-
近年来,抗生素的滥用导致水体中抗生素含量逐渐增多,对人类健康及生态系统造成严重的威胁。然而,传统的物化法及生物处理法对污水中低浓度的抗生素处理效果普遍较差[1]。正渗透是新兴的膜分离技术,具有耗能低、操作条件要求低以及汲取液来源广等优势。有研究[2]发现,正渗透可以有效截留微量有机物,可有效去除污水中残留的抗生素、内分泌干扰物等。
混凝是常见的生活污水和工业废水的预处理方法,可去除废水中的悬浮物、胶体物质及部分有机物[3]。然而,混凝对抗生素的去除效果普遍较差。相关研究表明,正渗透对卡巴多及磺胺类抗生素[4]的去除率均小于5%,对四环素类抗生素[5]和甲磺酸曲伐沙星[6]去除也很有限。另外,作为常规污水处理的重要环节,混凝对后续膜处理的影响不能忽视。KIMURA等[7]关于混凝预处理对超滤和纳滤过程膜污染的研究表明,污染物在混凝环节去除越彻底,后续过程膜污染程度越轻。SUN等[8]研究混凝-超滤联合工艺中混凝预处理对膜污染的影响,指出在最佳混凝条件下膜污染程度最轻。混凝絮体在膜表面形成滤饼层,对水通量、污染物和盐通量均有不同的影响,而关于混凝对正渗透膜污染的研究较少。
本研究将混凝-正渗透工艺联用,探究了混凝剂的种类及其投加量对膜污染的影响,并且比较了不同污染情况下正渗透运行特性和抗生素的截留效果,此外,还分析了错流清洗条件对膜通量恢复率的影响。
混凝对正渗透过程中抗生素去除特性及膜污染的影响
Effect of coagulation on antibiotic removal efficiency and membrane fouling during forward osmosis
-
摘要: 为探明混凝预处理对正渗透去除抗生素的影响以及混凝对后续膜处理的影响,选用PAC、FeCl3、Al2(SO4)3对正渗透原料液进行混凝预处理,考察了混凝预处理对正渗透水通量、NaCl返混通量、抗生素截留率及膜污染的影响。结果表明:混凝预处理对正渗透过程中膜污染程度的影响由原料液中HA残留量以及Zeta电位共同决定;经混凝预处理后,原料液中腐殖酸残留量越多,正渗透过程中所形成的滤饼层越厚,原料液Zeta电位绝对值越低,形成的滤饼层越密实。滤饼层的形态影响正渗透的浓差极化作用,进而影响正渗透的运行特性及抗生素的截留效果,同时决定了膜清洗的难易程度。Abstract: To determine the effects of coagulation pretreatment on the removal of antibiotics by forward osmosis the subsequent membrane treatment, PAC, FeCl3 and Al2(SO4)3 were used to conduct coagulation pretreatment. The effects of coagulation pretreatment on water flux, NaCl reverse flux, antibiotic rejection and membrane fouling during forward osmosis were investigated. The results showed that both HA residues in raw material liquor and zeta potential determined the effect of coagulation pretreatment on membrane fouling level. After coagulation pretreatment, the more residual HA led to the thicker filter cake layer, and the lower absolute value of Zeta potential resulted in the denser filter cake layer. The morphology of the filter cake layer affected the concentration polarization of the forward osmosis, and further affected operating characteristics of forward osmosis and antibiotic rejection, then determined the ease of membrane cleaning.
-
Key words:
- coagulation /
- forward osmosis /
- ceftazidime /
- membrane fouling
-
-
[1] REUNGOAT J, MACOVA M, ESCHER B I, et al. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration[J]. Water Research, 2010, 44(2): 625-637. doi: 10.1016/j.watres.2009.09.048 [2] ALTURKI A A, MCDONALD J A, KHAN S J, et al. Removal of trace organic contaminants by the forward osmosis process[J]. Separation and Purification Technology, 2013, 103: 258-266. doi: 10.1016/j.seppur.2012.10.036 [3] MATILAINEN A, VEPSÄLÄINEN M, SILLANPÄÄ M. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 2010, 159(2): 189-197. doi: 10.1016/j.cis.2010.06.007 [4] ADAMS C, WANG Y, LOFTIN K, et al. Removal of antibiotics from surface and distilled water in conventional water treatment processes[J]. Journal of Environmental Engineering, 2002, 128(3): 253-260. doi: 10.1061/(ASCE)0733-9372(2002)128:3(253) [5] CHOI K J, KIM S G, KIM S H. Removal of antibiotics by coagulation and granular activated carbon filtration[J]. Journal of Hazardous Materials, 2008, 151(1): 38-43. doi: 10.1016/j.jhazmat.2007.05.059 [6] BUNDY M M, DOUCETTE W J, MCNEILL L, et al. Removal of pharmaceuticals and related compounds by a bench-scale drinking water treatment system[J]. Journal of Water Supply: Research and Technology-AQUA, 2007, 56(2): 105-115. doi: 10.2166/aqua.2007.091 [7] KIMURA K, ANDO N. Maximizing biopolymer removal by coagulation for mitigation of fouling in the following membrane process[J]. Separation and Purification Technology, 2016, 163: 8-14. doi: 10.1016/j.seppur.2016.02.013 [8] SUN S, YANG Z, HUANG X, et al. Coagulation performance and membrane fouling of polyferric chloride/epichlorohydrin-dimethylamine in coagulation/ultrafiltration combined process[J]. Desalination, 2015, 357: 163-170. doi: 10.1016/j.desal.2014.11.031 [9] DEMPSEY B A, GANHO R M, O'MELIA C R. The coagulation of humic substances by means of aluminum salts[J]. Journal of American Water Works Association, 1984, 76(4): 141-150. doi: 10.1002/j.1551-8833.1984.tb05315.x [10] XU Y, CHEN T, CUI F, et al. Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water[J]. Chemical Engineering Journal, 2016, 287: 225-232. doi: 10.1016/j.cej.2015.11.017 [11] MI B, ELIMELECH M. Chemical and physical aspects of organic fouling of forward osmosis membranes[J]. Journal of Membrane Science, 2008, 320(1/2): 292-302. [12] BELL E A, POYNOR T E, NEWHART K B, et al. Produced water treatment using forward osmosis membranes: Evaluation of extended-time performance and fouling[J]. Journal of Membrane Science, 2017, 525: 77-88. doi: 10.1016/j.memsci.2016.10.032 [13] ELIMELECH M, CHEN W H, WAYPA J J. Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer[J]. Desalination, 1994, 95(3): 269-286. doi: 10.1016/0011-9164(94)00064-6 [14] BOO C, LEE S, ELIMELECH M, et al. Colloidal fouling in forward osmosis: Role of reverse salt diffusion[J]. Journal of Membrane Science, 2012, 390: 277-284. [15] XIE M, NGHIEM L D, PRICE W E, et al. Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: Role of initial permeate flux[J]. Desalination, 2014, 336: 146-152. doi: 10.1016/j.desal.2013.12.037 [16] XIE M, NGHIEM L D, PRICE W E, et al. Impact of humic acid fouling on membrane performance and transport of pharmaceutically active compounds in forward osmosis[J]. Water Research, 2013, 47(13): 4567-4575. doi: 10.1016/j.watres.2013.05.013 [17] CHOI B G, KIM D I, HONG S. Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse[J]. Journal of Membrane Science, 2016, 520: 89-98. doi: 10.1016/j.memsci.2016.07.035