酰胺化/氧化碳纳米管-聚苯胺吸附三价砷

叶智新, 任刚. 酰胺化/氧化碳纳米管-聚苯胺吸附三价砷[J]. 环境工程学报, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100
引用本文: 叶智新, 任刚. 酰胺化/氧化碳纳米管-聚苯胺吸附三价砷[J]. 环境工程学报, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100
YE Zhixin, REN Gang. Adsorption of As(Ⅲ) from aqueous solution by amidated/oxidized carbon nanotube-polyaniline[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100
Citation: YE Zhixin, REN Gang. Adsorption of As() from aqueous solution by amidated/oxidized carbon nanotube-polyaniline[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100

酰胺化/氧化碳纳米管-聚苯胺吸附三价砷

    作者简介: 叶智新(1994—),女,硕士研究生。研究方向:微污染水处理。E-mail:505064075@qq.com
    通讯作者: 任刚(1977—),男,博士,讲师。研究方向:水污染控制。E-mail:clark_hit@163.com
  • 基金项目:
    广东省科技计划项目(2013B020800005、2015A020217005);广东省水利科技创新项目(2016-30);广州市民生科技攻关计划项目(201803030043)
  • 中图分类号: X52

Adsorption of As() from aqueous solution by amidated/oxidized carbon nanotube-polyaniline

    Corresponding author: REN Gang, clark_hit@163.com
  • 摘要: 为探讨改性碳纳米管(CNTs)对砷的吸附特性,采用化学修饰对CNTs进行了改性。将CNTs先后进行氧化和酰胺化处理,并与聚苯胺反应,得到酰胺化/氧化碳纳米管-聚苯胺(NMCNTs-PANI),利用SEM观察、比表面积测定、含氧含氮官能团和分子结构分析对改性前后CNTs进行了表征;研究了NMCNTs-PANI在不同反应体系对As(Ⅲ)的吸附效果。结果表明:NMCNTs-PANI总孔容和平均孔径均有所增加;表面含氧含氮基团增加;初始pH对吸附量影响较显著;共存阴离子对吸附量影响可忽略不计;吸附过程符合准一级动力学和准二级动力学方程,证实该过程主要以化学吸附为主;吸附等温线符合Langmuir模型。NMCNTs-PANI通过表面吸附-化学诱导作用可较好地去除水中As(Ⅲ),是一种优良的含砷污染水的吸附剂。
  • 因产业布局、结构、管理等原因,我国现阶段突发环境风险形势严峻,突发环境事件总量仍处高位,呈现事件诱因复杂、危害影响大的特点。近年来,我国多次发生由于尾矿库泄漏引起的突发性重金属污染事件,如2015年甘陕川锑污染、2016年新疆阿勒泰地区克兰河污染、2017年河南栾川钼污染、2017年嘉陵江铊污染、2020年黑龙江伊春鹿鸣矿业尾矿库泄漏等。对突发水环境重金属污染事件开展污染溯源分析,可有力支撑事件应急处置、灾害生态风险评估和责任追究等。目前,国内外采用的污染溯源方法主要基于水质模型法、地学统计法、遗传算法、贝叶斯法、反向位置概率密度函数法等,其中以贝叶斯法及其衍生法为主[1-6]。这些方法均需要大量的基础数据支撑,而在突发环境事件发生的短期内基本不能满足要求,由此会因得出的结果存在较大误差而导致溯源不准;而且,因这些方法在演算过程中存在的不确定性误差,亦会导致溯源偏差。在污染源识别方面,现阶段国内外主要依靠构建污染源区域监测网络来对污染源进行监控。然而,我国很大一部分突发水污染事件的肇事企业是非法生产企业(未登记在册)或者企业瞒报,从而使得即使突发水污染事件被发现,却不能判定特征污染物的来源和排放特征。这个问题导致我国突发流域性环境事件时,往往错过事故的最佳断源时机,同时也为后续事件追责造成一定影响。

    本文系统总结了突发水环境重金属污染溯源方法,并以2017年嘉陵江铊污染事件为例,介绍了溯源过程,还原了污染事件全过程,以期为类似污染事件溯源提供参考。

    本文所述溯源方法包含污染物特征指纹分析、污染物总量分析、水体中污染物浓度梯度变化分析、污染物迁移时间与路径分析等4部分的综合运用。同时,结合区域现场踏勘、产业结果与分布、人员访谈等情况进行综合分析也非常重要。

    分析所有环境应急监测数据,厘清造成本次突发水污染事件的主要影响因子,即主要超标指标;随后围绕上游区域产业行业结构特征,分析其工艺特征,研究其可能产生的特征污染物,并与主要超标指标进行比对,预判造成本次事件的可能肇事企业类型与区域。

    计算有记录以来环境应急监测中特征污染物浓度的平均值,结合污染事件发生水体的流量(或水量)、流速等水文条件,估算出此次事件特征污染物泄漏进入河流的总量;随后在疑似企业中根据工艺及物料平衡估算企业排入水体中的污染物总量;将企业排出和水体中检出的量进行比较,进一步确定肇事企业。

    根据疑似肇事企业污染物排放浓度与应急监测得到的污染物浓度做对比,评估其浓度在水体中的变化趋势是否符合污染物在水体中的混合扩散模型。

    综合水体流量、流速等水文条件、气象条件,从监测到的污染物前锋反推污染物可能的排放源头和排放时间;随后结合上游区域疑似企业排查,进一步锁定肇事企业。

    2017年5月5日,四川省某市环保局监测发现,其市级集中式饮用水水源地铊浓度超过《地表水环境质量标准》(GB 3838-2002)中标准限值4.6倍,定性为饮用水水源地水质污染,具体原因不明。据此,该市人民政府认定嘉陵江该流域发生了铊污染事件,并于5月5日22时启动突发环境事件应急II级响应。5月8日,受生态环境部应急办及川陕两省委托,笔者团队运用本文提出的溯源方法在嘉陵江沿线开展污染源排查,当日初步锁定嫌疑企业;5月9日,开展核查并锁定肇事企业;5月10日20:00,嘉陵江受污染河段各应急监测断面铊浓度均达标;5月11日,该市终止此次事件的应急响应。

    经调查,事件背景为:1) 2017年3月以来,陕西省某企业以来料加工方式碱洗除氟氯处理后铊含量高的多膛炉次氧化锌烟灰原料(碱洗除氟氯工艺流程见图1),产生的未经有效处理的高浓度含铊废水被排入尾矿库;2) 5月2—3日,某企业所在县出现强降水天气,导致该企业尾矿库高浓度含铊雨污混合水经溢流井集中后外排,在嘉陵江形成污染水团,造成本次事件。

    图 1  碱洗除氟氯工艺流程图
    Figure 1.  Process flow chart of removing fluorine and chlorine by alkali washing method

    该企业尾矿库下游设拦渣坝,上游设拦洪坝,库区左岸设钢筋砼方涵泄洪。尾矿库设计库容为1.98×106 m3,属三等尾矿库。库区排洪系统采用溢流井-隧洞泄洪的方式,当尾矿库存水超过溢流水位时,会通过溢流井经回水池流入嘉陵江干流。

    1)确定特征污染物种类。2017年5月4日上午10时50分左右,该市环境监测站会同第三方监测机构于川陕交界界面(八庙沟断面)进行例行饮用水水质监测,取河道左岸和右岸水样分别进行饮用水全指标分析。5月5日,水样监测指标出现铊浓度超标(其他指标未见超标)。5月5日11时和18时,对该市水源地水源水进行了取样检测,结果显示铊浓度超标。据此认定该流域发生突发铊污染事件。

    5月9日,环境保护部工作组会同两地公安、环保等部门对嫌疑企业进行了现场检查。经查实,该企业选矿车间原料中铊质量浓度约为2 500 mg·kg−1,现场残存待排入尾矿库的废水中铊浓度约为9.16 mg·L−1,与本次嘉陵江流域水体污染事件中特征超标因子铊相吻合。另外,2016年以来,该企业从澳大利亚、土耳其、伊朗等国家采购锌精矿,部分锌精矿中铊质量浓度为100~200 mg·kg−1。锌精矿中的铊经冶炼后富集到多膛炉次氧化锌烟灰中,现场监测表明,多膛炉次氧化锌烟灰中铊质量浓度约2 500 mg·kg −1

    2)特征污染物性质与控制标准。本次事件特征污染物铊是一种剧毒物质,易溶于硝酸和硫酸,不溶于水。铊有2种氧化态形式,即一价铊和三价铊。水体中铊常以一价存在,更易形成稳定化合物,并随水体迁移进入其他环境介质或生物体内。铊对哺乳动物的毒害作用远超过Hg、As、Cd、Pd、Sb等重金属[7]。铊主要为伴生,常通过含铊矿山的采选冶炼等途径进入水环境[8]。铊可通过饮水以及食物链等进入人体,并在人体中的骨髓、肾脏等器官累积,损害人体肌肉、中枢神经系统等。我国《地表水环境质量标准》(GB 3838-2002)中“表3 集中式生活饮用水地表水源地特定项目”以及《生活饮用水卫生标准》(GB 5749-2006)中“表3 水质非常规指标及限值”规定了铊的允许质量浓度为0.000 1 mg·L−1

    鉴于受此事件影响的有集中式生活饮用水取水口,故将应急处置工作目标确定为地表水体中铊浓度达到集中式生活饮用水地表水源地特定项目标准限值的0.000 1 mg·L−1

    1)企业排入尾矿库的铊总量。该企业选矿车间于2017年4月18日—5月2日使用高含铊多膛炉次氧化锌烟灰作为原料,进行碱洗以除氟氯。排入尾矿库废水量约120 m3·d−1。铊质量浓度以厂区残存废水浓度9.16 mg·L−1计,日均铊排量约为1.10 kg。在15 d生产期内铊排放总量为16.49 kg。

    2)尾矿库排入嘉陵江铊总量。当尾矿库存水超过溢流水位时,会通过溢流井溢流排入嘉陵江。经现场测算,该尾矿库库区可存水量约1 300 m3,4月18日至5月2日选矿车间排入尾矿库废水总量约1 800 m3,超过尾矿库可存水量。同时,尾矿库存水经下渗、自然蒸发等损耗有限。因此,可推断在5月2日降水前尾矿库溢流井应处于溢流或接近溢流的状态。

    5月2—3日,企业所在区域降水量共28.6 mm,此次降水导致尾矿库中污水集中溢流排放。经现场测算,该场降水后尾矿库库区汇入雨水量约1 500 m3。在尾矿库处于溢流或接近溢流的状态下,不考虑中间损耗,排入嘉陵江雨污混合水水量以1 500 m3计,铊质量浓度以尾矿库现存雨污混合水浓度5.31 mg·L−1计,则5月2日至3日尾矿库通过溢流井集中排入嘉陵江铊总量约为7.97 kg。

    3)嘉陵江流域受污染水体中铊总量。根据2017年5月5日22时市监测站提供的水质监测数据和水文站提供的水文数据,对排入嘉陵江流域的铊总量进行了核算,主要计算数据见表1。5月5日22时污染水团前锋已达上石盘断面附近,尾峰在川陕交界断面附近,污染水团集中在2个断面之间约83 km的河段内。根据区间污染物分布情况,采用积分法计算出污染水团中铊的总量约6.61 kg。

    表 1  5月5日22时各监测断面水文水质数据表
    Table 1.  Hydrological and water quality data sheets for each monitoring section at 22:00 on the 5th
    应急监测断面铊质量浓度/(mg·L−1)断面流量/(m3·s−1)断面流速/(m·s−1)断面截面积/m2相邻断面距离/km
    川陕交界0.000 101070.72148.6112
    八庙沟0.000 181070.72148.6122
    清风峡0.000 171070.72148.6113
    沙河镇0.000 331390.52267.314
    千佛崖0.000 421710.31551.6122
    上石盘0.000 221710.31551.617
    昭化古镇0.000 03
     | Show Table
    DownLoad: CSV

    根据以上数据来分析,本次污染事件中嘉陵江污染水团中铊总量约6.61 kg,比前述尾矿库排入嘉陵江铊总量7.97 kg略低。考虑到铊进入水体后,污染物会被泥沙等吸附沉降转移至沉积相,故两者的量基本吻合。

    该企业选矿车间残存的待排入尾矿库废水中铊质量浓度为9.16 mg·L−1、尾矿库存水铊浓度为5.31 mg·L−1,分别超标约9.16×104倍和5.31×104倍;据5月4日事发后监测数据,嘉陵江铊最大超标倍数约10倍。上述情况与高浓度污染物集中外排,进入水体后因掺混稀释作用的浓度梯度变化特征相符。

    根据应急监测数据分析,各应急监测断面铊质量浓度呈较完整的正态分布(见图2)。从图2中各监测断面的过程峰形可以看出,此次污染事件的排放特征为污染物短时间大量排放,与强降水时尾矿库存水通过溢流井集中溢流特征吻合。

    图 2  嘉陵江水体污染事件中各监测断面的铊质量浓度
    Figure 2.  Trend of thallium concentration in each monitoring section

    根据实测水文数据反演,尾矿库自5月2日12时开始集中溢流。这与5月2日10时开始降水后,尾矿水存水集中溢流时间基本吻合。污染团前锋迁移时间估算见表2

    表 2  污染团前锋迁移时间估算
    Table 2.  Estimation of the migration time of the front of the contaminated mass
    应急监测断面距尾矿库距离/km流速/(m·s−1)相邻断面传播时长/h污染团前锋到达时间
    尾矿库00.7205月2日12:00
    川陕交界160.7265月2日18:00
    八庙沟280.7255月2日23:00
    清风峡500.7285月3日07:00
    沙河镇630.5275月3日14:00
    千佛崖770.31135月4日02:00
    上石盘990.14445月5日22:00
     | Show Table
    DownLoad: CSV

    经现场查勘、监测分析及企业人员确认,选矿车间多膛炉烟灰碱洗除氟氯产生的废水、电解车间洗铜废水中含铊废水,在未经有效处置的情况下,由泵经专管排入尾矿库。当尾矿库存水超过溢流井溢流水位时,含铊污水经溢流井-排洪隧洞排入回水池后进入100 m外的嘉陵江干流。污染物排放路径如图3所示。

    图 3  污染物排放路径示意图
    Figure 3.  Schematic diagram of pollutant discharge path

    综上所述,通过特征污染物、总量核算、质量浓度梯度、污染过程峰型、时间序列等综合分析,可判定本次嘉陵江流域铊污染事件为5月2—3日该企业矿库含铊污水在降水后集中溢流外排所致。

    本研究提出的溯源方法是一种利用有限数据并结合现场踏勘,在短时间内快速准确锁定污染源的方法。该溯源方法还成功应用于2012年龙江河镉污染、2016年仙女湖镉污染等突发水环境重金属污染等未知源事件的溯源工作。如在2012年龙江河突发环境事件中,成功锁定肇事企业是一家未登记的非法炼铟企业,其非法将大量生产废液注人地下溶洞,在河流水位突降时引发突发水污染事件。实践证明,该溯源方法及其改进方法可有效适用于一次性及连续性排污的未知污染源溯源工作,可支撑突发环境事件的应急处置。

  • 图 1  实验装置示意图及照片

    Figure 1.  Schematic diagram and pictures of experimental equipment

    图 2  CNTs原粉、NMCNTs-PANI和吸附后材料的SEM图

    Figure 2.  SEM images of CNTs, NMCNTs-PANI and post-adsorption composite

    图 3  CNTs原粉、NMCNTs-PANI和吸附后材料的XRD图

    Figure 3.  X-ray diffraction patterns of CNTs, NMCNTs-PANI and post-adsorption composite

    图 4  CNTs原粉、NMCNTs-PANI和吸附后材料的FT-IR图

    Figure 4.  FT-IR spectra of CNTs, NMCNTs-PANI and post-adsorption composite

    图 5  CNTs原粉、NMCNTs-PANI和吸附后材料的Raman光谱图

    Figure 5.  Raman spectra of CNTs, NMCNTs-PANI and post-adsorption composite

    图 6  接触时间对吸附量的影响

    Figure 6.  Effect of contact time on the adsorption capacity

    图 7  不同动力学模型拟合结果

    Figure 7.  Fitting results of various kinetic models

    图 8  初始浓度对吸附量的影响

    Figure 8.  Effect of initial concentration on the adsorption capacity

    图 9  不同吸附等温线拟合结果

    Figure 9.  Fitting results of various adsorption isotherms

    图 10  初始pH对吸附量的影响

    Figure 10.  Effect of initial pH on the adsorption capacity

    图 11  共存阴离子对吸附量的影响

    Figure 11.  Effect of coexisting anions on the adsorption capacity

    表 1  CNTs原粉、NMCNTs-PANI和吸附后材料的物理性质

    Table 1.  Physical characteristics of CNTs, NMCNTs-PANI and post-adsorption composite

    改性前后的材料 比表面积/(m2·g−1) 孔容/(cm3·g−1) 平均孔径/nm
    CNTs原粉 156.59 0.58 3.58
    NMCNTs-PANI 134.97 0.99 13.84
    吸附后材料 120.80 0.87 12.85
    改性前后的材料 比表面积/(m2·g−1) 孔容/(cm3·g−1) 平均孔径/nm
    CNTs原粉 156.59 0.58 3.58
    NMCNTs-PANI 134.97 0.99 13.84
    吸附后材料 120.80 0.87 12.85
    下载: 导出CSV

    表 2  不同动力学模型拟合参数

    Table 2.  Fitting parameters for various kinetic models

    qe,exp/(mg·g−1) 准一级动力学方程 准二级动力学方程
    k1 qe,cal R2 k2 qe,cal R2
    14.50 0.12 14.78 0.983 0.006 18.37 0.994
      注:qe,expqe,cal依次为平衡吸附量实验值和拟合值。
    qe,exp/(mg·g−1) 准一级动力学方程 准二级动力学方程
    k1 qe,cal R2 k2 qe,cal R2
    14.50 0.12 14.78 0.983 0.006 18.37 0.994
      注:qe,expqe,cal依次为平衡吸附量实验值和拟合值。
    下载: 导出CSV

    表 3  不同吸附等温线主要拟合参数

    Table 3.  Main fitting parameters for various adsorption isotherms

    Langmuir Freundlich
    qm/(mg·g−1) kL R2 kF n−1 R2
    15.08 4.60 0.927 10.68 0.20 0.885
    Langmuir Freundlich
    qm/(mg·g−1) kL R2 kF n−1 R2
    15.08 4.60 0.927 10.68 0.20 0.885
    下载: 导出CSV
  • [1] ALAM M, ALLINSON G, STAGNITTI F, et al. Arsenic contamination in Bangladesh groundwater: A major environmental and social disaster[J]. International Journal of Environmental Health Research, 2002, 12(3): 236-253.
    [2] 邓安琪, 董兆敏, 高群, 等. 中国地下水砷健康风险评价[J]. 中国环境科学, 2017, 37(9): 3556-3365. doi: 10.3969/j.issn.1000-6923.2017.09.044
    [3] YAN Q, GUI Y, ZHOU N, et al. Treatment of arsenic-containing mineral processing wastewater by coagulation and sedimentation process[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3683-3688.
    [4] ORTEGA A, OLIVA I, CONTRERAS K, et al. Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process[J]. Separation and Purification Technology, 2017, 184: 319-326.
    [5] ZHU N, ZHANG J, TANG J, et al. Arsenic removal by periphytic biofilm and its application combined with biochar[J]. Bioresource Technology, 2018, 248: 49-55.
    [6] SARI A, TUZEN M. Biosorption of As(III) and As(V) from aqueous solution by macrofungus(Inonotus hispidus) biomass: Equilibrium and kinetic studies[J]. Journalof Hazardous Materials, 2009, 164(2/3): 1372-1378.
    [7] ZHENG X, GAO H, DING A, et al. Self-assembly of polymer-functionalized carbon nanotubes induced by polymer microphase separation[J]. Chinese Journal of Organic Chemistry, 2013, 33(7): 1509-1513.
    [8] IBRAHIM R, ELSHAFIE A, HIN L, et al. A clean approach for functionalized carbon nanotubes by deep eutectic solvents and their performance in the adsorption of methyl orange from aqueous solution[J]. Journal of Environmental Management, 2019, 235: 521-534.
    [9] 李德云, 刘龙飞, 李成亮, 等. Cu/CuO改性碳纳米管对亚甲基蓝的吸附特征[J]. 农业环境科学学报, 2018, 37(10): 2289-2296. doi: 10.11654/jaes.2017-1749
    [10] 杨爱丽, 武俊红, 张业新. 臭氧氧化改性碳纳米管对铀的吸附性能[J]. 核化学与放射化学, 2018, 40(4): 267-272. doi: 10.7538/hhx.2018.YX.2017036
    [11] 严群, 余洋, 周娜娜. 饮用水中砷处理技术的研究进展[J]. 有色金属科学与工程, 2012, 3(3): 74-79.
    [12] CHIANG I, BRINSON B, SMALLEY R, et al. Purification and characterization of single-wall carbon nanotubes[J]. Journal of Physical Chemistry B, 2001, 105(6): 1157-1161.
    [13] LIU Z, SHEN Z, ZHU T, et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique[J]. Langmuir, 2000, 16(8): 3569-3373.
    [14] 杨春霞, 赵文彬. 多壁碳纳米管的表面修饰及分散性[J]. 黑龙江科技大学学报, 2018, 28(3): 286-291. doi: 10.3969/j.issn.2095-7262.2018.03.010
    [15] ZHOU Y, HE Y, XIANG Y, et al. Single and simultaneous adsorption of pefloxacin and Cu(II) ions from aqueous solutions by oxidized multiwalled carbon nanotube[J]. Science of the Total Environment, 2019, 646: 29-36.
    [16] KIM M, LEE C, JANG J. Fabrication of highly flexible, scalable, and highperformance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity[J]. Advanced Functional Materials, 2014, 24(17): 2489-2499.
    [17] BEHABTU N, YOUNG C, TSENTALOVICH D, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339(6116): 182-186.
    [18] 刘苛. 磁性多壁碳纳米管吸附去除水中Cu(Ⅱ)和亚甲基蓝的研究[D]. 长沙: 湖南大学, 2015.
    [19] 高珍珍, 佟浩, 陈建慧. 聚苯胺共价接枝碳纳米管复合材料的制备及其超电容性能的研究[J]. 化学学报, 2014, 72(11): 1175-1181.
    [20] HU X J, LIU Y G, WANG H, et al. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite[J]. Separation and Purification Technology, 2013, 108: 189-195.
    [21] WANG H, LIU Y G, ZENG G M, et al. Grafting of beta-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal[J]. Carbohydrate Polymers, 2014, 113: 166-173.
    [22] BOURLINOS A, GOUMIS D, PETRIDIS D, et al. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J]. Langmuir, 2003, 19(15): 6050-6055.
    [23] CHIN S, IYER K, RASTON C. Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions[J]. Lab on a Chip, 2008, 8: 439-442.
    [24] LEE H Y, VOGEL W, CHU P J. Nanostructure and surface composition of Pt and Ru binary catalysts on ppolyaniline-functionalized carbon nanotubes[J]. Langmuir, 2011, 27(23): 14654-14661. doi: 10.1021/la202169j
    [25] STANKOVICH S, PINER R D, NGUYEN S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15): 3342-3347. doi: 10.1016/j.carbon.2006.06.004
    [26] DOGAN M, KARAOGLU M, ALKAN M. Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1142-1151.
    [27] IDREES M, BATOOL S, KALSOOM T, et al. Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media[J]. Journal of Environmental Management, 2018, 213: 109-118.
    [28] TAN L, LIU Q, JING X, et al. Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites[J]. Chemical Engineering Journal, 2015, 273: 307-315. doi: 10.1016/j.cej.2015.01.110
    [29] CHENG Z, LIU P, GUO B, et al. Surface activation of carbon paper with potassium dichromate lotion and application as a supercapacitor[J]. Applied Surface Science, 2015, 349: 833-838. doi: 10.1016/j.apsusc.2015.05.086
    [30] CEGLOWSKI M, SCHROEDER G. Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions[J]. Chemical Engineering Journal, 2015, 263: 402-411. doi: 10.1016/j.cej.2014.11.047
    [31] ZHANG X, JIAO C, WANG J, et al. Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: Kinetic and thermodynamic investigation[J]. Chemical Engineering Journal, 2012, 198: 412-419.
    [32] 陈福星. 施氏矿物对污染水体中六价铬及三价砷的吸附去除研究[D]. 南京: 南京农业大学, 2006.
    [33] CHANG F, QU J H, LIU H J, et al. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation[J]. Journal of Colloid and Interface Science, 2009, 338(2): 353-358.
    [34] WU Y, FENG S, LI B, et al. The characteristics of Escherichia coli adsorption of arsenic(III) from aqueous solution[J]. World Journal of Microbiology & Biotechnology, 2010, 26(2): 249-256.
    [35] SARI A, ULUOZLU O, TUZEN M. Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass[J]. Chemical Engineering Journal, 2011, 167(1): 155-161.
    [36] RAHAMN M, ISLAM M. Effects of pH on isotherms modeling for Cu(II) ions adsorption using maple wood sawdust[J]. Chemical Engineering Journal, 2009, 149(1/2/3): 273-280.
    [37] SHARMA V, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759.
    [38] TEIXEIRA M C, CIMINELLI V S T. Development of a biosorbent for arsenite: Structural modeling based on X-ray spectroscopy[J]. Environmental Science & Technology, 2005, 39(3): 895-900.
    [39] RAHAMAN M, BASU A, ISLAM M. The removal of As(III) and As(V) from aqueous solutions by waste materials[J]. Bioresource Technology, 2008, 99(8): 2815-2823.
    [40] WANG Z, XING M, FANG W, et al. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water[J]. Applied Surface Science, 2016, 366: 67-77.
  • 期刊类型引用(4)

    1. 龚世飞,肖能武,丁武汉,郭元平,叶青松,王巍,李虎. 丹江口水库核心水源区化肥施用分布特征及其环境风险评价. 长江流域资源与环境. 2022(10): 2259-2271 . 百度学术
    2. 龚世飞,丁武汉,居学海,肖能武,叶青松,黄进,李虎. 典型农业小流域面源污染源解析与控制策略——以丹江口水源涵养区为例. 中国农业科学. 2021(18): 3919-3931 . 百度学术
    3. 王超,张洪,雷俊山,贾海燕,雷沛,尹炜. 南水北调中线水源地陡坡型库岸生态屏障构建. 环境工程学报. 2020(12): 3243-3250 . 本站查看
    4. 龚世飞,丁武汉,肖能武,郭元平,叶青松,王巍,李虎. 丹江口水库核心水源区典型流域农业面源污染特征. 农业环境科学学报. 2019(12): 2816-2825 . 百度学术

    其他类型引用(1)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.9 %DOWNLOAD: 6.9 %HTML全文: 77.0 %HTML全文: 77.0 %摘要: 16.1 %摘要: 16.1 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 82.9 %其他: 82.9 %Anshan: 0.1 %Anshan: 0.1 %Anwo: 0.0 %Anwo: 0.0 %Ashburn: 0.2 %Ashburn: 0.2 %Baoding: 0.0 %Baoding: 0.0 %Beijing: 6.0 %Beijing: 6.0 %Beishijiawu: 0.0 %Beishijiawu: 0.0 %Bizidian: 0.0 %Bizidian: 0.0 %Boulder: 0.1 %Boulder: 0.1 %Busan: 0.0 %Busan: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.1 %Changsha: 0.1 %Chanshan: 0.0 %Chanshan: 0.0 %Chelsea: 0.1 %Chelsea: 0.1 %Chemnitz: 0.0 %Chemnitz: 0.0 %Chicago: 0.1 %Chicago: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Dajingyu: 0.1 %Dajingyu: 0.1 %Dalian: 0.6 %Dalian: 0.6 %Dazhou: 0.0 %Dazhou: 0.0 %Dishan: 0.1 %Dishan: 0.1 %Dongguan: 0.0 %Dongguan: 0.0 %Gaocheng: 0.1 %Gaocheng: 0.1 %Guangzhou: 0.1 %Guangzhou: 0.1 %Guangzhou Shi: 0.1 %Guangzhou Shi: 0.1 %Haikou: 0.1 %Haikou: 0.1 %Handan: 0.0 %Handan: 0.0 %Hangzhou: 0.2 %Hangzhou: 0.2 %Hankou: 0.0 %Hankou: 0.0 %Harbin: 0.2 %Harbin: 0.2 %Hartford: 0.0 %Hartford: 0.0 %Hefei: 0.1 %Hefei: 0.1 %Hotan: 0.0 %Hotan: 0.0 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 0.4 %Jinrongjie: 0.4 %Kunshan: 0.0 %Kunshan: 0.0 %Lanzhou: 0.0 %Lanzhou: 0.0 %Liuying: 0.0 %Liuying: 0.0 %luohe shi: 0.1 %luohe shi: 0.1 %Mitaka: 0.1 %Mitaka: 0.1 %Montreal: 0.0 %Montreal: 0.0 %Mountain View: 0.2 %Mountain View: 0.2 %Nanchang: 0.0 %Nanchang: 0.0 %Nankai: 0.1 %Nankai: 0.1 %Nanyang: 0.1 %Nanyang: 0.1 %New Taipei: 0.0 %New Taipei: 0.0 %Newark: 0.5 %Newark: 0.5 %Ningbo: 0.1 %Ningbo: 0.1 %Plainsboro: 0.1 %Plainsboro: 0.1 %Qingdao: 0.2 %Qingdao: 0.2 %Qinnan: 0.0 %Qinnan: 0.0 %Shanghai: 0.3 %Shanghai: 0.3 %Shangqiu: 0.0 %Shangqiu: 0.0 %Shenyang: 0.1 %Shenyang: 0.1 %Shijiazhuang: 0.1 %Shijiazhuang: 0.1 %Taipei: 0.2 %Taipei: 0.2 %Taiyuan: 0.1 %Taiyuan: 0.1 %The Bronx: 0.2 %The Bronx: 0.2 %Tianjin: 0.3 %Tianjin: 0.3 %Tokyo: 0.1 %Tokyo: 0.1 %Wuhan: 0.0 %Wuhan: 0.0 %Xi'an: 0.1 %Xi'an: 0.1 %Xiamen: 0.0 %Xiamen: 0.0 %Xiangfan: 0.0 %Xiangfan: 0.0 %Xuzhou: 0.1 %Xuzhou: 0.1 %XX: 3.1 %XX: 3.1 %Yingchuan: 0.2 %Yingchuan: 0.2 %Yuncheng: 0.0 %Yuncheng: 0.0 %Zhangzhou: 0.0 %Zhangzhou: 0.0 %Zhengzhou: 0.1 %Zhengzhou: 0.1 %上海: 0.1 %上海: 0.1 %俄克拉何马城: 0.0 %俄克拉何马城: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.3 %北京: 0.3 %大连: 0.1 %大连: 0.1 %宁德: 0.0 %宁德: 0.0 %成都: 0.0 %成都: 0.0 %杭州: 0.1 %杭州: 0.1 %沈阳: 0.0 %沈阳: 0.0 %深圳: 0.2 %深圳: 0.2 %荆州: 0.0 %荆州: 0.0 %西安: 0.0 %西安: 0.0 %贵阳: 0.0 %贵阳: 0.0 %郑州: 0.2 %郑州: 0.2 %长沙: 0.0 %长沙: 0.0 %青岛: 0.0 %青岛: 0.0 %其他AnshanAnwoAshburnBaodingBeijingBeishijiawuBizidianBoulderBusanChang'anChangshaChanshanChelseaChemnitzChicagoChongqingDajingyuDalianDazhouDishanDongguanGaochengGuangzhouGuangzhou ShiHaikouHandanHangzhouHankouHarbinHartfordHefeiHotanJinanJinrongjieKunshanLanzhouLiuyingluohe shiMitakaMontrealMountain ViewNanchangNankaiNanyangNew TaipeiNewarkNingboPlainsboroQingdaoQinnanShanghaiShangqiuShenyangShijiazhuangTaipeiTaiyuanThe BronxTianjinTokyoWuhanXi'anXiamenXiangfanXuzhouXXYingchuanYunchengZhangzhouZhengzhou上海俄克拉何马城内网IP北京大连宁德成都杭州沈阳深圳荆州西安贵阳郑州长沙青岛Highcharts.com
图( 11) 表( 3)
计量
  • 文章访问数:  3826
  • HTML全文浏览数:  3826
  • PDF下载数:  74
  • 施引文献:  5
出版历程
  • 收稿日期:  2019-01-14
  • 录用日期:  2019-05-09
  • 刊出日期:  2019-12-01
叶智新, 任刚. 酰胺化/氧化碳纳米管-聚苯胺吸附三价砷[J]. 环境工程学报, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100
引用本文: 叶智新, 任刚. 酰胺化/氧化碳纳米管-聚苯胺吸附三价砷[J]. 环境工程学报, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100
YE Zhixin, REN Gang. Adsorption of As(Ⅲ) from aqueous solution by amidated/oxidized carbon nanotube-polyaniline[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100
Citation: YE Zhixin, REN Gang. Adsorption of As() from aqueous solution by amidated/oxidized carbon nanotube-polyaniline[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2798-2807. doi: 10.12030/j.cjee.201901100

酰胺化/氧化碳纳米管-聚苯胺吸附三价砷

    通讯作者: 任刚(1977—),男,博士,讲师。研究方向:水污染控制。E-mail:clark_hit@163.com
    作者简介: 叶智新(1994—),女,硕士研究生。研究方向:微污染水处理。E-mail:505064075@qq.com
  • 暨南大学环境学院,广州 511486
基金项目:
广东省科技计划项目(2013B020800005、2015A020217005);广东省水利科技创新项目(2016-30);广州市民生科技攻关计划项目(201803030043)

摘要: 为探讨改性碳纳米管(CNTs)对砷的吸附特性,采用化学修饰对CNTs进行了改性。将CNTs先后进行氧化和酰胺化处理,并与聚苯胺反应,得到酰胺化/氧化碳纳米管-聚苯胺(NMCNTs-PANI),利用SEM观察、比表面积测定、含氧含氮官能团和分子结构分析对改性前后CNTs进行了表征;研究了NMCNTs-PANI在不同反应体系对As(Ⅲ)的吸附效果。结果表明:NMCNTs-PANI总孔容和平均孔径均有所增加;表面含氧含氮基团增加;初始pH对吸附量影响较显著;共存阴离子对吸附量影响可忽略不计;吸附过程符合准一级动力学和准二级动力学方程,证实该过程主要以化学吸附为主;吸附等温线符合Langmuir模型。NMCNTs-PANI通过表面吸附-化学诱导作用可较好地去除水中As(Ⅲ),是一种优良的含砷污染水的吸附剂。

English Abstract

  • 随着现代社会工业化的高速发展,天然水中砷的含量迅速增加[1]。水中砷污染已成为全社会亟待解决的重要环境问题之一[2]。目前,常用的除砷方法主要有混凝沉淀法、离子交换法、膜分离法、吸附法[3-6]等。混凝沉淀法中预氧化过程会增加后续污水处理的问题[3];离子交换法须采用特殊材料,工艺流程较繁琐[4];膜分离法易出现膜污染等问题,该法适用于处理量相对较少的砷污染水[5]。因此,吸附法在处理效率高、操作简单和适用性强等方面的优势越来越受到人们的重视[6]

    多壁碳纳米管(CNTs)具有比表面积大、孔隙结构丰富、表面易于被修饰等特点,近年来在制备复合吸附材料方面已有诸多的应用[7]。IBRAHIM等[8]研究了深共熔溶剂(DESs)功能化CNTs对水中甲基橙的吸附性能;李德云等[9]在研究改性CNTs吸附水中亚甲基蓝过程时提到Cu/CuO改性CNTs对亚甲基蓝的吸附效果优于原始CNTs;杨爱丽等[10]在研究臭氧氧化改性CNTs对铀的吸附去除时提到,含氧量的增加会显著提高改性CNTs对铀的去除率。

    目前,对水中砷去除的研究多集中在吸附剂的氧化改性以及对As(Ⅴ)的吸附去除上,对As(Ⅲ)的削减效果分析和去除机制等方面的研究相对较少[11]。本研究从活化CNTs管壁接枝点位、负载高活性基团的酰胺类材料的角度出发,采用强酸氧化和酰胺化等方法制备了酰胺化/氧化碳纳米管-聚苯胺(NMCNTs-PANI),并探究该复合材料对水中As(Ⅲ)的吸附性能。

    • 基准纯三氧化二砷(As2O3,99%);高锰酸钾(KMnO4)、硫酸(98%H2SO4)、氯化亚砜(SOCl2)、N-聚乙烯吡咯烷酮、三乙胺、乙二胺、N, N-二环己基碳二亚胺、聚苯胺(PANI)、丙酮均为分析纯。碳纳米管原粉(CNTs)购自苏州石墨烯科技有限公司,采用改性催化碳气相沉积法(CVD)制备。

    • 真空干燥箱(DZF-6050,上海福絮仪器厂);磁力加热搅拌器(HJ-4,江苏新瑞仪器厂);pH计(pHS-25型,上海仪电公司);原子荧光光度计(AFS-933,美国Thermo Fisher Scientific公司);扫描电子显微镜(TM3030,日立公司);比表面孔径分布测定仪(TRISTAR3000,美国MICROMERITICS公司);X射线衍射仪(D2 PHASER,德国布鲁克AXS公司);傅里叶变换红外光谱仪(EQUINOX 55,美国赛默飞公司);拉曼光谱仪(LABRAM ARAMIS,法国HORIBA公司)。

      实验采用恒温振荡器,实验装置及实物照片见图1。设置温度为25 ℃,转速为180 r·min−1,避光运行,振荡后静置,抽滤。

    • 冰水浴中,称取1 g CNTs、3 g KMnO4加入到30 mL浓硫酸中,搅拌2 h;升温至40 ℃,搅拌反应4 h;置于70 ℃磁力搅拌器中搅拌0.3 h;加入适量FeCl3及FeSO4,溶解后抽滤,将所得固体烘干备用。取1 g上述烘干后的固体置于250 mL烧杯中,加入30 mL SOCl2、2 mL DMF和1 g N-聚乙烯吡咯烷酮,搅拌均匀,缓慢加入13 mL三乙胺、7 mL乙二胺,升温至80 ℃,搅拌0.5 h,加入适量N,N-二环己基碳二亚胺,超声0.5 h;置于摇床振荡,洗涤抽滤,干燥得到黑色固体[12-13]。取0.5 g上述黑色固体分散在水溶液中,与50 mL含有2 g PANI的丙酮溶液混合,置于60 ℃水浴锅反应1 h,超声0.5 h;移至摇床振荡20 h,洗涤抽滤,110 ℃真空干燥箱烘干,得到NMCNTs-PANI。

      采用SEM观察表面特征;比表面积分析仪测定比表面积和孔径分布;X射线衍射仪(XRD)分析物相组成[14];傅里叶变换红外光谱仪(FT-IR)定性分析表面的化学键和官能团信息[15];拉曼光谱(Raman)分析材料的晶体结构[16]

    • 配置10 mg·L−1 As2O3溶液,取7份100 mL置于系列250 mL锥形瓶中,分别投加50 mg NCNTs/PANI,反应温度为25 ℃,设置不同的接触时间并置于振荡器中以180 r·min−1转速振荡,静置后过滤,用原子荧光光度计测定滤液中As(Ⅲ)浓度并计算吸附量。As(Ⅲ)初始浓度、初始pH、共存阴离子的考察过程与接触时间类似。溶液pH采用NaOH及HCl调节。

      吸附量、去除率依次按式(1)和式(2)计算。

      式中:q为NMCNTs-PANI对溶液中As(Ⅲ)的吸附量,mg·g−1η为去除率;C0为As(Ⅲ)初始浓度,mg·L−1C为滤液中As(Ⅲ)浓度,mg·L−1V为溶液体积,L;m为NMCNTs-PANI投加量,g。

    • 图2是改性前后CNTs的SEM图。从图2(a)中可以看出,CNTs原粉是相互缠绕在一起的管状结构,其管壁无序、混乱;图2(b)图2(c)显示,NMCNTs-PANI管状结构部分消失,管间缺陷增大,并出现聚集现象。该现象可能是因为引入某种活性剂或CNTs表面功能化导致CNTs结构受到破坏[17]

      改性前后CNTs物理性质见表1。可以看出,CNTs原粉、NMCNTs-PANI和吸附后材料的孔径为3.58~13.84 nm,说明样品为介孔材料;与CNTs原粉相比,NMCNTs-PANI和吸附后材料的比表面积稍有减小,而孔容和平均孔径均大大增加。H2SO4和KMnO4均具有强氧化性,可以氧化掉CNTs上部分管状结构,导致CNTs局部坍塌;或者少部分孔道在反应过程中被堵塞,碳管难以拉伸,从而减小NMCNTs-PANI和吸附后材料的比表面积;同时,也有部分管内杂质被溶解,疏通了CNTs孔道结构;或者使一些内部封闭的孔道被打开,导致NMCNTs-PANI和吸附后材料的孔容和平均孔径均增大[18]

      图3是改性前后CNTs的XRD图谱。从图3可以看出,改性前后表征CNTs晶面(002)的衍射角在26.0°处位置没发生变化[14];NMCNTs-PANI和吸附后材料衍射峰的强度均小于CNTs原粉,说明CNTs改性后结晶度变差。此外,NMCNTs-PANI中体现PANI的衍射特征峰在15.3°和22.6°凸起,可能原因是PANI大部分以无定性态存在[19]

      图4是改性前后CNTs的红外光谱图。可以看出,与CNTs原粉相比,NMCNTs-PANI和吸附后材料在500~4 000 cm−1出现多个吸收峰。其中NMCNTs-PANI的红外光谱中1 134 cm−1是O—H的振动峰[20];1 192 cm−1是环氧基C—O—C引起的伸缩振动峰[21];1 701 cm−1处的吸收峰为羰基C=O伸缩振动[22];1 257 cm−1处的红外吸收峰归属于C—O的伸缩振动[23];1 400 cm−1处是C—N键的伸缩振动特征峰,1 654 cm−1处是C=N的弯曲振动峰[24],以上说明制备过程中引入了羧基、羟基、环氧基等功能性基团;3 278 cm−1处归属于N—H的伸缩振动峰,该峰和C=O、C—N表明酰胺基团负载在材料表面;786 cm−1处的特征峰归属于Fe—O键的伸缩振动[25],这表明铁离子成功接枝在材料表面。吸附后材料的FT-IR图出现了位于582 cm−1处的金属配位体振动(Metal-N)[25],可能原因是水中As(Ⅲ)吸附于NMCNTs-PANI表面。

      图5是改性前后CNTs的Raman光谱图。可以看出,改性前后CNTs均出现了2个典型特征峰,其中D峰位于1 340 cm−1左右,该缺陷峰反映的是碳材料中C—C的无序振动,峰值反映出CNTs结构的缺陷性和混乱程度;在1 580 cm−1左右的G峰是碳结构sp2的特征峰,用以说明CNTs的结晶程度,2个峰的强度比值ID/IG可以衡量CNTs结构缺陷密度,比值越低,结晶越完整[16]。计算表明,NMNCTs-PANI和吸附后材料的ID/IG分别为1.05、1.06,均高于CNTs原粉ID/IG(1.03),说明复合材料结构的无序性增加。综上所述,改性后CNTs的结构发生了变化,但XRD及Raman分析结果一致表明,CNTs的晶体结构并没有被破坏。

    • 图6为接触时间对吸附量的影响结果。当接触时间从5 min延至20 min时,吸附量从4 mg·g−1快速上升到13 mg·g−1;随后吸附量缓慢增加;在30 min左右达到吸附平衡。这是由于初始阶段NMCNTs-PANI表面高能量的活性位点迅速被占领,吸附速率较高,此时溶液中大部分As(Ⅲ)占据了表面活性位点;后期由低能量的活性位点继续吸附,吸附速率随之降低。综合考虑吸附速率,接触时间选择30 min。

      将数据代入准一级动力学方程和准二级动力学方程进行拟合,准一级动力学方程[26]和准二级动力学方程[27]见式(3)和式(4)。

      式中:t为吸附过程某一时刻,min;qe为平衡吸附量,mg·g−1qtt时刻吸附量,mg·g−1k1为一级动力学速率常数,min−1k2为二级动力学速率常数,g·(mg·min)−1

      图7为采用不同动力学方程对动力学实验数据的拟合结果,拟合参数见表2。由图7可知,准一级动力学方程和准二级动力学方程均能较好描述NMCNTs-PANI吸附As(Ⅲ)的动力学过程。但表2显示准二级动力学方程R2为0.994,准一级动力学方程R2为0.983,故准二级动力学方程更为符合NMCNTs-PANI吸附As(Ⅲ)的动力学过程,即NMCNTs-PANI吸附水中As(Ⅲ)主要以化学吸附为主[28]。吸附过程中物理吸附主要是分子间作用力;化学吸附可能涉及离子交换或NMCNTs-PANI上活性基团与As(Ⅲ)形成化学键的吸附[28],尤其是改性材料表面所带有的酰胺基团,具有较高反应活性,可与As(Ⅲ)发生结合[29]

      图8为As(Ⅲ)初始浓度对吸附量的影响结果。由图8可知,As(Ⅲ)初始浓度从1 mg·L−1增加到8 mg·L−1时,吸附量从1.98 mg·g−1增加到12.96 mg·g−1;当As(Ⅲ)初始浓度达到10 mg·L−1以上时,NMCNTs-PANI对As(Ⅲ)吸附量几乎不再增加。这是因为随着As(Ⅲ)浓度的增加,NMCNTs-PANI与As(Ⅲ)之间的碰撞机率增大,导致吸附量不断增高;同时NMCNTs-PANI表面吸附位点数量有限,吸附位点被占据后不能继续吸附溶液中As(Ⅲ),NMCNTs-PANI逐渐达到吸附饱和状态。改性后CNTs表面官能团数量大大增加,水中As(Ⅲ)可以与羟基、羧基、酰胺键等官能团发生络合,极大地促进了NMCNTs-PANI对As(Ⅲ)的吸附。

      将数据代入Langmuir等温线方程和Freundlich等温线方程进行拟合,前者常用于描述单分子层吸附;后则多用于描述复杂不均匀表面的多分子层吸附[30-31]。Langmuir方程[30]和Freundlich方程[31]见式(5)和式(6)。

      式中:Ce为平衡浓度,mg·L−1qe为平衡吸附量,mg·L−1qm为饱和吸附量,mg·g−1kL为Langmuir平衡常数,L·mg−1kF为Freundlich常数mg·g−1n为吸附强度。

      图9是利用Langmuir、Freundlich等温线对实验数据的拟合结果,拟合参数见表3。由图9可知,Langmuir、Freundlich等温线均能较好描述NMCNTs-PANI吸附水中As(Ⅲ)过程,但表3显示,前者R2大于后者,说明Langmuir等温线能更好地描述NMCNTs-PANI吸附水中As(Ⅲ)过程。实验中NMCNTs-PANI对10 mg·L−1 As(Ⅲ)饱和吸附量为14.80 mg·g−1。有研究发现,除部分研究[32]针对含As(Ⅲ)地下水利用生物催化合成施氏矿物对As(Ⅲ)的饱和吸附量为67.70 mg·g−1外,大多数研究[33-35]中吸附剂对水中As(Ⅲ)的饱和吸附量为1.78~10.90 mg·g−1,如Fe-Mn双氧化物改性的硅藻土(1.68 mg·g−1)、针铁矿(0.38 mg·g−1)和赤铁矿(0.26 mg·g−1)。因此,相比其他研究的结果,本研究所用吸附剂的吸附性能更优。

      溶液pH可影响溶液中As(Ⅲ)的存在形态及吸附剂表面官能团的性能[36]图10为初始pH对As(Ⅲ)吸附量的影响结果。由图10可知,在较低pH(3.3~4.2)条件下,As(Ⅲ)吸附量从9.87 mg·g−1升至11.76 mg·g−1;在pH为4.2~6.5的弱酸性环境中,As(Ⅲ)的吸附量下降至9.92 mg·g−1;当pH升高至6.5~8.6时,吸附量达到最大值,为14.82 mg·g−1,此时,去除率为74.1%;继续提高pH,吸附量则再次降低。有研究[37]表明,在溶液pH<9.2时,As(Ⅲ)主要以中性H3AsO3形态存在(H3AsO3=H2AsO3+H+pKa1=9.2);当pH>9.2 时,As(Ⅲ)则主要以阴离子形态H2AsO3 存在。酸度较低条件下,中性状态存在的H3AsO3主要是通过与活性基团(羟基、羧基、酰胺基)的结合被吸附,且酸性基团的活性在该条件下会增强[38];弱酸性环境中,H3AsO3与活性基团的化学结合作用随着水中酸度降低而减少,吸附量出现下滑,故在pH=4.2出现较小的峰值;pH升高至碱性时,NMCNTs-PANI对As(Ⅲ)的去除主要归为以下2个原因:一方面,其通过与活性基团发生作用,此时碱性基团的活化增大了吸附作用;另一方面,As(Ⅲ)与吸附剂表面Fe离子发生配位络合作用,此过程主要依靠非离子H3AsO3和铁离子间强大的约束力[39],所以在pH=8.6时吸附量达到最高;随着pH继续上升,H3AsO3解离为H2AsO3,吸附量出现大幅度降低,可能是因为吸附剂表面带负电荷的羧基、羟基和酰胺基团会与阴离子形态As(Ⅲ)发生静电斥力作用;且碱性条件下高浓度的OHH2AsO3激烈的竞争吸附剂表面的活性位点[35]

      图11为共存阴离子对吸附量的影响结果。将ClCO23HPO24SO24的浓度分别设置为0.11~8.90、0.10~9.06、0.10~9.19、0.10~9.03 g·L−1。由图11可知,共存阴离子ClCO23HPO24SO24对吸附量几乎不产生影响,4种离子浓度分别在8.90、9.06、9.19、9.03 g·L−1时,吸附量也仅下降0.38~0.56 mg·g−1,说明NMCNTs-PANI对As(Ⅲ)的吸附具有选择性。有研究[40]发现,如果吸附机制为配位体交换和络合物形成,那么离子强度则对吸附无影响,进一步说明化学吸附是NMCNTs-PANI吸附As(Ⅲ)的主要机制。

    • 1)实验结果显示,CNTs管状结构部分溶解,形成了孔容和平均孔径更大的多孔物质NMCNTs-PANI;且负载在NMCNTs-PANI表面的活性基团大大增加;吸附量随接触时间延长而增大,随As(Ⅲ)初始浓度增大而增大;初始pH对吸附量的影响较显著,NMCNTs-PANI对As(Ⅲ)吸附量在pH 8.6时达到最大;溶液中共存阴离子ClCO23HPO24SO24对吸附量的影响可忽略不计。

      2)动力学特征符合准一级动力学和准二级动力学方程;吸附等温线符合Langmuir模型,饱和吸附容量为14.80 mg·g−1。吸附动力学和等温线研究结果表明,NMCNTs-PANI吸附水中As(Ⅲ)的过程以化学吸附为主。

      3)酰胺化/氧化碳纳米管-聚苯胺具有较佳的吸附性能,当微污染水中As(Ⅲ)浓度不超过饮用水标准50倍时,采用0.5 g·L−1 NMCNTs/PANI吸附处理可达到饮用水标准。此研究为解决饮用水中低浓度三价砷的污染问题提供了新方法。

    参考文献 (40)

返回顶部

目录

/

返回文章
返回