-
铬是一种易致癌、致突变和高毒性的环境污染物[1],环境中铬含量主要来自于电镀、冶金和制革行业等工业活动废水的排放[2]。铬主要为Cr(Ⅲ)和Cr(Ⅵ),Cr(Ⅲ)可以通过简单加碱沉淀的方法予以去除。相较而言,Cr(Ⅵ)毒性是Cr(Ⅲ)的100倍,且高迁移性使得Cr(Ⅵ)更容易在生物体和人体中积累,对生态环境及人体健康造成了严重的威胁[3-4]。当前含铬废水的处理方法主要有离子交换法[5]、膜分离法[6]和化学还原法[7]等,然而大量实践表明,这些处理方法仍然存在处理费用高和较严重的二次污染问题。目前,高毒性的Cr(Ⅵ)向低毒性的Cr(Ⅲ)转化的高效还原方法,由于降低了其对环境的危害,已成为是含铬废水处理的研究热点之一。高级还原技术(ARPs)是在高级氧化技术(AOPs)基础上发展起来的,区别在于前者可产生还原性自由基,包括水合电子(
${\rm{e}}_{\rm{aq}}^{-} $ )、原生态氢(H · )和二氧化碳阴离子自由基(${\rm{CO}}_2^{\cdot -} $ )等。近年来,对于${\rm{CO}}_2^{\cdot -} $ 的研究屡有报道[8-9],${\rm{CO}}_2^{\cdot -} $ 被证实是一种强还原性自由基,氧化还原电位为−1.9 V[10],目前有研究[11-12]表明,${\rm{CO}}_2^{\cdot -} $ 可以与Hg(Ⅱ)、取代苯化合物[13]、四氯化碳[10]、Cr(Ⅵ)[14]等反应,且均具有较好的还原去除效果。有研究[13]表明,${\rm{CO}}_2^{\cdot -} $ 产生的主要方法为向AOPs体系中加入甲酸或者甲酸盐,使含有${\rm{SO}}_4^{\cdot -} $ 、HO · 的氧化性体系转化为还原性体系(如式(1)和式(2)所示),进而对高氧化态的污染物表现出明显的去除效果。JIANG等[15]向过碳酸钠/Fe(Ⅱ)和过氧化钙/Fe(Ⅱ)类芬顿体系中加入HCOOH之后,可以明显降解四氯化碳。REN等[14]在Cr(Ⅵ)、Na2S2O8和HCOO−初始浓度分别为50、30和30 mmol·L−1,反应温度为70 ℃条件下,热活化Na2S2O8/HCOO−体系,反应240 min之后,Cr(Ⅵ)去除率可以达到99%。本研究采用紫外(UV)活化过硫酸盐(PS)/甲酸(FA)体系还原高浓度Cr(Ⅵ),利用UV、UV/PS和UV/PS/FA体系对Cr(Ⅵ)还原效果的对比,结合电子自旋共振(ESR)对体系中产生的主要自由基进行了检测分析,研究了UV/PS/FA体系的活化机制及其对Cr(Ⅵ)的还原机制,并考察体系主要反应条件以及复杂水体环境中天然有机物(NOM)、无机阴离子对体系还原Cr(Ⅵ)的影响,以期为高浓度Cr(Ⅵ)还原提供新型高效的、实用性较强的均相光催化处理方法。
紫外活化过硫酸盐/甲酸体系还原水中Cr(Ⅵ)机理及影响因素
Mechanism and influencing factors of aqueous Cr(Ⅵ) reduction by carbon dioxide anion radical based on the UV-activated sodium persulfate/formic acid system
-
摘要: 采用紫外活化过硫酸盐/甲酸体系所产生的还原性二氧化碳阴离子自由基(
${\rm{CO}}_2^{\cdot -}$ ),研究了水溶液中高浓度Cr(Ⅵ)的去除效果;使用电子自旋共振(ESR)技术,鉴定识别了体系中产生的活性自由基;分析了体系的活化机理及其对Cr(Ⅵ)的还原机制;考察了过硫酸盐投加量、初始pH、腐殖酸、无机阴离子(Cl−、${\rm{HCO}}_3^{-} $ 和${\rm{NO}}_3^{-} $ )及初始Cr(Ⅵ)浓度等对Cr(Ⅵ)去除的影响。结果表明:紫外活化过硫酸盐/甲酸体系可以有效还原Cr(Ⅵ),当过硫酸钠与甲酸浓度分别为20 mmol·L−1和40 mmol·L−1,未调初始pH为2.4时,初始浓度为200 mg·L−1 Cr(VI)在50 min内基本完全可被还原;此外,Cr(Ⅵ)还原去除率随过硫酸盐浓度升高而增强,在酸性条件下(pH=2.4),体系对Cr(Ⅵ)的还原效率最高,随着pH的增大,还原效率明显降低。进一步研究表明,Cl−、${\rm{HCO}}_3^{-} $ 和${\rm{NO}}_3^{-} $ 对Cr(Ⅵ)的还原都存在抑制作用,在相同浓度下,其抑制程度分别为${\rm{HCO}}_3^{-} $ >${\rm{NO}}_3^{-} $ >Cl−,腐殖酸也对Cr(Ⅵ)的去除存在抑制作用。紫外活化过硫酸盐/甲酸体系还原Cr(Ⅵ)过程符合零级反应动力学方程,其动力学常数为78.467 μmol·(L·min)−1。本研究结果为Cr(Ⅵ)废水的处理提供了一种高效的还原新技术。-
关键词:
- 紫外活化过硫酸盐/甲酸体系 /
- 二氧化碳阴离子自由基 /
- 六价铬还原
Abstract: The removal of high concentration of Cr(Ⅵ) in aqueous solution was studied by using ultraviolet activated persulfate/formic acid system to produce carbon dioxide anion radicals (${\rm{CO}}_2^{\cdot -} $ ). The active free radicals produced in the system were identified by Electron paramagnetic resonance (EPR), and the mechanisms of radical activation and Cr(Ⅵ) reduction in this system were also discussed. The effects of persulfate dosages, initial pH, humic acid, inorganic anions (Cl−,${\rm{HCO}}_3^{-} $ ,${\rm{NO}}_3^{ -} $ ) and the initial concentration of Cr(Ⅵ) on Cr(Ⅵ) removal were systematically investigated. The results showed that an effective Cr(Ⅵ) reduction occurred in ultraviolet activated persulfate/formic acid system, and Cr(Ⅵ) with an initial concentration of 200 mg·L−1 could be almost completely reduced within 50 min at the sodium persulfate concentration of 20 mmol·L−1, formic acid concentration of 40 mmol·L−1, and the initial pH of 2.4 (without the adjustment). In addition, the reduction efficiency of Cr(Ⅵ) increased with the increase of persulfate concentration. The highest reduction efficiency of Cr(Ⅵ) appeared at acidic conditions of pH=2.4. The reduction efficiency decreased significantly with the increase of pH. Further studies revealed that Cl−,${\rm{HCO}}_3^{-} $ and${\rm{NO}}_3^{-} $ inhibited the reduction of Cr(Ⅵ), the order of their inhibition degree at the same concentration was${\rm{HCO}}_3^{-} $ >${\rm{NO}}_3^{-} $ >Cl−, and humic acid was also an inhibition factor for the removal of Cr(Ⅵ) at the same concentration. Ultraviolet activated persulfate/formic acid system was well fitted with the zero-order kinetic equation with the kinetic constant of 78.467 μmol·(L·min)−1, which provides an efficient new reduction technology for Cr(Ⅵ) wastewater treatment. -
表 1 不同初始浓度下Cr (VI) 的还原反应速率常数
Table 1. Zero-order rate constant of Cr (VI) reduction with different initial concentrations
Cr(VI)初始浓度/
(mg·L−1)k/(μmol·(L·min)−1) R2 200 78.467 0.981 240 70.156 0.986 300 56.577 0.985 -
[1] CHAKRABARTI S, CHAUDHURI B, BHATTACHARJEE S, et al. Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst[J]. Chemical Engineering Journal, 2009, 153(1): 86-93. [2] BRAHIMI R, BESSEKHOUAD Y, NASRALLAH N, et al. Visible light ${\rm{CrO}}_4^{2-} $ reduction using the new CuAlO2/CdS hetero-system[J]. Journal of Hazardous Materials, 2012, 219-220(6): 19-25.[3] MITRA P, SARKAR D, CHAKRABARI S, et al. Reduction of hexa-valent chromium with zero-valent iron: Batch kinetic studies and rate model[J]. Chemical Engineering Journal, 2011, 171(1): 54-60. doi: 10.1016/j.cej.2011.03.037 [4] WU P X, LI S Z, JU L T, et al. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles[J]. Journal of Hazardous Materials, 2012, 219-220(6): 283-288. [5] BALAN C, VOLF I, BILBA D. Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure[J]. Chemical Industry and Chemical Engineering Quarterly, 2013, 19(4): 615-628. doi: 10.2298/CICEQ120531095B [6] CHEN S S, LI C W, HSU H D, et al. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes[J]. Journal of Hazardous Materials, 2009, 161(2): 1075-1080. [7] SU C, LUDWING R D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite[J]. Environmental Science and Technology, 2005, 39(16): 6208-6216. doi: 10.1021/es050185f [8] TACHIKAWA T, TOJO S, FUJITSUKA M, et al. Direct observation of the one-electron reduction of methyl viologen mediated by the CO2 radical anion during TiO2 photocatalytic reactions[J]. Langmuir, 2004, 20(22): 9441-9444. doi: 10.1021/la048100w [9] XU M H, GU X G, LU S G, et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Frontiers of Environmental Science and Engineering, 2016, 286(3): 1-9. [10] JIANG W C, TANG P, LU S G, et al. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution[J]. Frontiers of Environmental Science and Engineering, 2018, 12(2): 6-15. doi: 10.1007/s11783-017-0987-6 [11] BERKOVIC A M, GONZALEZ M C, RUSSO N, et al. Reduction of mercury(II) by the carbon dioxide radical anion: A theoretical and experimental investigation[J]. Journal of Physical Chemistry A, 2010, 114(49): 12845-12850. doi: 10.1021/jp106035m [12] FAN L, ZHOU A L, ZHONG L R, et al. Photoinduced reduction of high concentration Hg(II) to Hg2Cl2 from acid wastewater with the presence of fulvic acid under anaerobic conditions[J]. Chemosphere, 2018, 198: 13-20. doi: 10.1016/j.chemosphere.2018.01.123 [13] ROSSO J A, BERTOLOTTI S G, BRAUN A M, et al. Reactions of carbon dioxide radical anion with substituted benzenes[J]. Journal of Physical Organic Chemistry, 2010, 14(5): 300-309. [14] REN H J, HOU Z M, HAN X, et al. Highly reductive radical ${\rm{CO}}_2^{\cdot-} $ deriving from a system with${\rm{SO}}_4^{\cdot-} $ and formate anion: Implication for reduction of Cr(VI) from wastewater[J]. Chemical Engineering Journal, 2017, 309: 638-645. doi: 10.1016/j.cej.2016.10.071[15] JIANG W C, TANG P, LU S G, et al. Comparative studies of H2O2/Fe(II)/formic acid, sodium percarbonate/Fe(II)/formic acid and calcium peroxide/Fe(II)/formic acid processes for degradation performance of carbon tetrachloride[J]. Chemical Engineering Journal, 2018, 344: 453-461. doi: 10.1016/j.cej.2018.03.092 [16] GONZALEZ M C, BRAUN A M. VUV photolysis of aqueous solutions of nitrate and nitrite[J]. Research on Chemical Intermediates, 1995, 21(8/9): 837-859. [17] IMOBERDORF G, MOHSENI M. Degradation of natural organic matter in surface water using vacuum-UV irradiation[J]. Journal of Hazardous Materials, 2011, 186(1): 240-246. doi: 10.1016/j.jhazmat.2010.10.118 [18] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [19] MOUSSAVI G, HOSSAINI H, JAFARI S J, et al. Comparing the efficacy of UVC, UVC/ZnO and VUV processes for oxidation of organophosphate pesticides in water[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 290(1): 86-93. [20] LIU X W, ZHONG J E, FANG L, et al. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical[J]. Chemical Engineering Journal, 2016, 303: 56-63. doi: 10.1016/j.cej.2016.05.130 [21] VILLAMENA F A, LOCIGNO E J, ROCKENBAUER A, et al. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). 2. Carbon dioxide radical anion[J]. Journal of Physical Chemistry A, 2006, 110(49): 13253-13258. doi: 10.1021/jp064892m [22] XIE P C, MA J, LIU W, et al. Impact of UV/persulfate pretreatment on the formation of disinfection byproducts during subsequent chlorination of natural organic matter[J]. Chemical Engineering Journal, 2015, 269: 203-211. doi: 10.1016/j.cej.2015.01.043 [23] DENG J, SHAO Y S, GAO N Y, et al. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water[J]. Chemical Engineering Journal, 2013, 222(2): 150-158. [24] HASEGAWA K, NETA P. Rate constants and mechanisms of reaction of Cl2− radicals[J]. Journal of Physical Chemistry, 1978, 82(8): 854-857. doi: 10.1021/j100497a003 [25] XU M H, GU X G, LU S G, et al. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Frontiers of Environmental Science and Engineering, 2016, 286(3): 438-446. [26] NETA P, HUIE R E. Rate constants for reactions of nitrogen oxide (NO3) radicals in aqueous solutions[J]. Meat Technology, 1986, 90(19): 4644-4648. [27] EXNER M, HERRMANN H, ZELLNER R. Rate constants for the reactions of the NO3 radical with HCOOH/HCOO– and CH3COOH/CH3COO– in aqueous solution between 278 and 328 K[J]. Journal of Atmospheric Chemistry, 1994, 18(4): 359-378. doi: 10.1007/BF00712451 [28] DRAGANIC Z D, NEGRON-MENDOZA A, SEHESTED K, et al. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range[J]. International Journal of Radiation Applications and Instrumentation Part C: Radiation Physics and Chemistry, 1991, 38(3): 317-321. doi: 10.1016/1359-0197(91)90100-G [29] PADMAJA S, NETA P, HUIE R E. Rate constants for some reactions of inorganic radicals with inorganic ions. Temperature and solvent dependence[J]. International Journal of Chemical Kinetics, 2010, 25(6): 445-455. [30] HALL E S, PACKHAM R F. Coagulation of organic color with hydrolyzing coagulants[J]. Journal American Water Works Association, 1965, 57(9): 1149-1166. doi: 10.1002/j.1551-8833.1965.tb01506.x [31] LIU S, LIM M, FABRIS R, et al. Removal of humic acid using TiO2 photocatalytic process: Fractionation and molecular weight characterisation studies[J]. Chemosphere, 2008, 72(2): 263-271. doi: 10.1016/j.chemosphere.2008.01.061 [32] WANG S L, CHEN C C, TZOU Y M, et al. A mechanism study of light-induced Cr(VI) reduction in an acidic solution[J]. Journal of Hazardous Materials, 2009, 164(1): 223-228. doi: 10.1016/j.jhazmat.2008.07.145