-
中国是畜禽养殖大国,每年畜禽粪污产生量约3.8×109 t,但其综合利用率却不足60%[1]。为了加快推进畜禽养殖废弃物处理和资源化,2017年,国务院办公厅印发了《关于加快推进畜禽养殖废弃物资源化利用的意见》[2]。该文件明确指出,到2020年,全国畜禽粪污综合利用率要达到75%以上。采用何种途径来提高畜禽粪污综合利用率已经成为亟需解决的问题。
近年来,水热炭化(hydrothermal carbonization,HTC)技术在固体废弃物处理方面表现出多种优势,已引起研究者们的广泛关注[3-5]。水热炭化是指在一定的温度、反应时间和压力条件下,有机物料经过水热反应分解并转化为水热炭[6-7]。与传统的干法(热裂解)相比,水热炭化具有物料含水率选择性高、工艺操作简单、能耗低、反应条件温和以及水热炭产量大、养分保留量高且官能团丰富等优点,被认为是用来处理高含水率有机废物的一种非常有应用前景的技术[8-10]。
目前,水热炭化法已被广泛应用于处理高含水率的有机废弃物,特别是用来处理污泥和餐余垃圾[11-13]。对于畜禽粪便,水热炭化技术也可实现将其快速处理转化为水热炭的目的。然而,有关温度对畜禽粪便水热炭特性的影响研究[14-15]还较少,特别是温度对水热炭中碳的形态及保留量的影响。为此,本研究在实验室条件下,利用水热炭化技术考察了温度对畜禽粪便水热炭的产量及其特性的影响,以期为畜禽粪便的水热炭化处理提供参考。
温度对畜禽粪便水热炭产率及特性的影响
Effects of temperature on hydrothermal carbonization yield and characteristics of livestock manure
-
摘要: 以猪粪、牛粪和鸡粪3种畜禽粪便为原料制备水热炭,研究了温度对畜禽粪便水热炭产率及其特性的影响,着重分析了不同温度(140~220 ℃)下水热炭的产率、元素组成、碳保留量、官能团及重金属含量的变化。结果表明:畜禽粪便水热炭产率为48.8%~74.2%,且随着温度的升高其产率逐渐降低;此外,49.6%~82.1%的碳被保留在水热炭中,低温利于碳的保留。水热炭的H/C随着温度的升高而逐渐降低,但—OH峰逐渐减弱。畜禽粪便经过水热炭化后,其重金属含量均有不同程度的增加,其中Cu、Zn和Cd的含量超标。重金属元素的相对富集系数<1,由此可见,重金属除了部分保留在水热炭中外,还有部分重金属进入到热解液态产物中。Abstract: Dairy manure, swine manure and chicken manure were prepared as feedstock for hydrothermal carbonization. The effect of temperature on the hydrothermal carbonization yield and characteristics of livestock manure was studied, the variations of element composition, carbon retention, functional groups and heavy metal content of hydrothermal char at different hydrothermal carbonization temperatures (140~220 ℃) were analyzed. The results showed that the hydrothermal char yield of livestock manure ranged from 48.8% to 74.2%, and it decreased gradually with the increase of hydrothermal carbonization temperature. In addition, 49.6%~82.1% of carbon was maintained in hydrothermal char, and low temperature was beneficial for carbon retention. The H/C of hydrothermal char decreased gradually with the increase of temperature, with the —OH peak also decreased gradually. After hydrothermal carbonization, the contents of heavy metals in the hydrothermal char of animal manure increased in varying degrees, of which the contents of copper, zinc and cadmium exceeded the standard. The relative enrichment coefficients of heavy metals were less than 1, which indicated that besides a part of the heavy metals left in hydrothermal char, the other part entered the liquid products of pyrolysis.
-
Key words:
- pig manure /
- dairy manure /
- chicken manure /
- temperature /
- hydrothermal char
-
表 1 畜禽粪便及其水热炭的元素分析
Table 1. Elemental analysis of animal manure and its hydrothermal char
样品编码 质量分数/% H/C O/C (O+N)/C 碳保留量/% N C H O ZF 3.24 34.26 4.87 35.13 1.71 0.77 0.85 — ZF140 3.24 38.11 4.14 23.04 1.30 0.45 0.53 77.91 ZF180 2.97 42.97 4.51 19.75 1.26 0.34 0.40 82.13 ZF220 3.10 44.64 4.16 7.42 1.12 0.12 0.18 72.54 NF 1.28 37.39 5.30 29.46 1.70 0.59 0.62 — NF140 1.29 40.13 4.77 34.82 1.42 0.65 0.68 79.62 NF180 1.36 44.80 4.85 26.09 1.30 0.44 0.46 77.83 NF220 1.86 47.12 4.34 15.34 1.11 0.24 0.28 61.51 JF 1.92 26.93 3.74 24.44 1.67 0.68 0.74 — JF140 1.35 26.77 3.23 22.63 1.45 0.63 0.68 71.10 JF180 1.10 23.57 2.48 22.99 1.26 0.73 0.77 55.31 JF220 1.32 24.43 2.32 14.07 1.14 0.43 0.48 49.62 注:—表示无数据。 表 2 畜禽粪便及其水热炭中重金属含量分析结果
Table 2. Total heavy metal content in animal manure and its hydrothermal char
样品
编码Pb Cu Zn Cr Cd 含量/
(mg·kg−1)相对富集
系数含量/
(mg·kg−1)相对富集
系数含量/
(mg·kg−1)相对富集
系数含量/
(mg·kg−1)相对富集
系数含量/
(mg·kg−1)相对富集
系数ZF 29.35 317.2 1 358 6.23 15.23 ZF140 18.45 0.44 423.1 0.93 1 838 0.95 10.98 1.23 20.62 0.95 ZF180 15.44 0.34 460.9 0.95 2 081 1.00 9.13 0.96 22.92 0.99 ZF220 24.54 0.46 482.7 0.85 2 181 0.89 9.04 0.81 23.75 0.87 NF 12.69 61.41 427.9 9.68 0.45 NF140 14.15 0.83 80.61 0.97 480.4 0.83 11.48 0.88 0.37 0.61 NF180 13.13 0.67 101 1.07 555.8 0.84 13.90 0.93 0.35 0.50 NF220 23.84 0.92 133.2 1.06 852.4 0.97 16.64 0.84 0.37 0.40 JF 23.93 60.24 396.1 23.78 0.28 JF140 25.15 0.75 73.87 0.88 553.5 1.00 24.26 0.73 0.28 0.71 JF180 18.36 0.48 74.63 0.78 556 0.89 26.09 0.69 0.20 0.45 JF220 21.84 0.50 73.25 0.67 551.2 0.76 23.67 0.54 0.43 0.84 表 3 土壤环境质量和有机肥中重金属限制标准
Table 3. Limit standards of heavy metal for soil environmental quality and organic fertilizer
标准类别 评价标准 重金属含量/(mg·kg−1) Pb Cu Zn Cr Cd 土壤质量标准 农用地土壤污染风险管控标准-筛选值(GB 15618-2018) 90 50 200 150 0.3 农用地土壤污染风险管控标准-管控值(GB 15618-2018) 500 — — 850 2 温室蔬菜产地环境质量评价标准(HJ/T 333-2006) 50 50 200 150 0.3 食用农产品产地环境质量评价标准(HJ/T 332-2006) 80 50 200 150 0.3 有机肥料标准 农用污泥中污染物控制标准(GB 4284-1984) 300 250 500 600 5 有机肥料(NY 525-2011) 50 — — 150 3 德国腐熟堆肥[27] 150 100 400 100 1.5 注:—表示无数据。 -
[1] 张晶. 规模化猪场粪污处理与资源化利用浅谈[J]. 饲料与畜牧, 2017(10): 2. [2] 国务院办公厅. 国务院办公厅关于加快推进畜禽养殖废弃物资源化利用的意见[J]. 再生资源与循环经济, 2017, 10(6): 11-14. [3] KUBO S, DEMIR-CAKAN R, ZHAO L, et al. Porous carbohydrate-based materials via hard templating[J]. Chemsuschem, 2010, 3(2): 188-194. doi: 10.1002/cssc.v3:2 [4] FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining, 2010, 4(2): 160-177. [5] 吴艳姣, 李伟, 吴琼, 等. 水热炭的制备、性质及应用[J]. 化学进展, 2016, 28(1): 121-130. [6] CAO X Y, RO K S, LIBRA J A, et al. Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars[J]. Journal of Agricultural & Food Chemistry, 2013, 61(39): 9401-9411. [7] HOEKMAN S K, BROCH A, ROBBINS C, et al. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks[J]. Biomass Conversion and Biorefinery, 2013, 3(2): 113-126. doi: 10.1007/s13399-012-0066-y [8] MUMME J, ECKERVOGT L, PIELERT J, et al. Hydrothermal carbonization of anaerobically digested maize silage[J]. Bioresource Technology, 2011, 102(19): 9255-9260. doi: 10.1016/j.biortech.2011.06.099 [9] 吴倩芳, 张付申. 水热炭化废弃生物质的研究进展[J]. 环境污染与防治, 2012, 34(7): 70-75. doi: 10.3969/j.issn.1001-3865.2012.07.015 [10] BERGE N D, RO K S, MAO J, et al. Hydrothermal carbonization of municipal waste streams[J]. Environmental Science & Technology, 2011, 45(13): 5696-5703. [11] PARSHETTI G K, CHOWDHURY S, BALASUBRAMANIAN R. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters[J]. Bioresource Technology, 2014, 161(11): 310-319. [12] 王定美, 袁浩然, 王跃强, 等. 污泥水热炭化中碳氮固定率的影响因素分析[J]. 农业工程学报, 2014, 30(4): 168-175. doi: 10.3969/j.issn.1002-6819.2014.04.021 [13] 赵丹, 张琳, 郭亮, 等. 水热碳化与干法碳化对剩余污泥的处理比较[J]. 环境科学与技术, 2015, 38(10): 78-83. [14] 张进红, 林启美, 赵小蓉, 等. 水热炭化温度和时间对鸡粪生物质炭性质的影响[J]. 农业工程学报, 2015, 31(24): 239-244. doi: 10.11975/j.issn.1002-6819.2015.24.036 [15] 周思邈, 韩鲁佳, 杨增玲, 等. 碳化温度对畜禽粪便水热炭燃烧特性的影响[J]. 农业工程学报, 2017, 33(23): 233-240. doi: 10.11975/j.issn.1002-6819.2017.23.030 [16] 李飞跃, 汪建飞, 谢越, 等. 热解温度对生物质炭碳保留量及稳定性的影响[J]. 农业工程学报, 2015, 31(4): 266-271. doi: 10.3969/j.issn.1002-6819.2015.04.037 [17] 王煌平, 张青, 栗方亮, 等. 热解温度对畜禽粪便水热炭重金属特征变化的影响[J]. 环境科学学报, 2018, 38(4): 1598-1605. [18] CALVELO P R, KAAL J, CAMPS A M, et al. Contribution to characterisation of hydrochar to estimate the labile fraction of carbon[J]. Organic Geochemistry, 2011, 42(11): 1331-1342. doi: 10.1016/j.orggeochem.2011.09.002 [19] CROMBIE K, MAŠEK O, SOHI S P, et al. The effect of pyrolysis conditions on hydrochar stability as determined by three methods[J]. GCB Bioenergy, 2013, 5(2): 122-131. doi: 10.1111/gcbb.12030 [20] 王定美, 徐荣险, 秦冬星, 等. 水热炭化终温对污泥水热炭产量及特性的影响[J]. 生态环境学报, 2012, 21(10): 1775-1780. doi: 10.3969/j.issn.1674-5906.2012.10.024 [21] CHEN B L, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility[J]. Environmental Science & Technology, 2005, 39(16): 6138-6146. [22] WANG T, CAMPS-ARBESTAIN M, HEDLEY M. Predicting C aromaticity of hydrochars based on their elemental composition[J]. Organic Geochemistry, 2013, 62: 1-6. doi: 10.1016/j.orggeochem.2013.06.012 [23] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in hydrochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050 [24] ZHAO Y H, ZHAO L, MEI Y Y, et al. Release of nutrients and heavy metals from hydrochar-amended soil under environmentally relevant conditions[J]. Environmental Science and Pollution Research, 2017, 25(3): 1-11. [25] 孟俊. 猪粪堆制、热解过程中重金属形态变化及其产物的应用[D]. 杭州: 浙江大学, 2014. [26] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge hydrochar[J]. Journal of Environmental Management, 2011, 92(1): 223-228. doi: 10.1016/j.jenvman.2010.09.008 [27] VERDONCK O, SZMIDT R A K. Compost specification[J]. Acta Horticulture, 1998, 469: 169-177.