[1] ZHANG Q, YING G, PAN C, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[2] 熊安华. 抗生素制药废水的深度处理技术研究[D]. 北京: 北京化工大学, 2006.
[3] LIU M, ZHANG Y, YANG M, et al. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system[J]. Environmental Science & Technology, 2012, 46(14): 7551-7557.
[4] 牛波波. 厌氧处理盐酸林可霉素生产废水的试验研究[D]. 郑州: 郑州大学, 2017.
[5] LIU M, ZHANG Y, DING R, et al. Response of activated sludge to the treatment of oxytetracycline production waste stream[J]. Applied Microbiology and Biotechnology, 2013, 97(19): 8805-8812. doi: 10.1007/s00253-012-4589-8
[6] LI D, YU T, ZHANG Y, et al. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river[J]. Applied and Environmental Microbiology, 2010, 76(11): 3444-3451. doi: 10.1128/AEM.02964-09
[7] YI Q, GAO Y, ZHANG H, et al. Establishment of a pretreatment method for tetracycline production wastewater using enhanced hydrolysis[J]. Chemical Engineering Journal, 2016, 300: 139-145. doi: 10.1016/j.cej.2016.04.120
[8] TANG M, DOU X, TIAN Z, et al. Enhanced hydrolysis of streptomycin from production wastewater using CaO/MgO solid base catalysts[J]. Chemical Engineering Journal, 2019, 355: 586-593. doi: 10.1016/j.cej.2018.08.173
[9] CHEN Z, DOU X, ZHANG Y, et al. Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation[J]. Environmental Pollution, 2019, 249: 36-44. doi: 10.1016/j.envpol.2019.02.074
[10] TANG Mei, GU Yong, WEI Dongbin, et al. Enhanced hydrolysis of fermentative anti biotics in production wastewater: Hydrolysis potential prediction and engineering application[J/OL]. 2020, Chemical Engineering Journal, https://doi.org/10.1016/j.cej.2019.123626.
[11] 左泽浩, 杨维本, 杨朕, 等. 臭氧高级氧化法处理化工废水的进展研究[J]. 环境科学与管理, 2017, 42(6): 113-117. doi: 10.3969/j.issn.1673-1212.2017.06.026
[12] TERNES T A, STUBER J, HERRMANN N, et al. Ozonation: A tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater[J]. Water Research, 2003, 37(8): 1976-1982. doi: 10.1016/S0043-1354(02)00570-5
[13] ESPLUGAS S, BILA D M, KRAUSE L G, et al. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents[J]. Journal of Hazardous Materials, 2007, 149(3): 631-642. doi: 10.1016/j.jhazmat.2007.07.073
[14] GLAZE W H, KANG J W, CHAPIN D H. The Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone Science & Engineering, 1987, 9(4): 335-352.
[15] HUBER M M, GÖBEL A, JOSS A, et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study[J]. Environmental Science & Technology, 2005, 39(11): 4290-4299.
[16] DANTAS R F, CONTRERAS S, SANS C, et al. Sulfamethoxazole abatement by means of ozonation[J]. Journal of Hazardous Materials, 2008, 150(3): 790-794. doi: 10.1016/j.jhazmat.2007.05.034
[17] IKEHATA K, NAGHASHKAR N J, EL-DIN M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review[J]. Ozone Science & Engineering, 2006, 28(6): 353-414.
[18] YARGEAU V, LECLAIR C. Impact of operating conditions on decomposition of antibiotics during ozonation: A review[J]. Ozone Science & Engineering, 2008, 30(3): 175-188.
[19] LIU M, ZHANG Y, ZHANG H, et al. Ozonation as an effective pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater[J]. Desalination & Water Treatment, 2017, 74: 155-162.
[20] 李烈飞, 岑海容, 汤祝华, 等. UPLC-MS/MS检测猪肉中3种大环内酯类药物残留量[J]. 肉类工业, 2017(2): 22-25.
[21] ZHANG H, ZHANG Y, YANG M, et al. Evaluation of residual antibacterial potency in antibiotic production wastewater using a real-time quantitative method[J]. Environmental Science Processes & Impacts, 2015, 17(11): 1923-1929.
[22] 国家环境保护总局. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399-2007[S]. 北京: 中国环境科学出版社, 2008.
[23] 唐庆丽, 郭卫民, 申哲民, 等. 有机污染物臭氧氧化反应动力学研究[J]. 计算机与应用化学, 2013, 30(5): 507-510.
[24] CARBAJO M, BELTRAN F J, MEDINA F, et al. Catalytic ozonation of phenolic compounds: The case of gallic acid[J]. Applied Catalysis B: Environmental, 2006, 37(3/4): 177-186.
[25] QIANG Z, ADAMS C, RAO S. Determination of ozonation rate constants for lincomycin and spectinomycin[J]. Ozone Science & Engineering, 2004, 26(6): 525-537.
[26] 杜桂荣, 孙占学, 童少平, 等. 催化臭氧化降解有机废水及影响因素[J]. 东华理工大学学报(自然科学版), 2004, 27(2): 173-177. doi: 10.3969/j.issn.1674-3504.2004.02.014
[27] STAEHELIN J, HOIGNE J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions[J]. Environmental Science & Technology, 1985, 19(12): 1206-1213.
[28] STAEHELIN J, HOIGNE J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide[J]. Environmental Science & Technology, 1982, 16(10): 676-681.
[29] ANDREOZZI R, CANTERINO M, MAROTTA R, et al. Antibiotic removal from wastewaters: The ozonation of amoxicillin[J]. Journal of Hazardous Materials, 2005, 122(3): 243-250. doi: 10.1016/j.jhazmat.2005.03.004
[30] XING Z P, SUN D Z. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1264-1268.
[31] 吴银彪, 李汝琪, 田岳林, 等. 臭氧降解有机污染物的反应机理及影响因素[J]. 中国环保产业, 2010(3): 44-47. doi: 10.3969/j.issn.1006-5377.2010.03.011
[32] 王冰. 林可霉素高浓度有机废水处理技术[J]. 水资源保护, 2008, 24(4): 53-57. doi: 10.3969/j.issn.1004-6933.2008.04.014
[33] 杨军, 陆正禹, 胡纪萃, 等. 林可霉素生产废水的厌氧生物处理工艺[J]. 环境科学, 2001, 22(2): 82-86. doi: 10.3321/j.issn:0250-3301.2001.02.017
[34] YI Q, ZHANG Y, GAO Y, et al. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs[J]. Water Research, 2017, 110: 211-217. doi: 10.1016/j.watres.2016.12.020
[35] 申立贤. 高浓度有机废水厌氧处理技术[M]. 北京: 中国环境科学出版社, 1992.