材料对Cr2O72−的吸附就能到达最大吸附容量的一半,这与结构中含有较多的胍基有关. 另外,结构中的β-酮烯胺键结构极大地增大材料的表面积,增强了对目标离子的吸附.
Pb(Ⅱ)会导致食欲不振、恶心、呕吐、贫血等症状,能对人体的神经、消化、心血管和内分泌等造成严重的危害. 基于分子结构设计策略原则,Li等[62]通过酰氯和氨基的聚合反应制备了两种酰胺基COF(COF-TP和COF-TE). COF-TP和COF-TE分别由对苯二胺、乙二胺与1,3,5-三甲苯甲酰氯合成. 如图8所示,COF-TE中的酰胺基能与Pb(Ⅱ)产生配位作用,表现出良好的吸附性. 在较高pH的条件下,COF-TE表现出比COF-TP更好的吸附效果. 这是由于COF-TE不但具有较多的负电荷,也存在更多的以酰胺基为代表的吸附位点,对Pb(Ⅱ)具有更高的吸附能力. Gupta[63]设计合成出一种框架内含有二甲基胺盐(DMA+)的iCOF-1,实验表明iCOF-1对DMA+和Pb2+的相互作用能分别为−24.5 kJ·mol−1 和−39.2 kJ·mol−1,说明iCOF-1能与Pb2+产生更强的吸附作用. iCOF-1通过离子交换过程将DMA+置换为Pb2+,从而达到去除分离的目的.
汞(Hg)对人体的呼吸系统、皮肤、血液以及眼睛都具有毒性,能对人体造成精神障碍、震颤以及肾脏损害等影响. Li等[64]将由草酰二肼(ODH)和Tp制备出的一种烷基胺类iCOF用于去除水中的Hg(Ⅱ). 由于具有不可逆的烯醇-酮互变结构,且分子内N—H键与O═C键之间存在氢键,因此其结晶度和化学稳定性都得到增强. 同时,该材料存在大量周期排列的含氮基团和含氧基团,有利于增强与Hg(Ⅱ)之间的亲和性及协同作用. 实验表明该材料对Hg(Ⅱ)的吸附量最高可达1692 mg·g−1. 此研究为构建用于环境修复的烷基iCOF提供了可能.
以上结果表明,含N、O、S的官能团与重金属离子之间存在较强的作用力. 在适宜的条件下,这些官能团对重金属离子具有极强的吸附能力,但对目标金属离子的选择性普遍较差. 考虑到构成iCOF的有机配体可以提供特殊的活性位点,进而与目标离子之间形成稳定的作用. 因此,从iCOF的合成入手可以有效解决这一问题:通过选择特殊的有机配体从而实现对目标金属离子的选择性吸附. 除了从合成入手外,通过引入特殊官能团或与其他纳米材料结合,同样也能提高iCOF的选择吸附能力. 因此,构建具有特殊官能团的iCOF材料有利于吸附性能的提高.
4. 结论与展望(Conclusion and Perspective)
iCOF作为一种新兴材料,自2015年出现至今发展迅速. 由于其具有的电离特性以及晶体多孔材料的性质,因此具有巨大的应用前景. 本文综述了iCOF的结构和合成方法,以及其在环境修复领域展现出的独特优势和极高的应用价值,并对其相互机理进行了探究. iCOF对不同的环境污染物具有较高的吸附能力. 与污染物之间的静电吸引是其用于环境修复的重要机理. 在修复过程中,iCOF内部的活性离子基团与污染物基团进行置换或代替,使污染物滞留在iCOF框架内从而达到吸附分离的目的. 除静电吸引外,用特殊官能团进行表面修饰或引入特殊活性位点能有效提高对目标污染物分子的选择性去除. 近年来iCOF被广泛应用于污染物的去除.
iCOF在环境修复领域展现出极高应用价值的同时,还有许多亟需解决的问题. (1)有机单体价格昂贵导致iCOF的合成成本很高且合成条件苛刻导致其不能大规模生产. 随着技术的发展,iCOF以较低成本、大规模地合成出来是毋庸置疑的. (2)iCOF合成之路仍需探索. 科研人员仍需筛选合适的合成单体和连接剂,丰富其拓扑结构以及所含官能团的种类. (3)如何对整体框架和离子基团的位置进行设计,有效地增强其在复杂环境中的稳定性和重复利用性以及对目标污染物的高效选择性仍是未来的主要挑战. (4)带电基团的引入导致iCOF发生静电排斥和堵塞孔道,因此其在结晶度和孔隙率方面的表现不理想. 如能将机器学习算法和人工智能应用于iCOF的合成,将有利于开发出高结晶度、高孔隙度以及缺陷少的iCOF. (5)将iCOF应用于环境修复无疑会将其释放到环境中. 因此还应考虑iCOF在自然水系统中的毒性,特别是其在食物链中的富集和最终对人体的毒性. 随着技术的快速发展,在不久的将来,iCOF在环境修复中一定具有巨大的应用潜力.
-
-
[1] ZHANG Y J, GEISSEN S U, GAL C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies[J]. Chemosphere, 2008, 73(8): 1151-1161. doi: 10.1016/j.chemosphere.2008.07.086 [2] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871. [3] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [4] DONG H, DENG J, XIE Y, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002 [5] LAI K C K, LO I M C. Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions[J]. Environmental Science & Technology, 2008, 42(4): 1238-1244. [6] SONG X Z, SHI Q, WANG H, et al. Preparation of Pd-Fe/graphene catalysts by photocatalytic reduction with enhanced electrochemical oxidation-reduction properties for chlorophenols[J]. Applied Catalysis B: Environmental, 2017, 203: 442-451. doi: 10.1016/j.apcatb.2016.10.036 [7] LIN C J, LO S L. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system[J]. Water Research, 2005, 39(6): 1037-1046. doi: 10.1016/j.watres.2004.06.035 [8] KIM D H, KIM J, CHOI W. Effect of magnetic field on the zero valent iron induced oxidation reaction[J]. Journal of Hazardous Materials, 2011, 192(2): 928-931. doi: 10.1016/j.jhazmat.2011.05.075 [9] XU H Y, SUN Y K, LI J X, et al. Aging of zerovalent iron in synthetic groundwater: X-ray photoelectron spectroscopy depth profiling characterization and depassivation with uniform magnetic field[J]. Environmental Science & Technology, 2016, 50(15): 8214-8222. [10] FENG P, GUAN X H, SUN Y K, et al. Weak magnetic field accelerates chromate removal by zero-valent iron[J]. Journal of Environmental Sciences, 2015, 31: 175-183. [11] GUAN X H, JIANG X, QIAO J L, et al. Decomplexation and subsequent reductive removal of EDTA-chelated Cu(Ⅱ) by zero-valent iron coupled with a weak magnetic field: Performances and mechanisms[J]. Journal of Hazardous Materials, 2015, 300: 688-694. doi: 10.1016/j.jhazmat.2015.07.070 [12] JIANG X, QIAO J L, LO I M C, et al. Enhanced paramagnetic Cu2+ ions removal by coupling a weak magnetic field with zero valent iron[J]. Journal of Hazardous Materials, 2015, 283: 880-887. doi: 10.1016/j.jhazmat.2014.10.044 [13] LI J L, BAO H L, XIONG X M, et al. Effective Sb(V) immobilization from water by zero-valent iron with weak magnetic field[J]. Separation and Purification Technology, 2015, 151: 276-283. doi: 10.1016/j.seppur.2015.07.056 [14] LI X, ZHOU M, PAN Y, et al. Pre-magnetized Fe0/persulfate for notably enhanced degradation and dechlorination of 2,4-dichlorophenol[J]. Chemical Engineering Journal, 2017, 307: 1092-1104. doi: 10.1016/j.cej.2016.08.140 [15] SHU H Y, CHANG M C, HUANG S W. UV irradiation catalyzed persulfate advanced oxidation process for decolorization of acid blue 113 wastewater[J]. Desalination and Water Treatment, 2014, 54(4/5): 1013-1021. [16] SINGH P, RAIZADA P, KUMARI S, et al. Solar-Fenton removal of malachite green with novel Fe0-activated carbon nanocomposite[J]. Applied Catalysis A: General, 2014, 476: 9-18. [17] LIANG C, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9): 1213-1223. doi: 10.1016/j.chemosphere.2004.01.029 [18] NURMI J T, TRATNYEK P G, SARATHY V, et al. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics[J]. Environmental Science & Technology, 2005, 39(5): 1221-1230. [19] LIU Y Q, LOWRYG V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination[J]. Environmental Science & Technology, 2006, 40(19): 6085-6090. [20] SUEPTITZ R, KOZA J, UHLEMANN M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions[J]. Electrochimica Acta, 2009, 54(8): 2229-2233. [21] XIONG X M, SUN B, ZHANG J, et al. Activating persulfate by Fe0 coupling with weak magnetic field: Performance and mechanism[J]. Water Research, 2014, 62: 53-62. doi: 10.1016/j.watres.2014.05.042 [22] 韩鹤友, 何志柯, 曾云鹗. 钌(II)-邻菲咯啉偶合化学发光法测定Fenton反应产生的羟自由基[J]. 分析化学, 1999, 27(8): 890-893. doi: 10.3321/j.issn:0253-3820.1999.08.005 [23] MA J H, MA W H, SONG W J, et al. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: Cooperative effect of quinone and visible light[J]. Environmental Science & Technology, 2006, 40(2): 618-624. -