-
中国是世界上最大的抗生素生产国,是青霉素、四环素和林可霉素等发酵类抗生素的主要生产基地[1]。在抗生素发酵生产过程中产生的废母液通常含有高浓度抗生素[2-4],目前这些废母液主要是经生活污水稀释后,采用活性污泥法等常规生物工艺进行处理。抗生素作为一种抑菌或杀菌物质,可影响污水生物处理系统的功能[5],并可能导致耐药菌及耐药基因的产生和排放[6]。为了有效处理上述含抗生素废水,需要在生物处理之前去除废母液中抗生素残留效价。强化水解技术已经被证明具有削减链霉素、螺旋霉素和土霉素等抗生素效价的有效性[7-9]。前期研究[10]已表明林可霉素结构稳定,难以通过温度或pH调节加速其水解过程,强化水解技术无法经济、有效地应用于其实际生产废水的处理。为了保障林可霉素发酵废水的安全、高效处理,须开发相应有效的预处理技术。
大量研究表明,臭氧对水体中的硝基苯、酚类、氯化苯、多环芳香烃等有很好的去除效果[11],并且已成功应用于印染和石化等工业废水的处理[12-18]。LIU等[19]考察了臭氧预处理土霉素实际废水的效果,发现土霉素废母液抗生素降解50%时消耗的臭氧量为0.63 mg·mg−1土霉素,处理后污水不再诱导后续生物处理单元耐药性发展。上述研究表明,臭氧氧化可以作为一种制药废水的预处理技术,然而,目前有关臭氧氧化处理林可霉素发酵废水的研究较少。
本研究以林可霉素发酵废水的高效预处理为目标,利用配水实验评价了臭氧氧化削减林可霉素效价的有效性,考察了共存基质和反应pH对林可霉素去除的影响,将臭氧预处理与厌氧生物处理技术耦合,处理实际林可霉素发酵废水,讨论了臭氧预处理对废水生化处理的促进效果,以期为林可霉素废水的处理提供参考。
林可霉素制药废水的臭氧氧化处理
Ozonation treatment of lincomycin pharmaceutical wastewater
-
摘要: 考察了臭氧氧化对林可霉素的效价削减效果。在初始抗生素浓度为100 mg·L−1时,林可霉素效价削减50%所需消耗的臭氧量为0.118 mg·mg−1抗生素,降解过程符合一级降解动力学特征。进一步采用林可霉素实际废水考察了污水化学需氧量(COD)和pH对抗生素臭氧氧化处理的影响,发现废水的COD每增加100 mg·L−1,则单位抗生素实现50%削减需要增加的臭氧量约为1.64 mg。碱性条件下,臭氧可催化分解生成羟基自由基等活性基团而加速林可霉素的降解。同时,臭氧氧化后林可霉素生产废水的厌氧可生化性提高了98.51%。研究结果可以为林可霉素生产废水的处理技术选择提供参考。Abstract: In this study, the reduction effect of lincomycin potency by ozonation was evaluated. Results showed that when the initial antibiotic concentration was 100 mg·L−1, the 50% reduction of lincomycin potency occurred at ozone consumption of 0.118 mg·mg−1 lincomycin, and the lincomycin degradation process was in accordance with first-order degradation kinetics. Furthermore, a type of actual lincomycin-making wastewater was used to study the effects of chemical oxygen demand (COD) and pH on the antibiotic ozonation. Each increase of 100 mg·L−1 in coexisted chemical oxygen demand (COD) of actual wastewater could elevate the ozone consumption by 1.64 mg·mg−1 lincomycin for 50% potency reduction for unit antibiotic. Under alkaline conditions, ozone could produce hydroxyl radical and other active groups through catalytic decomposition and enhance the degradation of lincomycin. Meanwhile, the anaerobic biodegradability was improved by 98.51% for ozone oxidized the lincomycin-making wastewater. This study could provide the guidance for the technical selection of lincomycin-making wastewater treatment.
-
Key words:
- lincomycin /
- ozonation /
- hydroxyl radical /
- reduction /
- chemical oxygen demand
-
表 1 林可霉素臭氧氧化动力学模型的拟合参数
Table 1. Fitting parameters of kinetics model of lincomycin degradation by ozonation
抗生素或废水 COD/(mg·L−1) k/min−1 R2 P 林可霉素 0 4.300 0 0.987 8 5.77 × 10−4 模拟废水 13 000 0.122 2 0.981 3 2.55 × 10−3 模拟废水 6 500 0.399 2 0.987 0 1.48 × 10−3 模拟废水 2 600 2.329 6 0.988 6 1.22 × 10−3 模拟废水 1 000 3.499 8 0.986 9 1.31 × 10−2 实际废水 7 800 1.911 7 0.961 9 3.19 × 10−3 表 2 不同pH下臭氧的消耗量及对林可霉素的降解效果
Table 2. Ozone consumption amount and lincomycin degradation effect at different pHs
反应时间/min 林可霉素降解率/% 臭氧消耗量/mg pH=3.63 pH=6.70 pH=11.27 pH=3.63 pH=6.70 pH=11.27 15 13.4 21.0 34.4 3.53 3.22 4.70 30 30.7 47.5 66.1 6.70 6.02 8.86 45 52.6 72.3 81.1 9.67 8.54 12.65 60 75.1 86.4 88.7 12.07 10.90 16.15 90 90.0 90.9 93.7 15.55 14.41 21.74 -
[1] ZHANG Q, YING G, PAN C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [2] 熊安华. 抗生素制药废水的深度处理技术研究[D]. 北京: 北京化工大学, 2006. [3] LIU M, ZHANG Y, YANG M, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system[J]. Environmental Science & Technology, 2012, 46(14): 7551-7557. [4] 牛波波. 厌氧处理盐酸林可霉素生产废水的试验研究[D]. 郑州: 郑州大学, 2017. [5] LIU M, ZHANG Y, DING R, et al. Response of activated sludge to the treatment of oxytetracycline production waste stream[J]. Applied Microbiology and Biotechnology, 2013, 97(19): 8805-8812. doi: 10.1007/s00253-012-4589-8 [6] LI D, YU T, ZHANG Y, et al. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river[J]. Applied and Environmental Microbiology, 2010, 76(11): 3444-3451. doi: 10.1128/AEM.02964-09 [7] YI Q, GAO Y, ZHANG H, et al. Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis[J]. Chemical Engineering Journal, 2016, 300: 139-145. doi: 10.1016/j.cej.2016.04.120 [8] TANG M, DOU X, TIAN Z, et al. Enhanced hydrolysis of streptomycin from production wastewater using CaO/MgO solid base catalysts[J]. Chemical Engineering Journal, 2019, 355: 586-593. doi: 10.1016/j.cej.2018.08.173 [9] CHEN Z, DOU X, ZHANG Y, et al. Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation[J]. Environmental Pollution, 2019, 249: 36-44. doi: 10.1016/j.envpol.2019.02.074 [10] TANG Mei, GU Yong, WEI Dongbin, et al. Enhanced hydrolysis of fermentative anti biotics in production wastewater: Hydrolysis potential prediction and engineering application[J/OL]. 2020, Chemical Engineering Journal, https://doi.org/10.1016/j.cej.2019.123626. [11] 左泽浩, 杨维本, 杨朕, 等. 臭氧高级氧化法处理化工废水的进展研究[J]. 环境科学与管理, 2017, 42(6): 113-117. doi: 10.3969/j.issn.1673-1212.2017.06.026 [12] TERNES T A, STUBER J, HERRMANN N, et al. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater[J]. Water Research, 2003, 37(8): 1976-1982. doi: 10.1016/S0043-1354(02)00570-5 [13] ESPLUGAS S, BILA D M, KRAUSE L G, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents[J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073 [14] GLAZE W H, KANG J W, CHAPIN D H. The Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone Science & Engineering, 1987, 9(4): 335-352. [15] HUBER M M, GÖBEL A, JOSS A, et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study[J]. Environmental Science & Technology, 2005, 39(11): 4290-4299. [16] DANTAS R F, CONTRERAS S, SANS C, et al. Sulfamethoxazole abatement by means of ozonation[J]. Journal of Hazardous Materials, 2008, 150(3): 790-794. doi: 10.1016/j.jhazmat.2007.05.034 [17] IKEHATA K, NAGHASHKAR N J, EL-DIN M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review[J]. Ozone Science & Engineering, 2006, 28(6): 353-414. [18] YARGEAU V, LECLAIR C. Impact of operating conditions on decomposition of antibiotics during ozonation: A review[J]. Ozone Science & Engineering, 2008, 30(3): 175-188. [19] LIU M, ZHANG Y, ZHANG H, et al. Ozonation as an effective pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater[J]. Desalination & Water Treatment, 2017, 74: 155-162. [20] 李烈飞, 岑海容, 汤祝华, 等. UPLC-MS/MS检测猪肉中3种大环内酯类药物残留量[J]. 肉类工业, 2017(2): 22-25. [21] ZHANG H, ZHANG Y, YANG M, et al. Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method[J]. Environmental Science Processes & Impacts, 2015, 17(11): 1923-1929. [22] 国家环境保护总局. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2008. [23] 唐庆丽, 郭卫民, 申哲民, 等. 有机污染物臭氧氧化反应动力学研究[J]. 计算机与应用化学, 2013, 30(5): 507-510. [24] CARBAJO M, BELTRAN F J, MEDINA F, et al. Catalytic ozonation of phenolic compounds: The case of gallic acid[J]. Applied Catalysis B: Environmental, 2006, 37(3/4): 177-186. [25] QIANG Z, ADAMS C, RAO S. Determination of ozonation rate constants for lincomycin and spectinomycin[J]. Ozone Science & Engineering, 2004, 26(6): 525-537. [26] 杜桂荣, 孙占学, 童少平, 等. 催化臭氧化降解有机废水及影响因素[J]. 东华理工大学学报(自然科学版), 2004, 27(2): 173-177. doi: 10.3969/j.issn.1674-3504.2004.02.014 [27] STAEHELIN J, HOIGNE J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions[J]. Environmental Science & Technology, 1985, 19(12): 1206-1213. [28] STAEHELIN J, HOIGNE J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide[J]. Environmental Science & Technology, 1982, 16(10): 676-681. [29] ANDREOZZI R, CANTERINO M, MAROTTA R, et al. Antibiotic removal from wastewaters: The ozonation of amoxicillin[J]. Journal of Hazardous Materials, 2005, 122(3): 243-250. doi: 10.1016/j.jhazmat.2005.03.004 [30] XING Z P, SUN D Z. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1264-1268. [31] 吴银彪, 李汝琪, 田岳林, 等. 臭氧降解有机污染物的反应机理及影响因素[J]. 中国环保产业, 2010(3): 44-47. doi: 10.3969/j.issn.1006-5377.2010.03.011 [32] 王冰. 林可霉素高浓度有机废水处理技术[J]. 水资源保护, 2008, 24(4): 53-57. doi: 10.3969/j.issn.1004-6933.2008.04.014 [33] 杨军, 陆正禹, 胡纪萃, 等. 林可霉素生产废水的厌氧生物处理工艺[J]. 环境科学, 2001, 22(2): 82-86. doi: 10.3321/j.issn:0250-3301.2001.02.017 [34] YI Q, ZHANG Y, GAO Y, et al. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs[J]. Water Research, 2017, 110: 211-217. doi: 10.1016/j.watres.2016.12.020 [35] 申立贤. 高浓度有机废水厌氧处理技术[M]. 北京: 中国环境科学出版社, 1992.