-
垃圾渗滤液是垃圾在填埋和堆放过程中通过淋溶作用形成的污水受重力场作用流动的产物。其中不仅含有大量难以去除的水溶性有机质(dissolved organic mater,DOM),也含有许多高浓度的无机离子。有研究发现,腐殖酸是垃圾渗滤液中DOM的一种主要成分[1],由高分子的胡敏酸(humic acid,HA)和中等分子的富里酸(fulvic acid,FA)等组成,其难降解性加大了垃圾渗滤液的处理难度[2-3]。在无机离子中,除有钾离子、钠离子、硫酸根离子、硝酸根离子等离子外,还有高浓度的氨氮存在[4],由于垃圾渗滤液的长期缺氧环境,其中的氨氮难以被氧化[5]。反渗透技术(reverse osmosis, RO)一直以来都被证明是一种处理垃圾渗滤液的有效方法[6],其不仅对有机污染物有着高效的去除率,同时也能够去除绝大多数无机离子[7]。然而,反渗透进水中高浓度的有机物和无机离子往往会增大反渗透膜的负担,降低其去除效果并减少其使用寿命,大大增加垃圾渗滤液的处理成本。因此,急需新技术对垃圾渗滤液进行预处理,与反渗透技术进行组合,以提高垃圾渗滤液处理的效果。
膜电容去离子技术(membrane capacitive deionization,MCDI)是一种通过循环充放电过程来实现离子的去除和再生的技术。在充电过程中,溶液在流经电极时阴阳离子分别在电场力的作用下被不断吸附到阳极和阴极上形成双电层;在放电过程中,通过将电极反接或者短接,阴极和阳极上被吸附的离子又重新脱回到浓水中,实现阴阳极的再生[8]。离子交换膜的存在不仅能抑制与膜极性相同的离子被吸附,从而提高吸附效率,而且在脱附时极性相反的离子能够得到充分的冲洗,有效地防止共离子效应[9],使得脱附更加充分[10-11]。相较于RO技术来说,MCDI在无机离子的去除上有着更低的能耗和更好的再生效果[12-13],具有作为RO技术的预处理工艺的潜力。但在对垃圾渗滤液进行吸附除盐的应用上,MCDI技术还存在着许多难点。LIU等[14]发现腐殖酸会对活性炭造成污染和破坏,造成电化学氧化并产生二氯乙酸前体物,进而影响其对无机离子的吸附效果并产生大量污染。FANG等[15]发现氨氮会在电容去离子的吸附过程中与其他离子产生竞争关系,影响其他无机离子的吸附。
目前,MCDI技术对垃圾渗滤液中无机离子的去除效果的影响因素以及相应的机理的研究还处于空白状态,这成为MCDI技术应用于垃圾渗滤液除盐的巨大阻碍。本研究以垃圾渗滤液中典型的主要无机离子含量为参照进行人工配水,探讨了不同氨氮和腐殖酸浓度对MCDI去除模拟垃圾渗滤液中无机离子的影响。
氨氮和腐殖酸对膜电容去离子技术去除垃圾渗滤液中无机离子的影响
Effect of ammonia-nitrogen and humic acid on inorganic ions removal from landfill leachate by the membrane capacitive deionization technology
-
摘要: 高浓度氨氮及大量腐殖质的存在一直以来都是膜电容去离子技术(membrane capacitive deionization,MCDI)应用于垃圾渗滤液除盐的重要难题。采用PE离子交换膜作为膜材料,以活性交联碳布(activated carbon cloth,ACC)作为吸附材料组装MCDI装置,并对含有不同浓度梯度的氨氮和腐殖酸的模拟垃圾渗滤液进行吸附除盐实验。结果表明,垃圾渗滤液中氨氮浓度的增加会使MCDI对氨氮的去除量上升,但会导致Na+、K+和SO42−的吸附量显著下降,而Cl−和
${\rm{NO}}_3^{-} $ 受到的影响较小。较低浓度腐殖酸(0~1 500 mg·L−1)的存在能一定程度促进MCDI对K+和NH4−的吸附,但过高的腐殖酸(1 500~2 000 mg·L−1)浓度会导致所有无机离子特别是阴离子吸附量的下降,且腐殖酸的存在也会降低MCDI对所有离子的再吸附效果,减小MCDI的使用寿命。对垃圾渗滤液进行预处理,将氨氮和腐殖酸的浓度降低,有利于提高MCDI的去离子效果。Abstract: High concentration ammonia-nitrogen and humic acid are main challenges to apply membrane capacitive deionization (MCDI) to desalinate the landfill leachate plumes. In this study, the activated carbon cloth (ACC) electrodes coated with polyethylene ion exchange membranes were used in a MCDI system. The desalination performance of the MCDI was studied on the treatment of synthetic landfill leachate plumes containing different concentration gradients of ammonia nitrogen and humic acid. The results showed that the increase of ammonia nitrogen concentration in landfill leachate led to an increase of ammonia nitrogen removal by MCDI, while the adsorption amount of Na+, K+ and${\rm {SO}}_4^{2-} $ significantly decreased, and Cl− and${\rm {NO}}_3^{-} $ removals were less affected. The presence of low concentration humic acid (less than 1 500 mg·L−1) could promote the adsorption of K+ and NH4+ by MCDI to some extent. However, a high humic acid concentrations (greater than 1 500 mg·L−1) could reduce the adsorption amount of all inorganic ions, especially for anions. The humic acid presence also reduced the re-adsorption effect of all ions by MCDI, and shortened the service life of MCDI accordingly. Pretreatment of landfill leachate could reduce the concentration of ammonia nitrogen and humic acid, which was beneficial for the improvement of the deionization efficiency of MCDI. -
表 1 模拟垃圾渗滤液成分
Table 1. Landfill leachate compositions
mg·L−1 溶液编号 NH4HCO3 腐殖酸 (NH4)2SO4 KH2PO4 NaHCO3 KCl KNO3 Na2SO4 A0 0 0 2 000 50 300 300 300 400 B1 500 0 2 000 50 300 300 300 400 B2 1 000 0 2 000 50 300 300 300 400 B3 1 500 0 2 000 50 300 300 300 400 B4 2 000 0 2 000 50 300 300 300 400 C1 0 1 000 2 000 50 300 300 300 400 C2 0 1 500 2 000 50 300 300 300 400 C3 0 2 000 2 000 50 300 300 300 400 C4 0 2 500 2 000 50 300 300 300 400 注:A0中没有加入NH4HCO3和腐殖酸;B1~B4中加入了不同浓度的NH4HCO3,且为了防止有机物的干扰,这里没有加入有机成分;C1~C4中加入了不同浓度的腐殖酸。 表 2 离子的物理性质
Table 2. Physical properties of ions
离子 摩尔质量/
(g·mol−1)水合半径Ri/
(0.1 nm)离子半径/
(0.1 nm)水中的扩散系数Di/
(10−9m2·s−1)水化率 离子电荷 ${\rm{NH}}_4^{+} $ 18.04 3.31 1.48 1.96 2.24 +1 Na+ 22.99 3.58 0.95 1.33 3.77 +1 K+ 39.10 3.31 1.33 1.96 2.49 +1 ${\rm{SO}}_4^{2-} $ 96.06 3.79 2.9 1.07 1.31 −2 ${\rm{NO}}_3^{-} $ 62.00 3.35 2.64 1.91 1.27 −1 ${\rm{CO}}_3^{2-} $ 60.01 3.94 2.66 0.92 1.48 −2 Cl− 35.45 3.32 1.81 2.03 1.83 −1 注:水化率为离子的水合半径与离子半径的比值。 -
[1] RENOU S, POULAIN S, GIVAUDAN J, et al. Treatment process adapted to stabilized leachates: Lime precipitation-prefiltration-reverse osmosis[J]. Journal of Membrane Science, 2008, 313(1/2): 9-22. [2] KI-HOON KANG, H S, HEEKYUNG P. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. doi: 10.1016/S0043-1354(02)00114-8 [3] HE P, XUE J, SHAO L, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465-1473. doi: 10.1016/j.watres.2006.01.048 [4] THOMAS H, CHRISTENSEN P, POUL L, et al. Biogeochemistry of landfill leachate plumes[J]. Applied Geochemistry, 2001, 16(7): 659-718. [5] MAO X, XIONG L, HU X, et al. Remediation of ammonia-contaminated groundwater in landfill sites with electrochemical reactive barriers: A bench scale study[J]. Waste Management, 2018, 78: 69-78. doi: 10.1016/j.wasman.2018.05.015 [6] SIR M, PODHOLA M, PATOCKA T, et al. The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate[J]. Journal of Hazardous Materials, 2012, 207-208: 86-90. doi: 10.1016/j.jhazmat.2011.08.079 [7] CHIANESE A, RANAURO R, VERDONE N. Treatment of landfill leachate by reverse osmosis[J]. Water Research, 1999, 33(3): 647-652. doi: 10.1016/S0043-1354(98)00240-1 [8] LIU D, HUANG K, XIE L, et al. Relation between operating parameters and desalination performance of capacitive deionization with activated carbon electrodes[J]. Environmental Science: Water Research & Technology, 2015, 1(4): 516-522. [9] YAO Q, TANG H. Occurrence of re-adsorption in desorption cycles of capacitive deionization[J]. Journal of Industrial and Engineering Chemistry, 2016, 34: 180-185. doi: 10.1016/j.jiec.2015.11.004 [10] BIESHEUVEL P, VAN DER WAL A. Membrane capacitive deionization[J]. Journal of Membrane Science, 2010, 346(2): 256-262. doi: 10.1016/j.memsci.2009.09.043 [11] BIESHEUVEL P, ZHAO R, PORADA S, et al. Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360(1): 239-248. doi: 10.1016/j.jcis.2011.04.049 [12] ZHAO R, PORADA S, BIESHEUVEL P, et al. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis[J]. Desalination, 2013, 330: 35-41. doi: 10.1016/j.desal.2013.08.017 [13] YAO Q, TANG H. Effect of desorption methods on electrode regeneration performance of capacitive deionization[J]. Journal of Environmental Engineering, 2017, 143(9): 04017047. doi: 10.1061/(ASCE)EE.1943-7870.0001245 [14] LIU D, WANG X, XIE Y, et al. Effect of capacitive deionization on disinfection by-product precursors[J]. Science of the Total Environment, 2016, 568: 19-25. doi: 10.1016/j.scitotenv.2016.05.219 [15] FANG K, GONG H, HE W, et al. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization[J]. Chemical Engineering Journal, 2018, 348: 301-309. doi: 10.1016/j.cej.2018.04.128 [16] 柳青青. 混凝过滤环节及其组合工艺对腐殖酸去除效果研究[D]. 长沙: 湖南大学, 2018. [17] DEHGHANI M, ZAREI A, MESDAGHINIA A, et al. Production and application of a treated bentonite-chitosan composite for the efficient removal of humic acid from aqueous solution[J]. Chemical Engineering Research and Design, 2018, 140: 102-115. doi: 10.1016/j.cherd.2018.10.011 [18] CHOI J, LEE H, HONG S. Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution[J]. Desalination, 2016, 400: 38-46. doi: 10.1016/j.desal.2016.09.016 [19] ZORNITTA R, RUOTOLO L A. Simultaneous analysis of electrosorption capacity and kinetics for CDI desalination using different electrode configurations[J]. Chemical Engineering Journal, 2018, 332: 33-41. doi: 10.1016/j.cej.2017.09.067 [20] CHEN Y, YUE M, HUANG Z, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal, 2014, 252: 30-37. doi: 10.1016/j.cej.2014.04.099 [21] GABELICH C J, TRAN T D, SUFFET I H M. Electrosorption of inorganic salts from aqueous solution using carbon aerogels[J]. Environmental Science & Technology, 2002, 36(13): 3010-3019. [22] LI Y, STEWART T, TANG H. A comparative study on electrosorptive rates of metal ions in capacitive deionization[J]. Journal of Water Process Engineering, 2018, 26: 257-263. doi: 10.1016/j.jwpe.2018.10.021 [23] LI Y, ZHANG C, JIANG Y, et al. Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization[J]. Desalination, 2016, 399: 171-177. doi: 10.1016/j.desal.2016.09.011 [24] GIMMI T, ALT-EPPING P. Simulating Donnan equilibria based on the Nernst-Planck equation[J]. Geochimica et Cosmochimica Acta, 2018, 232: 1-13. doi: 10.1016/j.gca.2018.04.003 [25] TANG W, HE D, ZHANG C, et al. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI)[J]. Water Research, 2017, 121: 302-310. doi: 10.1016/j.watres.2017.05.046 [26] PORADA S, BRYJAK M, VAN DER WAL A, et al. Effect of electrode thickness variation on operation of capacitive deionization[J]. Electrochimica Acta, 2012, 2(24): 148-156. [27] PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. doi: 10.1016/j.pmatsci.2013.03.005 [28] HASSANVAND A, CHEN G Q, WEBLEY P A, et al. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization[J]. Water Research, 2018, 131: 100-109. doi: 10.1016/j.watres.2017.12.015 [29] MOUSSAVI G, TALEBI S, FARROKHI M, et al. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite[J]. Chemical Engineering Journal, 2011, 171(3): 1159-1169. doi: 10.1016/j.cej.2011.05.016 [30] DU Q, LIU S, CAO Z, et al. Ammonia removal from aqueous solution using natural Chinese clinoptilolite[J]. Separation and Purification Technology, 2005, 44(3): 229-234. doi: 10.1016/j.seppur.2004.04.011 [31] WANG S, ZHU Z. Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution[J]. Journal of Hazardous Materials, 2006, 136(3): 946-52. doi: 10.1016/j.jhazmat.2006.01.038 [32] ZHANG X, BAI R. Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules[J]. Journal of Colloid and Interface Science, 2003, 264(1): 30-38. doi: 10.1016/S0021-9797(03)00393-X [33] ALBERTS J, FILIP Z. Metal binding in estuarine humic and fulvic acids: FTIR analysis of humic acid-metal complexes[J]. Environmental Technology Letters, 2010, 19(9): 923-931. [34] WANG J, HAN X, MA H, et al. Adsorptive removal of humic acid from aqueous solution on polyaniline/attapulgite composite[J]. Chemical Engineering Journal, 2011, 173(1): 171-177. doi: 10.1016/j.cej.2011.07.065 [35] MOSSAD M, ZOU L. Study of fouling and scaling in capacitive deionisation by using dissolved organic and inorganic salts[J]. Journal of Hazardous Materials, 2013, 244-245: 387-393. doi: 10.1016/j.jhazmat.2012.11.062