-
近年来,随着我国畜禽养殖业的集约化、规模化发展以及动物疾病复杂性的增加,抗生素多作为饲料添加剂用于预防、治疗动物疾病,促进动物生长。但被摄入体内的抗生素很难为动物机体完全吸收[1],有很大一部分(30%~90%)随着动物粪便以畜禽养殖废水的形式进入水体环境[2-3],导致畜禽养殖废水成为水体环境中抗生素污染的主要来源之一[4]。畜禽养殖废水中的抗生素进入环境中会发生非生物降解(光解、水解和氧化降解等)和生物降解(植物或微生物降解)反应。四环素类抗生素(tetracyclines,TCs)在中国及世界畜禽养殖业中的使用量均为最大[5]。猪场等养殖废水中的TCs残留量可达mg·L−1级别,在畜禽养殖排污口及周边水体则为几到几十μg·L−1级[6]。目前,废水中四环素类抗生素的去除手段主要分为以物化过程为主的常规处理工艺[7](如混凝、沉淀、消毒、过滤等)和深度处理工艺(如吸附、高级氧化、离子交换、生物处理和膜技术等)[8]。相比其他处理方法,微生物处理法成本低,易控制,条件简单,适用广,是去除废水中TCs的理想措施。TCs具有生物抑制作用,所以可生化性较差。零价铁(zero valence iron,ZVI)既是微生物的营养元素和高效催化剂,又是一种酶的激活剂[9],能提高有机物污染物的可生化性。A/O-MBR工艺易于延长污泥停留时间(sludge retention time,SRT),富集硝化细菌,提高污泥浓度,具有占地面积小、抗冲击负荷强[10]、对有毒污染物去除效率高等优点,因此,适用于畜禽养殖废水中TCs的去除。
本研究主要分析了盐酸四环素(tetracycline hydrochloride,TC-HCl)的降解特性,为废水中TC-HCl的归趋和环境行为的研究提供参考;同时利用零价铁与不锈钢网膜构成的原电池与传统A/O-MBR工艺相耦合,探究该工艺在畜禽养殖废水中TC-HCl净化处理中的适用性和优势,为畜禽养殖废水中TCs处理工艺的选择提供参考。
原电池耦合A/O-MBR工艺去除畜禽养殖废水中的盐酸四环素
Removing tetracycline hydrochloride from livestock and poultry breeding wastewater by the coupling process of galvanic cell and A/O-MBR
-
摘要: 以畜禽养殖废水中的盐酸四环素(TC-HCl)为目标污染物,研究其在水环境中的降解特性,利用原电池与传统A/O-MBR工艺相耦合,去除水中的TC-HCl,并考察其效果。结果表明:废水中的物质组成、环境温度、TC-HCl初始质量浓度以及光照强度均会影响水体中TC-HCl的降解情况;TC-HCl的初始质量浓度为30 mg·L−1,在28 ℃、40%光照下恒温培养60 h后的降解率为98.70%,降解过程符合一级反应动力学(R2=0.991),半衰期为10.7 h。原电池耦合A/O-MBR工艺的进水COD、NH3-N和TP分别为500、25、5 mg·L−1时,系统出水水质可达《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准;对10.00 mg·L−1的TC-HCl,系统15 min去除率可达92.02%。A/O-MBR工艺可明显强化传统A/O工艺的脱氮除磷效能;耦合原电池可将膜污染周期提升至24 d左右,有效延缓膜污染。
-
关键词:
- 畜禽养殖废水 /
- 盐酸四环素 /
- 降解特性 /
- 原电池耦合A/O-MBR工艺
Abstract: Tetracycline hydrochloride (TC-HCl), one of the most detected antibiotics in livestock and poultry breeding wastewater, was taken as the target pollutant to study its degradation characteristics in the water environment. The coupling process of galvanic cell and the traditional A/O-MBR was used to remove TC-HCl from the simulated wastewater. The results showed that wastewater composition, ambient temperature, the initial mass concentration of TC-HCl and the light intensity affected on the degradation of TC-HCl in the wastewater. The degradation rate of TC-HCl with initial concentration of 30 mg·L−1 was 98.70% under 60 h thermostatic incubation conditions at 28 ℃ and 40% illumination. The degradation process followed the first-order reaction kinetics (R2=0.991), and the half-life was 10.7 h. When the influent concentration of COD, NH3-N and TP were 500, 25, 5 mg·L−1, respectively, the effluent water quality of the coupling process could meet the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants (GB 18918-2002). After 15min treatment by the coupling process, the removal rate of TC-HCl with initial concentration of 10 mg·L−1 could reach 92.02%. The A/O-MBR process could significantly enhanced the nitrogen and phosphorus removal efficiency of the traditional A/O process. The coupled galvanic cell could extended the membrane pollution cycle to 24 d, which could effectively delay membrane fouling. -
表 1 系统出水检测方法的回收率(n=6)
Table 1. Recovery rate of detection method for system effluent (n=6)
序号 已知量/(mg·L−1) 添加量/(mg·L−1) 测得量/(mg·L−1) 回收率/% 相对标准偏差/% 1 0 0.9 1.107 123.00 4.15 2 0 1.5 1.775 118.33 1.77 3 0 3.0 3.409 113.63 0.53 4 0 6.0 6.331 105.52 1.31 5 0 12.0 11.986 99.88 0.79 6 0 15.0 14.814 98.76 0.37 7 0 18.0 18.050 100.28 0.92 8 0 24.0 23.611 98.38 0.54 9 0 27.0 26.815 99.31 0.18 10 0 30.0 29.234 97.45 0.29 表 2 光照下TC-HCl的一级动力学方程及参数
Table 2. First-order kinetic equation and parameters of TC-HCl under illumination conditions
光照/% 一级动力学方程 K t1/2/h R2 质量浓度/(mg·L−1) 0 Ct=11.28e−0.109 0t+20.94 0.109 0 6.4 0.977 30 20 Ct=32.04e−0.050 7t−1.09 0.050 7 13.7 0.986 30 40 Ct=31.92e−0.064 7t−1.16 0.064 7 10.7 0.991 30 60 Ct=25.70e−0.068 5t+6.09 0.068 5 10.1 0.994 30 -
[1] GUO T, LOU C L, ZHAI W W, et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure[J]. Science of the Total Environment, 2018, 635(19): 995-1003. [2] BERENDSEN B J A, LAHR J, NIBBELING C, et al. The persistence of a broad range of antibiotics during calve, pig and broiler manure storage[J]. Chemosphere, 2018, 204(15): 267-276. [3] 邱美珍, 谢菊兰, 任慧波, 等. 畜禽粪污中残留抗生素降解方法进展[J]. 激光生物学报, 2018, 27(4): 308-312. doi: 10.3969/j.issn.1007-7146.2018.04.003 [4] 李刚, 颜智勇, 谭秀益, 等. 畜禽养殖废水中抗生素检测技术研究进展[J]. 绿色科技, 2011(11): 97-99. doi: 10.3969/j.issn.1674-9944.2011.11.051 [5] 王瑞, 魏源送. 畜禽粪便中残留四环素类抗生素和重金属的污染特征及其控制[J]. 农业环境科学学报, 2013, 32(9): 1705-1719. doi: 10.11654/jaes.2013.09.002 [6] 张杏艳, 陈中华, 邓海明, 等. 水环境中四环素类抗生素降解及去除研究进展[J]. 生态毒理学报, 2016, 11(6): 44-52. [7] 陈凯杰. 试论饮用水中抗生素去除技术研究进展[J]. 科技经济导刊, 2018, 26(8): 103-105. [8] 朱学武, 成小翔, 甘振东, 等. 饮用水中抗生素去除技术研究进展[J]. 给水排水, 2017, 53(5): 135-141. doi: 10.3969/j.issn.1002-8471.2017.05.034 [9] 薛顺利, 刘振鸿, 李响, 等. 零价铁对餐厨垃圾与剩余污泥联合发酵产乳酸的影响[J]. 环境工程, 2017, 35(4): 106-110. [10] 程永伟, 武彦生, 高雄, 等. A/O+MBR组合工艺处理方便面厂生产废水[J]. 中国给水排水, 2018, 34(2): 103-106. [11] WANG Y K, LI W W, SHENG G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058 [12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [13] 陈小丽, 魏金华, 蔺中, 等. 抗生素的微生物降解研究进展[J]. 现代农业科技, 2018(16): 167-168. doi: 10.3969/j.issn.1007-5739.2018.16.104 [14] SELVAM A, ZHAO Z Y, LI Y C, et al. Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J]. Environmental Technology, 2013, 34(16): 2433-2441. doi: 10.1080/09593330.2013.772644 [15] 许静, 王娜, 孔德洋, 等. 有机肥源磺胺类抗生素在土壤中的降解规律及影响因素分析[J]. 环境科学学报, 2015, 35(2): 550-556. [16] 郑茂佳, 张恩栋, 孙静茹, 等. 四环素类抗生素生物降解研究进展[J]. 天津农业科学, 2018, 24(6): 72-76. doi: 10.3969/j.issn.1006-6500.2018.06.018 [17] 任南琪, 马放. 污染控制微生物学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2002. [18] 徐伊婷, 李思雨, 祝溢靖, 等. 四环素降解菌的筛选及其降解特性[J]. 浙江树人大学学报(自然科学版), 2017, 17(3): 17-21. [19] 吴学玲, 吴晓燕, 李交昆, 等. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报, 2018, 34(5): 172-178. [20] 张鹏飞, 刘晓文, 李杰, 等. 养殖废水中抗生素去除处理工艺的研究现状[J]. 净水技术, 2018, 37(4): 60-65. [21] 解永磊. UASB-A/O-Fenton组合工艺处理四环素类抗生素废水试验研究[D]. 天津: 天津理工大学, 2015 [22] 代志峰, 邰超, 张少栋, 等. 天然水体溶解性物质对5种抗生素光解的影响[J]. 中国环境科学, 2018, 38(6): 2273-2282. doi: 10.3969/j.issn.1000-6923.2018.06.030 [23] 王攀攀, 袁巧霞, 周文兵. 光催化降解沼液中四环素类抗生素效果及反应动力学研究[J]. 农业工程学报, 2018, 34(23): 193-198. doi: 10.11975/j.issn.1002-6819.2018.23.024 [24] 赵亚奇. A/O-MBR工艺对废水中抗生素的去除效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [25] 余忻. 抗生素废水的生物毒性与微生物耐药性及其控制技术研究[D]. 北京: 清华大学, 2014. [26] 李娟英, 胡谦, 陈美娜, 等. 抗生素类污染物对硝化污泥的生物抑制[J]. 环境工程学报, 2015, 9(7): 3325-3331. doi: 10.12030/j.cjee.20150741 [27] 胡哲太, 孙培德, 王如意, 等. 两类抗生素对EBPR系统的短期生物抑制作用实验研究[J]. 环境科学学报, 2017, 37(5): 1722-1731. [28] 马娟, 周猛, 俞小军, 等. 抗生素在污水生物脱氮除磷中的抑制效应[J]. 中国抗生素杂志, 2019, 44(2): 179-185. doi: 10.3969/j.issn.1001-8689.2019.02.005 [29] 宋现财. 四环素类抗生素在活性污泥上的吸附规律及其机理研究[D]. 天津: 南开大学, 2014. [30] 姜忠帅. 载铁活性炭同步去除水中四环素和铜的研究[D]. 南京: 东南大学, 2017. [31] 刘春燕, 解满俊, 许时良, 等. 活性污泥对四环素类抗生素的吸附特性研究[J]. 上海海洋大学学报, 2012, 21(4): 581-588. [32] 于洁. 四环素对好氧活性污泥的抑制及对活性污泥四环素抗性的影响研究[D]. 天津: 南开大学, 2014. [33] 张翔宇, 李茹莹, 季民. 污水生物处理中抗生素的去除机制及影响因素[J]. 环境科学, 2018, 39(11): 5276-5288. [34] 刘艳阳. 电凝聚强化A/O-MBR脱氮除磷实验研究[D]. 沈阳: 东北大学, 2014. [35] 黄丽坤, 王广智, 韩利明, 等. 悬浮载体复合MBR工艺处理电镀废水效能研究[J]. 中国环境科学, 2018, 38(7): 2490-2497. doi: 10.3969/j.issn.1000-6923.2018.07.013 [36] ISHIZAKI S, TERADA K, MIYAKE H, et al. Impact of anodic respiration on biopolymer production and consequent membrane fouling[J]. Environmental Science and Technology, 2016, 50(17): 9515-9523. doi: 10.1021/acs.est.6b00728 [37] 袁树森. 化学除磷-A/O-MBR组合工艺处理玉米深加工废水的效能研究[D]. 长春: 长春工程学院, 2018. [38] 印霞棐, 李秀芬, 华兆哲, 等. 不同电极间距下自生电场膜生物反应器中的膜污染行为分析[J]. 化工进展, 2018, 37(11): 4485-4492.